1
|
Behera L, Mishra L, Mishra M, Mohapatra S. Ca@Cu-CD nanoprobe for dual detection of glycine and ex vivo glycine imaging. J Mater Chem B 2024; 12:5181-5193. [PMID: 38687579 DOI: 10.1039/d4tb00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Hydrothermally prepared copper-doped carbon dots (Cu-CDs) were modified with Ca2+, which serve as an excellent platform for the recognition of glycine. The feeble emission of Ca@Cu-CD increases substantially in the presence of glycine due to aggregation-induced emission. At the same time, there was a 5-fold increase in the current response of the Ca@Cu-CD modified electrode as compared to the control. The exceptional combination of fluorescence and conducting properties, along with Ca-glycine interaction, establishes our probe as a dual sensor for the detection of glycine in real serum samples. The limit of detection for this nonenzymatic fluorescence and electrochemical sensing are 17.2 and 4.1 nM, respectively. Furthermore, an extensive evaluation of the toxicity and bioimaging properties in fruit fly Drosophila melanogaster shows that the Ca@Cu-CD probe is not cytotoxic and can be applied for ex vivo imaging of glycine.
Collapse
Affiliation(s)
- Lingaraj Behera
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Lopamudra Mishra
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, 769008, India.
- Centre for Nanomaterials, National Institute of Technology Rourkela, Odisha, 769008, India
| |
Collapse
|
2
|
Hunt NT. Using 2D-IR Spectroscopy to Measure the Structure, Dynamics, and Intermolecular Interactions of Proteins in H 2O. Acc Chem Res 2024; 57:685-692. [PMID: 38364823 PMCID: PMC10918835 DOI: 10.1021/acs.accounts.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Infrared (IR) spectroscopy probes molecular structure at the level of the chemical bond or functional group. In the case of proteins, the most informative band in the IR spectrum is the amide I band, which arises predominantly from the C═O stretching vibration of the peptide link. The folding of proteins into secondary and tertiary structures leads to vibrational coupling between peptide units, generating specific amide I spectral signatures that provide a fingerprint of the macromolecular conformation. Ultrafast two-dimensional IR (2D-IR) spectroscopy allows the amide I band of a protein to be spread over a second frequency dimension in a way that mirrors 2D-NMR methods. This means that amide I 2D-IR spectroscopy produces a spectral map that is exquisitely sensitive to protein structure and dynamics and so provides detailed insights that cannot be matched by IR absorption spectroscopy. As a result, 2D-IR spectroscopy has emerged as a powerful tool for probing protein structure and dynamics over a broad range of time and length scales in the solution phase at room temperature. However, the protein amide I band coincides with an IR absorption from the bending vibration of water (δHOH), the natural biological solvent. To circumvent this problem, protein IR studies are routinely performed in D2O solutions because H/D substitution shifts the solvent bending mode (δDOD) to a lower frequency, revealing the amide I band. While effective, this method raises fundamental questions regarding the impact of the change in solvent mass on the structural or solvation dynamics of the protein and the removal of the energetic resonance between solvent and solute.In this Account, a series of studies applying 2D-IR to study the spectroscopy and dynamics of proteins in H2O-rich solvents is reviewed. A comparison of IR absorption spectroscopy and 2D-IR spectroscopy of protein-containing fluids is used to demonstrate the basis of the approach before a series of applications is presented. These range from measurements of fundamental protein biophysics to recent applications of machine learning to gain insight into protein-drug binding in complex mixtures. An outlook is presented, considering the potential for 2D-IR measurements to contribute to our understanding of protein behavior under near-physiological conditions, along with an evaluation of the obstacles that still need to be overcome.
Collapse
Affiliation(s)
- Neil T. Hunt
- Department of Chemistry and York Biomedical
Research Institute, University of York, Heslington, York, YO10
5DD, U.K.
| |
Collapse
|
3
|
Rutherford S, Hutchison CDM, Greetham GM, Parker AW, Nordon A, Baker MJ, Hunt NT. Optical Screening and Classification of Drug Binding to Proteins in Human Blood Serum. Anal Chem 2023; 95:17037-17045. [PMID: 37939225 PMCID: PMC10666086 DOI: 10.1021/acs.analchem.3c03713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Protein-drug interactions in the human bloodstream are important factors in applications ranging from drug design, where protein binding influences efficacy and dose delivery, to biomedical diagnostics, where rapid, quantitative measurements could guide optimized treatment regimes. Current measurement approaches use multistep assays, which probe the protein-bound drug fraction indirectly and do not provide fundamental structural or dynamic information about the in vivo protein-drug interaction. We demonstrate that ultrafast 2D-IR spectroscopy can overcome these issues by providing a direct, label-free optical measurement of protein-drug binding in blood serum samples. Four commonly prescribed drugs, known to bind to human serum albumin (HSA), were added to pooled human serum at physiologically relevant concentrations. In each case, spectral changes to the amide I band of the serum sample were observed, consistent with binding to HSA, but were distinct for each of the four drugs. A machine-learning-based classification of the serum samples achieved a total cross-validation prediction accuracy of 92% when differentiating serum-only samples from those with a drug present. Identification on a per-drug basis achieved correct drug identification in 75% of cases. These unique spectroscopic signatures of the drug-protein interaction thus enable the detection and differentiation of drug containing samples and give structural insight into the binding process as well as quantitative information on protein-drug binding. Using currently available instrumentation, the 2D-IR data acquisition required just 1 min and 10 μL of serum per sample, and so these results pave the way to fast, specific, and quantitative measurements of protein-drug binding in vivo with potentially invaluable applications for the development of novel therapies and personalized medicine.
Collapse
Affiliation(s)
- Samantha
H. Rutherford
- WestCHEM,
Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K.
| | - Christopher D. M. Hutchison
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Gregory M. Greetham
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Anthony W. Parker
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Alison Nordon
- WestCHEM,
Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Matthew J. Baker
- School
of Medicine and Dentistry, University of
Central Lancashire, Fylde Rd, Preston PR1
2HE, U.K.
| | - Neil T. Hunt
- Department
of Chemistry and York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
4
|
Giubertoni G, Bonn M, Woutersen S. D 2O as an Imperfect Replacement for H 2O: Problem or Opportunity for Protein Research? J Phys Chem B 2023; 127:8086-8094. [PMID: 37722111 PMCID: PMC10544019 DOI: 10.1021/acs.jpcb.3c04385] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Indexed: 09/20/2023]
Abstract
D2O is commonly used as a solvent instead of H2O in spectroscopic studies of proteins, in particular, in infrared and nuclear-magnetic-resonance spectroscopy. D2O is chemically equivalent to H2O, and the differences, particularly in hydrogen-bond strength, are often ignored. However, replacing solvent water with D2O can affect not only the kinetics but also the structure and stability of biomolecules. Recent experiments have shown that even the mesoscopic structures and the elastic properties of biomolecular assemblies, such as amyloids and protein networks, can be very different in D2O and H2O. We discuss these findings, which probably are just the tip of the iceberg, and which seem to call for obtaining a better understanding of the H2O/D2O-isotope effect on water-water and water-protein interactions. Such improved understanding may change the differences between H2O and D2O as biomolecular solvents from an elephant in the room to an opportunity for protein research.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Rutherford SH, Baker MJ, Hunt NT. 2D-IR spectroscopy of proteins in H 2O-A Perspective. J Chem Phys 2023; 158:030901. [PMID: 36681646 DOI: 10.1063/5.0129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The form of the amide I infrared absorption band provides a sensitive probe of the secondary structure and dynamics of proteins in the solution phase. However, the frequency coincidence of the amide I band with the bending vibrational mode of H2O has necessitated the widespread use of deuterated solvents. Recently, it has been demonstrated that ultrafast 2D-IR spectroscopy allows the detection of the protein amide I band in H2O-based fluids, meaning that IR methods can now be applied to study proteins in physiologically relevant solvents. In this perspective, we describe the basis of the 2D-IR method for observing the protein amide I band in H2O and show how this development has the potential to impact areas ranging from our fundamental appreciation of protein structural dynamics to new applications for 2D-IR spectroscopy in the analytical and biomedical sciences. In addition, we discuss how the spectral response of water, rather than being a hindrance, now provides a basis for new approaches to data pre-processing, standardization of 2D-IR data collection, and signal quantification. Ultimately, we visualize a direction of travel toward the creation of 2D-IR spectral libraries that can be linked to advanced computational methods for use in high-throughput protein screening and disease diagnosis.
Collapse
Affiliation(s)
- Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Matthew J Baker
- School of Medicine, Faculty of Clinical Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
6
|
Giubertoni G, Rombouts G, Caporaletti F, Deblais A, van Diest R, Reek JNH, Bonn D, Woutersen S. Infrared Diffusion-Ordered Spectroscopy Reveals Molecular Size and Structure. Angew Chem Int Ed Engl 2023; 62:e202213424. [PMID: 36259515 PMCID: PMC10107201 DOI: 10.1002/anie.202213424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/07/2022]
Abstract
Inspired by ideas from NMR, we have developed Infrared Diffusion-Ordered Spectroscopy (IR-DOSY), which simultaneously characterizes molecular structure and size. We rely on the fact that the diffusion coefficient of a molecule is determined by its size through the Stokes-Einstein relation, and achieve sensitivity to the diffusion coefficient by creating a concentration gradient and tracking its equilibration in an IR-frequency resolved manner. Analogous to NMR-DOSY, a two-dimensional IR-DOSY spectrum has IR frequency along one axis and diffusion coefficient (or equivalently, size) along the other, so the chemical structure and the size of a compound are characterized simultaneously. In an IR-DOSY spectrum of a mixture, molecules with different sizes are nicely separated into distinct sets of IR peaks. Extending this idea to higher dimensions, we also perform 3D-IR-DOSY, in which we combine the conformation sensitivity of femtosecond multi-dimensional IR spectroscopy with size sensitivity.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Gijs Rombouts
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Federico Caporaletti
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.,Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Antoine Deblais
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Rianne van Diest
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Veettil TCP, Wood BR. A Combined Near-Infrared and Mid-Infrared Spectroscopic Approach for the Detection and Quantification of Glycine in Human Serum. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22124528. [PMID: 35746311 PMCID: PMC9228712 DOI: 10.3390/s22124528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 05/16/2023]
Abstract
Serum is an important candidate in proteomics analysis as it potentially carries key markers on health status and disease progression. However, several important diagnostic markers found in the circulatory proteome and the low-molecular-weight (LMW) peptidome have become analytically challenging due to the high dynamic concentration range of the constituent protein/peptide species in serum. Herein, we propose a novel approach to improve the limit of detection (LoD) of LMW amino acids by combining mid-IR (MIR) and near-IR spectroscopic data using glycine as a model LMW analyte. This is the first example of near-IR spectroscopy applied to elucidate the detection limit of LMW components in serum; moreover, it is the first study of its kind to combine mid-infrared (25-2.5 μm) and near-infrared (2500-800 nm) to detect an analyte in serum. First, we evaluated the prediction model performance individually with MIR (ATR-FTIR) and NIR spectroscopic methods using partial least squares regression (PLS-R) analysis. The LoD was found to be 0.26 mg/mL with ATR spectroscopy and 0.22 mg/mL with NIR spectroscopy. Secondly, we examined the ability of combined spectral regions to enhance the detection limit of serum-based LMW amino acids. Supervised extended wavelength PLS-R resulted in a root mean square error of prediction (RMSEP) value of 0.303 mg/mL and R2 value of 0.999 over a concentration range of 0-50 mg/mL for glycine spiked in whole serum. The LoD improved to 0.17 mg/mL from 0.26 mg/mL. Thus, the combination of NIR and mid-IR spectroscopy can improve the limit of detection for an LMW compound in a complex serum matrix.
Collapse
Affiliation(s)
- Thulya Chakkumpulakkal Puthan Veettil
- Centre for Biospectroscopy, Monash University, Clayton, VIC 3800, Australia;
- Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Bath BA2 7AY, UK
| | - Bayden R. Wood
- Centre for Biospectroscopy, Monash University, Clayton, VIC 3800, Australia;
- Correspondence:
| |
Collapse
|
8
|
Rutherford SH, Greetham GM, Towrie M, Parker AW, Kharratian S, Krauss TF, Nordon A, Baker MJ, Hunt NT. Detection of paracetamol binding to albumin in blood serum using 2D-IR spectroscopy. Analyst 2022; 147:3464-3469. [DOI: 10.1039/d2an00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-Dimensional Infrared (2D-IR) spectroscopy is used to detect binding of paracetamol with proteins in blood serum. Quantitative peak patterns are observed indicating structural changes of the albumins' secondary structure when paracetamol bound.
Collapse
Affiliation(s)
- Samantha H. Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
| | - Gregory M. Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Michael Towrie
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Anthony W. Parker
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Soheila Kharratian
- Department of Chemistry and York Biomedical Institute, University of York, Heslington, York, YO10 5DD, UK
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Thomas F. Krauss
- School of Physics, Engineering and Technology and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Alison Nordon
- WestCHEM, Department of Pure and Applied Chemistry and CPACT, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Matthew J. Baker
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK
- Dxcover Ltd, Suite RC534, 204 George Street, Glasgow, G1 1XL, UK
| | - Neil T. Hunt
- Department of Chemistry and York Biomedical Institute, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
9
|
Valentine ML, Al-Mualem ZA, Baiz CR. Pump Slice Amplitudes: A Simple and Robust Method for Connecting Two-Dimensional Infrared and Fourier Transform Infrared Spectra. J Phys Chem A 2021; 125:6498-6504. [PMID: 34259508 DOI: 10.1021/acs.jpca.1c04558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast two-dimensional infrared (2D IR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy are often performed in tandem, with FTIR typically used to interpret and provide hypotheses for 2D IR experiments. Comparisons between 2D IR and FTIR spectra can also be used to examine the structure and orientation in systems of coupled vibrational chromophores. The most common method for comparing 2D IR and FTIR lineshapes, the diagonal slice method, contains significant artifacts when applied to oscillators with low anharmonicities. Here, we introduce a new technique, the pump slice amplitude (PSA) method, for relating 2D IR lineshapes to FTIR lineshapes and compare PSAs against diagonal slices using theoretical and experimental spectra. We find that PSAs are significantly more similar to FTIR lineshapes than diagonal slices in systems with low anharmonicity.
Collapse
Affiliation(s)
- Mason L Valentine
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| | - Ziareena A Al-Mualem
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin 78712, United States
| |
Collapse
|