1
|
Zhong H, Wang F, Tang C, Li J, Cheng JH. Combination of Structural Analysis and Proteomics Strategy Revealed the Mechanism of Ultrasound-Assisted Cold Plasma Regulating Shrimp Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356241 DOI: 10.1021/acs.jafc.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Allergic incidents of crustacean aquatic products occur frequently, and tropomyosin (TM) is the main allergen. Therefore, it is worthwhile to develop technologies to efficiently reduce the allergenicity of TM. In this study, ultrasound-assisted cold plasma (UCP) treatment was used to regulate shrimp allergy. The remarkable changes in TM structure were substantiated by alteration in secondary structure, reduction in sulfhydryl content, change in surface hydrophobicity, and disparity in surface morphology. The IgE and IgG binding ability of TM significantly decreased by 52.40% and 46.51% due to UCP treatment. In the Balb/c mouse model, mice in the UCP group showed most prominent mitigation of allergic symptoms, proved by lower allergy score, changes in levels of TM-specific antibodies, and restoration of Th1/Th2 cytokine imbalance. Using a proteomics approach, 439 differentially expressed proteins (DEPs) in the TM group (vs phosphate-buffered saline group) and 170 DEPs in the UCP group (vs TM group) were determined. Subsequent analysis demonstrated that Col6a5, Col6a6, and Epx were potential biomarkers of TM allergy. Moreover, Col6a5, Col6a6, Dcn, and Kng1 might be the target proteins of UCP treatment, while PI3K/Akt/mTOR might be the regulated signaling pathway. These findings proved that UCP treatment has great potential in reducing TM allergenicity and provide new insights into the development of hypoallergenic shrimp products.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengqi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
2
|
De Meutter J, Goormaghtigh E. Protein Microarrays for High Throughput Hydrogen/Deuterium Exchange Monitored by FTIR Imaging. Int J Mol Sci 2024; 25:9989. [PMID: 39337477 PMCID: PMC11432650 DOI: 10.3390/ijms25189989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Proteins form the fastest-growing therapeutic class. Due to their intrinsic instability, loss of native structure is common. Structure alteration must be carefully evaluated as structural changes may jeopardize the efficiency and safety of the protein-based drugs. Hydrogen deuterium exchange (HDX) has long been used to evaluate protein structure and dynamics. The rate of exchange constitutes a sensitive marker of the conformational state of the protein and of its stability. It is often monitored by mass spectrometry. Fourier transform infrared (FTIR) spectroscopy is another method with very promising capabilities. Combining protein microarrays with FTIR imaging resulted in high throughput HDX FTIR measurements. BaF2 slides bearing the protein microarrays were covered by another slide separated by a spacer, allowing us to flush the cell continuously with a flow of N2 gas saturated with 2H2O. Exchange occurred simultaneously for all proteins and single images covering ca. 96 spots of proteins that could be recorded on-line at selected time points. Each protein spot contained ca. 5 ng protein, and the entire array covered 2.5 × 2.5 mm2. Furthermore, HDX could be monitored in real time, and the experiment was therefore not subject to back-exchange problems. Analysis of HDX curves by inverse Laplace transform and by fitting exponential curves indicated that quantitative comparison of the samples is feasible. The paper also demonstrates how the whole process of analysis can be automatized to yield fast analyses.
Collapse
Affiliation(s)
- Joëlle De Meutter
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles CP206/2, B1050 Brussels, Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles CP206/2, B1050 Brussels, Belgium
| |
Collapse
|
3
|
Ray D, Chamlagai D, Kumar S, Mukhopadhyay S, Chakrabarty S, Aswal VK, Mitra S. Molecular Insights into the Conformational and Binding Behaviors of Human Serum Albumin Induced by Surface-Active Ionic Liquids. J Phys Chem B 2024; 128:6622-6637. [PMID: 38937939 DOI: 10.1021/acs.jpcb.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Extensive research has been carried out to investigate the stability and function of human serum albumin (HSA) when exposed to surface-active ionic liquids (SAILs) with different head groups (imidazolium, morpholinium, and pyridinium) and alkyl chain lengths (ranging from decyl to tetradecyl). Analysis of the protein fluorescence spectra indicates noticeable changes in the secondary structure of HSA with varying concentrations of all SAILs tested. Helicity calculations based on the Fourier transform infrared (FTIR) data show that HSA becomes more organized at the micellar concentration of SAILs, leading to an increased protein activity at this level. Small-angle neutron scattering (SANS) data confirm the formation of a bead-necklace structure between the SAILs and HSA. Atomistic molecular dynamics (MD) simulation results identify several hotspots on the protein surface for interaction with SAIL, which results in the modulation of protein conformational fluctuation and stability. Furthermore, fluorescence resonance energy transfer (FRET) experiments with the intramolecular charge transfer (ICT) probe trans-ethyl p-(dimethylamino) cinnamate (EDAC) demonstrate that higher alkyl chain lengths and SAIL concentrations result in a significantly increased energy transfer efficiency. The findings of this study provide a detailed molecular-level understanding of how the protein structure and function are affected by the presence of SAILs, with potential implications for a wide range of applications involving protein-SAIL composite systems.
Collapse
Affiliation(s)
- Dhiman Ray
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sutanu Mukhopadhyay
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Suman Chakrabarty
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India
| |
Collapse
|
4
|
Chen L, Zhao Y, Shi Q, Du Y, Zeng Q, Liu H, Zhang Z, Zheng H, Wang JJ. Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: Insights into protein quality. Food Chem 2024; 444:138685. [PMID: 38341917 DOI: 10.1016/j.foodchem.2024.138685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The preservation effects of a photodynamic inactivation (PDI)-mediated polylactic acid/5-aminolevulinic acid (PLA/ALA) film on the storage quality of salmon fillets were investigated. Results showed that the PDI-mediated PLA/ALA film could continuously generate reactive oxygen species by consuming oxygen to inactivate native pathogens and spoilage bacteria on salmon fillets. Meanwhile, the film maintained the content of muscle proteins and their secondary and tertiary structures, as well as the integrity of myosin by keeping the activity of Ca2+-ATPase, all of which protected the muscle proteins from degradation. Furthermore, the film retained the activity of total superoxide dismutase (T-SOD), suppressed the accumulation of lipid peroxides (e.g., MDA), which greatly inhibited four main types of protein oxidations. As a result, the content of flavor amino acids and essential amino acids in salmon fillets was preserved. Therefore, the PDI-mediated antimicrobial packaging film greatly preserves the storage quality of aquatic products by preserving the protein quality.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Qiandai Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai 200136, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Huaming Zheng
- School of Material Sciences & Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China.
| |
Collapse
|
5
|
Deng N, Li Z, Li H, Cai Y, Li C, Xiao Z, Zhang B, Liu M, Fang F, Wang J. Effects of maltodextrin and protein hydrolysate extracted from lotus seed peel powder on the fat substitution and lipid oxidation of lotus seed paste. Food Chem X 2023; 20:100967. [PMID: 38144735 PMCID: PMC10739846 DOI: 10.1016/j.fochx.2023.100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023] Open
Abstract
The fat substitution of maltodextrin from lotus seed peel powder (LSP-MD) and the lipid oxidation inhibitory effect of protein hydrolysate (LSP-PH) on lotus seed paste were investigated in this study. The LSP-MD with a dextrose equivalent value of 2.28 showed the smallest specific volume, strongest water-holding capacity and retrogradation. This LSP-MD effectively maintained the sensory quality, hardness and elasticity of low-fat lotus seed paste during storage at 25 °C. For protein hydrolysate, LSP-PH with a hydrolyzation degree of 13.45 % had the strongest DPPH· scavenging capacity and ferric reducing antioxidant power, which was further confirmed by FTIR spectra that enzymatic hydrolysis of LSP protein could facilitate the transformation of β-sheet into β-turn. Following 15 days of storage, supplementation with 0.5 % LSP-PH reduced the peroxide value and acid value of lotus seed paste, suggesting its excellent inhibitory effect on lipid peroxidation via interacting with hydrophobic polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Na Deng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhao Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- Prepared Dishes Modern Industrial College, Changsha University of Science & Technology, Changsha 410114, China
- Hunan Provincial Engineering Technology Research Center of Intelligent Manufacturing and Quality Safety of Xiang Flavoured Compound Seasoning for Chain Catering, Liuyang 410023, China
| |
Collapse
|
6
|
Seredin P, Goloshchapov D, Kashkarov V, Lukin A, Peshkov Y, Ippolitov I, Ippolitov Y, Litvinova T, Vongsvivut J, Chae B, Freitas RO. Changes in Dental Biofilm Proteins' Secondary Structure in Groups of People with Different Cariogenic Situations in the Oral Cavity and Using Medications by Means of Synchrotron FTIR-Microspectroscopy. Int J Mol Sci 2023; 24:15324. [PMID: 37895003 PMCID: PMC10607285 DOI: 10.3390/ijms242015324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
This work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology. This allowed to conduct a mathematical assessment of the spectral shifts in proteins' secondary structure in connection with the cariogenic situation in the oral cavity and with an external modulation. It was shown that only for the component parallel β-strands in the amide profile of the biofilm, a statistically significant (p < 0.05) change in its percentage weight (composition) was registered in a cariogenic situation (presence of active caries lesions). Note that no significant differences were detected in a normal situation (control) and in the presence of a carious pathology before and after the application of the modulator. The change in the frequency and percentage weight of parallel β-strands in the spectra of dental biofilms proved to be the result of the presence of cariogenic mutans streptococci in the film as well as of the products of their metabolism-glucan polymers. We foresee that the results presented here can inherently provide the basis for the infrared spectral diagnosis of changes (shifts) in the oral microbiome driven by the development of the carious process in the oral cavity as well as for the choice of optimal therapeutic treatments of caries based on microbiome-directed prevention measures.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Anatoly Lukin
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Yaroslav Peshkov
- Department of Solid-State Physics and Nanostructures, Voronezh State University, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, 394006 Voronezh, Russia
| | - Tatiana Litvinova
- Computational Semasiology Laboratory, Voronezh State Pedagogical University, 394043 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), Clayton, VIC 3168, Australia;
| | - Boknam Chae
- Pohang Accelerator Laboratory, Beamline Research Division, Pohang 37673, Republic of Korea
| | - Raul O. Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| |
Collapse
|
7
|
Lv J, Zhou X, Wang W, Cheng Y, Wang F. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4908-4918. [PMID: 36929026 DOI: 10.1002/jsfa.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Native walnut protein is an alkali-soluble protein that seriously limits the application of walnut protein. The pH-shifting method could improve the solubility of walnut proteins and enable the encapsulation of active ingredients. The present study aimed to prepare water-soluble nanoparticles of curcumin using walnut protein and evaluate the process of walnut protein self-assembly, interaction between walnut protein and curcumin, encapsulation properties, and stability of nanoparticles. RESULTS The solubility of native walnut protein was poor, but the solubility of walnut protein nanoparticles (WPNP) formed by walnut protein after pH-shifting significantly improved to 91.5 ± 1.2%. This is because, during the process of pH changing from 7 to 12 and back to 7, walnut protein first unfolded under alkaline conditions and then refolded under pH drive, finally forming an internal hydrophobic and external hydrophilic shell-core structures. The quenching type of walnut protein and curcumin was static quenching, and the quenching constant was 2.0 × 1014 mol-1 L-1 s-1 , indicating that the interaction between walnut protein and curcumin was non-covalent. Adding curcumin resulted in the formation of nanoparticles with small particle size compared with the no-load. The loading capacity of curcumin-loaded walnut protein nanoparticles (WPNP-C) was 222 mg g-1 walnut protein isolate. Under the same mass, the curcumin equivalent concentration in aqueous solution of WPNP-C was 17 000 times higher than that of the native curcumin. CONCLUSION The solubility of the self-assembled WPNP significantly increased after pH-shifting treatment. The walnut protein carrier could improve the stability of the encapsulated curcumin. Therefore, walnut proteins could be used as water-soluble carriers for hydrophobic drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
- Department of Science and Engineering, Hebei Agricultural University, Cangzhou, China
| | - Xin Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenjie Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yifan Cheng
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Infrared Spectroscopy as a Potential Diagnostic Tool for Medulloblastoma. Molecules 2023; 28:molecules28052390. [PMID: 36903631 PMCID: PMC10005236 DOI: 10.3390/molecules28052390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in childhood. FTIR spectroscopy provides a holistic view of the chemical composition of biological samples, including the detection of molecules such as nucleic acids, proteins, and lipids. This study evaluated the applicability of FTIR spectroscopy as a potential diagnostic tool for MB. MATERIALS AND METHODS FTIR spectra of MB samples from 40 children (boys/girls: 31/9; age: median 7.8 years, range 1.5-21.5 years) treated in the Oncology Department of the Children's Memorial Health Institute in Warsaw between 2010 and 2019 were analyzed. The control group consisted of normal brain tissue taken from four children diagnosed with causes other than cancer. Formalin-fixed and paraffin-embedded tissues were sectioned and used for FTIR spectroscopic analysis. The sections were examined in the mid-infrared range (800-3500 cm-1) by ATR-FTIR. Spectra were analysed using a combination of principal component analysis, hierarchical cluster analysis, and absorbance dynamics. RESULTS FTIR spectra in MB were significantly different from those of normal brain tissue. The most significant differences related to the range of nucleic acids and proteins in the region 800-1800 cm-1. Some major differences were also revealed in the quantification of protein conformations (α-helices, β-sheets, and others) in the amide I band, as well as in the absorbance dynamics in the 1714-1716 cm-1 range (nucleic acids). It was not, however, possible to clearly distinguish between the various histological subtypes of MB using FTIR spectroscopy. CONCLUSIONS MB and normal brain tissue can be distinguished from one another to some extent using FTIR spectroscopy. As a result, it may be used as a further tool to hasten and enhance histological diagnosis.
Collapse
|
9
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Mondeali M, Etemadi A, Barkhordari K, Mobini Kesheh M, Shavandi S, Bahavar A, Tabatabaie FH, Mahmoudi Gomari M, Modarressi MH. The role of S477N mutation in the molecular behavior of SARS-CoV-2 spike protein: An in-silico perspective. J Cell Biochem 2023; 124:308-319. [PMID: 36609701 DOI: 10.1002/jcb.30367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
The attachment of SARA-CoV-2 happens between ACE2 and the receptor binding domain (RBD) on the spike protein. Mutations in this domain can affect the binding affinity of the spike protein for ACE2. S477N, one of the most common mutations reported in the recent variants, is located in the RBD. Today's computational approaches in biology, especially during the SARS-CoV-2 pandemic, assist researchers in predicting a protein's behavior in contact with other proteins in more detail. In this study, we investigated the interactions of the S477N-hACE2 in silico to find the impact of this mutation on its binding affinity for ACE2 and immunity responses using dynamics simulation, protein-protein docking, and immunoinformatics methods. Our computational analysis revealed an increased binding affinity of N477 for ACE2. Four new hydrogen and hydrophobic bonds in the mutant RBD-ACE2 were formed (with S19 and Q24 of ACE2), which do not exist in the wild type. Also, the protein spike structure in this mutation was associated with an increase in stabilization and a decrease in its fluctuations at the atomic level. N477 mutation can be considered as the cause of increased escape from the immune system through MHC-II.
Collapse
Affiliation(s)
- Mozhgan Mondeali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Etemadi
- Medical Biotechnology Department, School of Advanced Technologies in MedicineSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khabat Barkhordari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Shavandi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wang W, Luo S, Wang X, Wang L, Zhang N, Wang R, Yu D. Structure and Emulsifying Properties of Rice Bran Protein Alkylated using an Electrochemical Reactor. Food Res Int 2023. [DOI: 10.1016/j.foodres.2023.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Waeytens J, De Meutter J, Goormaghtigh E, Dazzi A, Raussens V. Determination of Secondary Structure of Proteins by Nanoinfrared Spectroscopy. Anal Chem 2023; 95:621-627. [PMID: 36598929 PMCID: PMC9851152 DOI: 10.1021/acs.analchem.2c01431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 01/05/2023]
Abstract
Nanoscale infrared spectroscopy (AFMIR) is becoming an important tool for the analysis of biological sample, in particular protein assemblies, at the nanoscale level. While the amide I band is usually used to determine the secondary structure of proteins in Fourier transform infrared spectroscopy, no tool has been developed so far for AFMIR. The paper introduces a method for the study of secondary structure of protein based on a protein library of 38 well-characterized proteins. Ascending stepwise linear regression (ASLR) and partial least square (PLS) regression were used to correlate spectrum characteristic bands with the major secondary structures (α-helixes and β-sheets). ASLR appears to provide better results than PLS. The secondary structure predictions are characterized by a root mean square standard error in a cross validation of 6.39% for α-helixes and 6.23% for β-sheets.
Collapse
Affiliation(s)
- Jehan Waeytens
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
- Institut
de Chimie Physique d’Orsay, CNRS
UMR8000, Université Paris-Saclay, 91400Orsay, France
| | - Joëlle De Meutter
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| | - Erik Goormaghtigh
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| | - Alexandre Dazzi
- Institut
de Chimie Physique d’Orsay, CNRS
UMR8000, Université Paris-Saclay, 91400Orsay, France
| | - Vincent Raussens
- Center
for Structural Biology and Bioinformatics, Laboratory for the Structure
and Function of Biological Membranes, Université
libre de Bruxelles, 1050Brussels, Belgium
| |
Collapse
|
13
|
Tian T, Zhang J, Xiong L, Yu H, Deng K, Liao X, Zhang F, Huang P, Zhang J, Chen Y. Evaluating Subtle Pathological Changes in Early Myocardial Ischemia Using Spectral Histopathology. Anal Chem 2022; 94:17112-17120. [PMID: 36442494 DOI: 10.1021/acs.analchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early myocardial ischemia (EMI) is morphologically challenging, and the results from conventional histological staining may be subjective, imprecise, or even silent. The size of myocardial necrosis determines the acute and long-term mortality of EMI. The precise diagnosis of myocardial ischemia is critical for both clinical management and forensic investigation. Fourier transform infrared (FTIR) spectroscopic imaging is a highly sensitive tool for detecting protein conformations and imaging protein profiles. The aim of this study was to evaluate the application of FTIR imaging with multivariate analysis to detect biochemical changes in the protein conformation in the early phase of myocardial ischemia and to visually classify different disease states. The spectra and curve fitting results revealed that the total protein content decreased significantly in the EMI group and that the α-helix content of the secondary protein structure continuously decreased as ischemia progressed, while the β-sheet content increased. Differences in the control and EMI groups and perfused and ischemic myocardium were confirmed using principal component analysis and partial least squares discriminant analysis. Next, two support vector machine classifiers were effectively created. The accuracy, recall, and precision were 99.98, 99.96, and 100.00%, respectively, to differentiate the EMI group from the control group and 99.25, 98.95, and 99.54%, respectively, to differentiate perfused and ischemic myocardium. Ultimately, high EMI diagnostic accuracy was achieved with 100.00% recall and 100.00% precision, and ischemic myocardium diagnostic accuracy was achieved with 99.30% recall and 99.53% precision for the test set. This pilot study demonstrated that FTIR imaging is a powerful automated quantitative analysis tool to detect EMI without morphological changes and will improve diagnostic accuracy and patient prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ling Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Haixing Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Yijiu Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| |
Collapse
|
14
|
ATR-FTIR Biosensors for Antibody Detection and Analysis. Int J Mol Sci 2022; 23:ijms231911895. [PMID: 36233197 PMCID: PMC9570191 DOI: 10.3390/ijms231911895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Quality control of drug products is of paramount importance in the pharmaceutical world. It ensures product safety, efficiency, and consistency. In the case of complex biomolecules such as therapeutic proteins, small variations in bioprocess parameters can induce substantial variations in terms of structure, impacting the drug product quality. Conditions for obtaining highly reproducible grafting of 11-mercaptoundecanoic acid were determined. On that basis, we developed an easy-to-use, cost effective, and timesaving biosensor based on ATR-FTIR spectroscopy able to detect immunoglobulins during their production. A germanium crystal, used as an internal reflection element (IRE) for FTIR spectroscopy, was covalently coated with immunoglobulin-binding proteins. This thereby functionalized surface could bind only immunoglobulins present in complex media such as culture media or biopharmaceutical products. The potential subsequent analysis of their structure by ATR-FTIR spectroscopy makes this biosensor a powerful tool to monitor the production of biotherapeutics and assess important critical quality attributes (CQAs) such as high-order structure and aggregation level.
Collapse
|
15
|
Zaidi N, Ajmal MR, Zaidi SA, Khan RH. Mechanistic In Vitro Dissection of the Inhibition of Amyloid Fibrillation by n-Acetylneuraminic Acid: Plausible Implication in Therapeutics for Neurodegenerative Disorders. ACS Chem Neurosci 2022; 13:69-80. [PMID: 34878262 DOI: 10.1021/acschemneuro.1c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of neurodegenerative disorders including Parkinson's disease are due to fibrillation in amyloidogenic proteins. The development of therapeutics for these disorders is a topic of extensive research as effective treatments are still unavailable. The present study establishes that n-acetylneuraminic acid (Neu5ac) inhibits the amyloid fibrillation of hen egg-white lysozyme (HEWL) and α-synuclein (SYN), as observed using various biophysical techniques and cellular assays. Neu5ac inhibits the amyloid formation in both proteins, as suggested from the reduction in the ThT fluorescence and remnant structures in transmission electron microscopy micrographs observed in its presence. In HEWL fibrillation, Neu5ac decreases the hydrophobicity and resists the transition of the α-helix to a β-sheet, as observed by an ANS binding assay, circular dichroism (CD) spectra, and Fourier transform infrared measurements, respectively. Neu5ac stabilizes the states that facilitate the amyloid formation in HEWL and SYN, as demonstrated by an enhanced intrinsic fluorescence in its presence, which is further confirmed by an increase in Tm obtained from differential scanning calorimetry thermograms and an increase in the near-UV CD signal for HEWL with Neu5ac. However, the increase in stability is not a manifestation of Neu5ac binding to amyloid facilitating (partially folded or native) states of both proteins, as verified by isothermal titration calorimetry and fluorescence binding measurements. Besides, Neu5ac also attenuates the cytotoxicity of amyloid fibrils, as evaluated by a cell toxicity assay. These findings provide mechanistic insights into the Neu5ac action against amyloid fibrillation and may establish it as a plausible inhibitor molecule against neurodegenerative disorders.
Collapse
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Syed Adeel Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Rose J, Brand I, Bilstein-Schloemer M, Jachimska B, Twyman RM, Prüfer D, Noll GA. The Ca 2+ response of a smart forisome protein is dependent on polymerization. Protein Sci 2021; 31:602-612. [PMID: 34897845 PMCID: PMC8862433 DOI: 10.1002/pro.4256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 01/28/2023]
Abstract
Forisomes are giant self-assembling mechanoproteins that undergo reversible structural changes in response to Ca2+ and various other stimuli. Artificial forisomes assembled from the monomer MtSEO-F1 can be used as smart biomaterials, but the molecular basis of their functionality is not understood. To determine the role of protein polymerization in forisome activity, we tested the Ca2+ association of MtSEO-F1 dimers (the basic polymerization unit) by circular dichroism spectroscopy and microscale thermophoresis. We found that soluble MtSEO-F1 dimers neither associate with Ca2+ nor undergo structural changes. However, polarization modulation infrared reflection absorption spectroscopy revealed that aggregated MtSEO-F1 dimers and fully-assembled forisomes associate with Ca2+ , allowing the hydration of poorly-hydrated protein areas. A change in the signal profile of complete forisomes indicated that Ca2+ interacts with negatively-charged regions in the protein complexes that only become available during aggregation. We conclude that aggregation is required to establish the Ca2+ response of forisome polymers.
Collapse
Affiliation(s)
- Judith Rose
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | | | - Dirk Prüfer
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Gundula A Noll
- Institute for Plant Biology and Biotechnology, University of Münster, Münster, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| |
Collapse
|
17
|
Yuan K, Liu X, Shi J, Liu W, Liu K, Lu H, Wu D, Chen Z, Lu C. Antibacterial Properties and Mechanism of Lysozyme-Modified ZnO Nanoparticles. Front Chem 2021; 9:762255. [PMID: 34900934 PMCID: PMC8660975 DOI: 10.3389/fchem.2021.762255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The lysozyme-modified nanoparticles (LY@ZnO NPs) were synthesized by the reduction-oxidation method, and the morphology and structure of LY@ZnO were analyzed by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microsclope (SEM), and particle size analysis. The antibacterial effects of LY@ZnO against Escherichia coli (E. coli, Gram-negative bacteria) and Staphylococcus aureus (S. aureus, Gram-positive bacteria) were discussed by measuring the zone of inhibition (ZOI) and growth inhibition. The antimicrobial experiments showed that the LY@ZnO NPs possessed better antibacterial activity than ZnO. Besides, the antibacterial mechanism of LY@ZnO was also investigated, which was attributed to the generation of reactive oxygen species (ROS). Furthermore, the toxicities of LY@ZnO in vivo and in vitro were discussed by the cell counting kit-8 method and animal experiments, showing that LY@ZnO possessed excellent biocompatibility. Finally, the therapeutic effect of LY@ZnO on a rat skin infection model caused by methicillin-resistant Staphylococcus aureus (MRSA) was also studied, which exhibited good anti-infective activity. Our findings showed that LY@ZnO possessed remarkable antibacterial ability due to its excellent membrane permeability and small particle size. Besides, LY@ZnO also exhibited certain stability and great safety, which showed tremendous prospects for microbial infection in patients. It would also be helpful for a better understanding of the enzyme-modified nanomaterials against bacteria.
Collapse
Affiliation(s)
- Kangrui Yuan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xiaoliu Liu
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
| | - Jianxin Shi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Kun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chengyu Lu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
18
|
De Meutter J, Goormaghtigh E. Protein Structural Denaturation Evaluated by MCR-ALS of Protein Microarray FTIR Spectra. Anal Chem 2021; 93:13441-13449. [PMID: 34592098 DOI: 10.1021/acs.analchem.1c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The loss of native structure is common in proteins. Among others, aggregation is one structural modification of particular importance as it is a major concern for the efficiency and safety of biotherapeutic proteins. Yet, recognizing the structural features associated with intermolecular bridging in a high-throughput manner remains a challenge. We combined here the use of protein microarrays spotted at a density of ca 2500 samples per cm2 and Fourier transform infrared (FTIR) imaging to analyze structural modifications in a set of 85 proteins characterized by widely different secondary structure contents, submitted or not to mild denaturing conditions. Multivariate curve resolution alternating least squares (MCR-ALS) was used to model a new spectral component appearing in the protein set subject to denaturing conditions. In the native protein set, 6 components were found to be sufficient to obtain good modeling of the spectra. Furthermore, their shape allowed them to be assigned to α-helix, β-sheet, and other structures. Their content in each protein was correlated with the known secondary structure, confirming these assignments. In the denatured proteins, a new component was necessary and modeled by MCR-ALS. This new component could be assigned to the intermolecular β-sheet, bridging protein molecules. MCR-ALS, therefore, unveiled a potential spectroscopic marker of protein aggregation and allowed a semiquantitative evaluation of its content. Insight into other structural rearrangements was also obtained.
Collapse
Affiliation(s)
- Joëlle De Meutter
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles CP206/2, B1050 Brussels, Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles CP206/2, B1050 Brussels, Belgium
| |
Collapse
|
19
|
De Meutter J, Goormaghtigh E. FTIR Imaging of Protein Microarrays for High Throughput Secondary Structure Determination. Anal Chem 2021; 93:3733-3741. [PMID: 33577285 DOI: 10.1021/acs.analchem.0c03677] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The paper introduces a new method designed for high-throughput protein structure determination. It is based on spotting proteins as microarrays at a density of ca. 2000-4000 samples per cm2 and recording Fourier transform infrared (FTIR) spectra by FTIR imaging. It also introduces a new protein library, called cSP92, which contains 92 well-characterized proteins. It has been designed to cover as well as possible the structural space, both in terms of secondary structures and higher level structures. Ascending stepwise linear regression (ASLR), partial least square (PLS) regression, and support vector machine (SVM) have been used to correlate spectral characteristics to secondary structure features. ASLR generally provides better results than PLS and SVM. The observation that secondary structure prediction is as good for protein microarray spectra as for the reference attenuated total reflection spectra recorded on the same samples validates the high throughput microarray approach. Repeated double cross-validation shows that the approach is suitable for the high accuracy determination of the protein secondary structure with root mean square standard error in the cross-validation of 4.9 ± 1.1% for α-helix, 4.6 ± 0.8% for β-sheet, and 6.3 ± 2.2% for the "other" structures when using ASLR.
Collapse
Affiliation(s)
- Joëlle De Meutter
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles, CP206/2, B1050 Brussels, Belgium
| | - Erik Goormaghtigh
- Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine, Université Libre de Bruxelles, CP206/2, B1050 Brussels, Belgium
| |
Collapse
|
20
|
Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:641-651. [PMID: 33558954 PMCID: PMC8189991 DOI: 10.1007/s00249-021-01507-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/25/2023]
Abstract
Prediction of protein secondary structure from FTIR spectra usually relies on the absorbance in the amide I–amide II region of the spectrum. It assumes that the absorbance in this spectral region, i.e., roughly 1700–1500 cm−1 is solely arising from amide contributions. Yet, it is accepted that, on the average, about 20% of the absorbance is due to amino acid side chains. The present paper evaluates the contribution of amino acid side chains in this spectral region and the potential to improve secondary structure prediction after correcting for their contribution. We show that the β-sheet content prediction is improved upon subtraction of amino acid side chain contributions in the amide I–amide II spectral range. Improvement is relatively important, for instance, the error of prediction of β-sheet content decreases from 5.42 to 4.97% when evaluated by ascending stepwise regression. Other methods tested such as partial least square regression and support vector machine have also improved accuracy for β-sheet content evaluation. The other structures such as α-helix do not significantly benefit from side chain contribution subtraction, in some cases prediction is even degraded. We show that co-linearity between secondary structure content and amino acid composition is not a main limitation for improving secondary structure prediction. We also show that, even though based on different criteria, secondary structures defined by DSSP and XTLSSTR both arrive at the same conclusion: only the β-sheet structure clearly benefits from side chain subtraction. It must be concluded that side chain contribution subtraction benefit for the evaluation of other secondary structure contents is limited by the very rough description of side chain absorbance which does not take into account the variations related to their environment. The study was performed on a large protein set. To deal with the large number of proteins present, we worked on protein microarrays deposited on BaF2 slides and FTIR spectra were acquired with an imaging system.
Collapse
|
21
|
Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:613-628. [PMID: 33534058 PMCID: PMC8189984 DOI: 10.1007/s00249-021-01502-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/11/2022]
Abstract
FTIR spectroscopy has become a major tool to determine protein secondary structure. One of the identified obstacle for reaching better predictions is the strong overlap of bands assigned to different secondary structures. Yet, while for instance disordered structures and α-helical structures absorb almost at the same wavenumber, the absorbance bands are differentially shifted upon deuteration, in part because exchange is much faster for disordered structures. We recorded the FTIR spectra of 85 proteins at different stages of hydrogen/deuterium exchange process using protein microarrays and infrared imaging for high throughput measurements. Several methods were used to relate spectral shape to secondary structure content. While in absolute terms, β-sheet is always better predicted than α-helix content, results consistently indicate an improvement of secondary structure predictions essentially for the α-helix and the category called “Others” (grouping random, turns, bends, etc.) after 15 min of exchange. On the contrary, the β-sheet fraction is better predicted in non-deuterated conditions. Using partial least square regression, the error of prediction for the α-helix content is reduced after 15-min deuteration. Further deuteration degrades the prediction. Error on the prediction for the “Others” structures also decreases after 15-min deuteration. Cross-validation or a single 25-protein test set result in the same overall conclusions.
Collapse
|