1
|
Song X, Udani S, Ouyang M, Sahin MA, Di Carlo D, Destgeer G. Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411014. [PMID: 39716940 DOI: 10.1002/advs.202411014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated. Three dimensional computational fluid dynamics simulations predict droplet formation dynamics and differing equilibrium conditions depending on the patterning configuration. Experiments recapitulate equilibrium conditions, enabling tunable dropicle configurations with reproducible volumes down to ≈200 pL templated by the amphiphilic particles. The dropicle configurations depend predominantly on the size of the hydrophilic patches of the 4C particles. This validates that the modeling approach can inform the design of dropicles with varying volumes and numbers per particle, which can be harnessed in new amplified bioassays for greater sensitivity, dynamic range, and statistical confidence.
Collapse
Affiliation(s)
- Xinpei Song
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Shreya Udani
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mengxing Ouyang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
2
|
Yang Y, Vagin SI, Rieger B, Destgeer G. Fabrication of Crescent Shaped Microparticles for Particle Templated Droplet Formation. Macromol Rapid Commun 2024; 45:e2300721. [PMID: 38615246 DOI: 10.1002/marc.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Crescent-shaped hydrogel microparticles are shown to template uniform volume aqueous droplets upon simple mixing with aqueous and oil media for various bioassays. This emerging "lab on a particle" technique requires hydrogel particles with tunable material properties and dimensions. The crescent shape of the particles is attained by aqueous two-phase separation of polymers followed by photopolymerization of the curable precursor. In this work, the phase separation of poly(ethylene glycol) diacrylate (PEGDA, Mw 700) and dextran (Mw 40 000) for tunable manufacturing of crescent-shaped particles is investigated. The particles' morphology is precisely tuned by following a phase diagram, varying the UV intensity, and adjusting the flow rates of various streams. The fabricated particles with variable dimensions encapsulate uniform aqueous droplets upon mixing with an oil phase. The particles are fluorescently labeled with red and blue emitting dyes at variable concentrations to produce six color-coded particles. The blue fluorescent dye shows a moderate response to the pH change. The fluorescently labeled particles are able to tolerate an extremely acidic solution (pH 1) but disintegrate within an extremely basic solution (pH 14). The particle-templated droplets are able to effectively retain the disintegrating particle and the fluorescent signal at pH 14.
Collapse
Affiliation(s)
- Yimin Yang
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, TUM School of Computation, Information and Technology, TranslaTUM - Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Sergei I Vagin
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, TUM School of Computation, Information and Technology, TranslaTUM - Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
3
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Shah V, Yang X, Arnheim A, Udani S, Tseng D, Luo Y, Ouyang M, Destgeer G, Garner OB, Koydemir HC, Ozcan A, Di Carlo D. Amphiphilic Particle-Stabilized Nanoliter Droplet Reactors with a Multimodal Portable Reader for Distributive Biomarker Quantification. ACS NANO 2023; 17:19952-19960. [PMID: 37824510 PMCID: PMC10604076 DOI: 10.1021/acsnano.3c04994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Compartmentalization, leveraging microfluidics, enables highly sensitive assays, but the requirement for significant infrastructure for their design, build, and operation limits access. Multimaterial particle-based technologies thermodynamically stabilize monodisperse droplets as individual reaction compartments with simple liquid handling steps, precluding the need for expensive microfluidic equipment. Here, we further improve the accessibility of this lab on a particle technology to resource-limited settings by combining this assay system with a portable multimodal reader, thus enabling nanoliter droplet assays in an accessible platform. We show the utility of this platform in measuring N-terminal propeptide B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, in complex medium and patient samples. We report a limit of detection of ∼0.05 ng/mL and a linear response between 0.2 and 2 ng/mL in spiked plasma samples. We also show that, owing to the plurality of measurements per sample, "swarm" sensing acquires better statistical quantitation with a portable reader. Monte Carlo simulations show the increasing capability of this platform to differentiate between negative and positive samples, i.e., below or above the clinical cutoff for acute heart failure (∼0.1 ng/mL), as a function of the number of particles measured. Our platform measurements correlate with gold standard ELISA measurement in cardiac patient samples, and achieve lower variation in measurement across samples compared to the standard well plate-based ELISA. Thus, we show the capabilities of a cost-effective droplet-reader system in accurately measuring biomarkers in nanoliter droplets for diseases that disproportionately affect underserved communities in resource-limited settings.
Collapse
Affiliation(s)
- Vishwesh Shah
- Department
of Bioengineering, University of California
- Los Angeles, Los Angeles, California 90095, United States
| | - Xilin Yang
- Department
of Electrical and Computer Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California
- Los Angeles, Los Angeles, California 90095, United States
| | - Shreya Udani
- Department
of Bioengineering, University of California
- Los Angeles, Los Angeles, California 90095, United States
| | - Derek Tseng
- Department
of Electrical and Computer Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| | - Yi Luo
- Department
of Electrical and Computer Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
| | - Mengxing Ouyang
- Department
of Bioengineering, University of California
- Los Angeles, Los Angeles, California 90095, United States
| | - Ghulam Destgeer
- Department
of Electrical Engineering, Technical University
of Munich, Munich 80333, Germany
| | - Omai B. Garner
- Department
of Pathology and Laboratory Medicine, University
of California - Los Angeles, Los
Angeles, California 90095, United States
| | - Hatice C. Koydemir
- Center
for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| | - Aydogan Ozcan
- Department
of Electrical and Computer Engineering, University of California - Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute (CNSI), University
of California - Los Angeles, Los
Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California
- Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute (CNSI), University
of California - Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
5
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Sahin MA, Werner H, Udani S, Di Carlo D, Destgeer G. Flow lithography for structured microparticles: fundamentals, methods and applications. LAB ON A CHIP 2022; 22:4007-4042. [PMID: 35920614 DOI: 10.1039/d2lc00421f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structured microparticles, with unique shapes, customizable sizes, multiple materials, and spatially-defined chemistries, are leading the way for emerging 'lab on a particle' technologies. These microparticles with engineered designs find applications in multiplexed diagnostics, drug delivery, single-cell secretion assays, single-molecule detection assays, high throughput cytometry, micro-robotics, self-assembly, and tissue engineering. In this article we review state-of-the-art particle manufacturing technologies based on flow-assisted photolithography performed inside microfluidic channels. Important physicochemical concepts are discussed to provide a basis for understanding the fabrication technologies. These photolithography technologies are compared based on the structural as well as compositional complexity of the fabricated particles. Particles are categorized, from 1D to 3D particles, based on the number of dimensions that can be independently controlled during the fabrication process. After discussing the advantages of the individual techniques, important applications of the fabricated particles are reviewed. Lastly, a future perspective is provided with potential directions to improve the throughput of particle fabrication, realize new particle shapes, measure particles in an automated manner, and adopt the 'lab on a particle' technologies to other areas of research.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Helen Werner
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
- Department of Mechanical and Aerospace Engineering, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| |
Collapse
|
7
|
de Rutte J, Dimatteo R, Archang MM, van Zee M, Koo D, Lee S, Sharrow AC, Krohl PJ, Mellody M, Zhu S, Eichenbaum JV, Kizerwetter M, Udani S, Ha K, Willson RC, Bertozzi AL, Spangler J, Damoiseaux R, Di Carlo D. Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting. ACS NANO 2022; 16:7242-7257. [PMID: 35324146 PMCID: PMC9869715 DOI: 10.1021/acsnano.1c11420] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Techniques to analyze and sort single cells based on functional outputs, such as secreted products, have the potential to transform our understanding of cellular biology as well as accelerate the development of next-generation cell and antibody therapies. However, secreted molecules rapidly diffuse away from cells, and analysis of these products requires specialized equipment and expertise to compartmentalize individual cells and capture their secretions. Herein, we describe methods to fabricate hydrogel-based chemically functionalized microcontainers, which we call nanovials, and demonstrate their use for sorting single viable cells based on their secreted products at high-throughput using only commonly accessible laboratory infrastructure. These nanovials act as solid supports that facilitate attachment of a variety of adherent and suspension cell types, partition uniform aqueous compartments, and capture secreted proteins. Solutions can be exchanged around nanovials to perform fluorescence immunoassays on secreted proteins. Using this platform and commercial flow sorters, we demonstrate high-throughput screening of stably and transiently transfected producer cells based on relative IgG production. Chinese hamster ovary cells sorted based on IgG production regrew and maintained a high secretion phenotype over at least a week, yielding >40% increase in bulk IgG production rates. We also sorted hybridomas and B lymphocytes based on antigen-specific antibody production. Hybridoma cells secreting an antihen egg lysozyme antibody were recovered from background cells, enriching a population of ∼4% prevalence to >90% following sorting. Leveraging the high-speed sorting capabilities of standard sorters, we sorted >1 million events in <1 h. IgG secreting mouse B cells were also sorted and enriched based on antigen-specific binding. Successful sorting of antibody-secreting B cells combined with the ability to perform single-cell RT-PCR to recover sequence information suggests the potential to perform antibody discovery workflows. The reported nanovials can be easily stored and distributed among researchers, democratizing access to high-throughput functional cell screening.
Collapse
Affiliation(s)
- Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Partillion Bioscience Corporation, Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Maani M. Archang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Allison C. Sharrow
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Mellody
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Sheldon Zhu
- Partillion Bioscience Corporation, Los Angeles, CA 90095, USA
| | - James V. Eichenbaum
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Monika Kizerwetter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Kyung Ha
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Andrea L. Bertozzi
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
|
9
|
Ozcelik A, Aslan Z. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles. BIOMICROFLUIDICS 2022; 16:014103. [PMID: 35154554 PMCID: PMC8816518 DOI: 10.1063/5.0081769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
Miniaturization of systems and processes provides numerous benefits in terms of cost, reproducibility, precision, minimized consumption of chemical reagents, and prevention of contamination. The field of microfluidics successfully finds a place in a plethora of applications, including on-chip nanoparticle synthesis. Compared with the bulk approaches, on-chip methods that are enabled by microfluidic devices offer better control of size and uniformity of fabricated nanoparticles. However, these microfluidic devices generally require complex and expensive fabrication facilities that are not readily available in low-resourced laboratories. Here, a low-cost and simple acoustic device is demonstrated by generating acoustic streaming flows inside glass capillaries through exciting different flexural modes. At distinct frequencies, the flexural modes of the capillary result in different oscillation profiles that can insert harmonic forcing into the fluid. We explored these flexural modes and identified the modes that can generate strong acoustic streaming vortices along the glass capillary. Then, we applied these modes for fluid mixing using an easy-to-fabricate acoustofluidic device architecture. This device is applied in the fabrication of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles. The acoustic device consists of a thin glass capillary and two polydimethylsiloxane adaptors that are formed using three-dimensional printed molds. By controlling the flow rates of the polymer and water solutions, PLGA nanoparticles with diameters between 65 and 96 nm are achieved with polydispersity index values ranging between 0.08 and 0.18. Owing to its simple design and minimal fabrication requirements, the proposed acoustofluidic mixer can be applied for microfluidic fluid mixing applications in limited resource settings.
Collapse
Affiliation(s)
- Adem Ozcelik
- Mechanical Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Zeynep Aslan
- Mechanical Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
10
|
Fan W, Xiong Q, Ge Y, liu T, Zeng S, Zhao J. Identifying the grade of bladder cancer cells using microfluidic chips based on impedance. Analyst 2022; 147:1722-1729. [DOI: 10.1039/d2an00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bladder cancer diagnosis is made by microfluidic chip based-on impedance analysis.
Collapse
Affiliation(s)
- Weihua Fan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
| | - Qiao Xiong
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuqing Ge
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Ting liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, 200433, Shanghai, P. R. China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, Beijing, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| |
Collapse
|
11
|
Wang Y, Shah V, Lu A, Pachler E, Cheng B, Di Carlo D. Counting of enzymatically amplified affinity reactions in hydrogel particle-templated drops. LAB ON A CHIP 2021; 21:3438-3448. [PMID: 34378611 PMCID: PMC11288628 DOI: 10.1039/d1lc00344e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Counting of numerous compartmentalized enzymatic reactions underlies quantitative and high sensitivity immunodiagnostic assays. However, digital enzyme-linked immunosorbent assays (ELISA) require specialized instruments which have slowed adoption in research and clinical labs. We present a lab-on-a-particle solution to digital counting of thousands of single enzymatic reactions. Hydrogel particles are used to bind enzymes and template the formation of droplets that compartmentalize reactions with simple pipetting steps. These hydrogel particles can be made at a high throughput, stored, and used during the assay to create ∼500 000 compartments within 2 minutes. These particles can also be dried and rehydrated with sample, amplifying the sensitivity of the assay by driving affinity interactions on the hydrogel surface. We demonstrate digital counting of β-galactosidase enzyme at a femtomolar detection limit with a dynamic range of 3 orders of magnitude using standard benchtop equipment and experiment techniques. This approach can faciliate the development of digital ELISAs with reduced need for specialized microfluidic devices, instruments, or imaging systems.
Collapse
Affiliation(s)
- Yilian Wang
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Vishwesh Shah
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Angela Lu
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Ella Pachler
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Brian Cheng
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Du RS, Liu L, Ng S, Sambandam S, Hernandez Adame B, Perez H, Ha K, Falcon C, de Rutte J, Di Carlo D, Bertozzi AL. Statistical energy minimization theory for systems of drop-carrier particles. Phys Rev E 2021; 104:015109. [PMID: 34412304 DOI: 10.1103/physreve.104.015109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
Drop-carrier particles (DCPs) are solid microparticles designed to capture uniform microscale drops of a target solution without using costly microfluidic equipment and techniques. DCPs are useful for automated and high-throughput biological assays and reactions, as well as single-cell analyses. Surface energy minimization provides a theoretical prediction for the volume distribution in pairwise droplet splitting, showing good agreement with macroscale experiments. We develop a probabilistic pairwise interaction model for a system of such DCPs exchanging fluid volume to minimize surface energy. This leads to a theory for the number of pairwise interactions of DCPs needed to reach a uniform volume distribution. Heterogeneous mixtures of DCPs with different sized particles require fewer interactions to reach a minimum energy distribution for the system. We optimize the DCP geometry for minimal required target solution and uniformity in droplet volume.
Collapse
Affiliation(s)
- Ryan Shijie Du
- Department of Mathematics, University of California, Los Angeles, California, USA
| | - Lily Liu
- Department of Mathematics, University of Chicago, Chicago, Illinois, USA
| | - Simon Ng
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Sneha Sambandam
- Department of Mathematics, University of California, Los Angeles, California, USA
| | | | - Hansell Perez
- Department of Mathematics, University of California, Merced, California, USA
| | - Kyung Ha
- Department of Mathematics, University of California, Los Angeles, California, USA
| | - Claudia Falcon
- Department of Mathematics, University of California, Los Angeles, California, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Mechanical Engineering, University of California, Los Angeles, California, USA
| | - Andrea L Bertozzi
- Department of Mathematics, University of California, Los Angeles, California, USA.,Department of Mechanical Engineering, University of California, Los Angeles, California, USA
| |
Collapse
|