1
|
Salovska B, Li W, Bernhardt OM, Germain PL, Gandhi T, Reiter L, Liu Y. A Comprehensive and Robust Multiplex-DIA Workflow Profiles Protein Turnover Regulations Associated with Cisplatin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620709. [PMID: 39554001 PMCID: PMC11565775 DOI: 10.1101/2024.10.28.620709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Measuring protein turnover is essential for understanding cellular biological processes and advancing drug discovery. The multiplex DIA mass spectrometry (DIA-MS) approach, combined with dynamic SILAC labeling (pulse-SILAC, or pSILAC), has proven to be a reliable method for analyzing protein turnover and degradation kinetics. Previous multiplex DIA-MS workflows have employed various strategies, including leveraging the highest isotopic labeling channels of peptides to enhance the detection of isotopic MS signal pairs or clusters. In this study, we introduce an improved and robust workflow that integrates a novel machine learning strategy and channel-specific statistical filtering, enabling dynamic adaptation to systematic or temporal variations in channel ratios. This allows comprehensive profiling of protein turnover throughout the pSILAC experiment without relying solely on the highest channel signals. Additionally, we developed KdeggeR , a data processing and analysis package optimized for pSILAC-DIA experiments, which estimates and visualizes peptide and protein degradation rates and dynamic profiles. Our integrative workflow was benchmarked on both 2-channel and 3-channel standard DIA datasets and across two mass spectrometry platforms, demonstrating its broad applicability. Finally, applying this workflow to an aneuploid cancer cell model before and after cisplatin resistance development demonstrated a strong negative correlation between transcript regulation and protein degradation for major protein complex subunits. We also identified specific protein turnover signatures associated with cisplatin resistance.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | | | - Pierre-Luc Germain
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | | | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
3
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Hu Z, Chen PH, Li W, Krone M, Zheng S, Saarbach J, Velasco IU, Hines J, Liu Y, Crews CM. EGFR targeting PhosTACs as a dual inhibitory approach reveals differential downstream signaling. SCIENCE ADVANCES 2024; 10:eadj7251. [PMID: 38536914 PMCID: PMC10971414 DOI: 10.1126/sciadv.adj7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
We recently developed a heterobifunctional approach [phosphorylation targeting chimeras (PhosTACs)] to achieve the targeted protein dephosphorylation (TPDephos). Here, we envisioned combining the inhibitory effects of receptor tyrosine kinase inhibitors (RTKIs) and the active dephosphorylation by phosphatases to achieve dual inhibition of kinases. We report an example of tyrosine phosphatase-based TPDephos and the effective epidermal growth factor receptor (EGFR) tyrosine dephosphorylation. We also used phosphoproteomic approaches to study the signaling transductions affected by PhosTAC-related molecules at the proteome-wide level. This work demonstrated the differential signaling pathways inhibited by PhosTAC compared with the TKI, gefitinib. Moreover, a covalent PhosTAC selective for mutated EGFR was developed and showed its inhibitory potential for dysregulated EGFR. Last, EGFR PhosTACs, consistent with EGFR dephosphorylation profiles, induced apoptosis and inhibited cancer cell viability during prolonged PhosTAC treatment. PhosTACs showcased their potential of modulating RTKs activity, expanding the scope of bifunctional molecule utility.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mackenzie Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jacques Saarbach
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ines Urquizo Velasco
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John Hines
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT 06511, USA
- Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Lou R, Shui W. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol Cell Proteomics 2024; 23:100712. [PMID: 38182042 PMCID: PMC10847697 DOI: 10.1016/j.mcpro.2024.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Borteçen T, Müller T, Krijgsveld J. An integrated workflow for quantitative analysis of the newly synthesized proteome. Nat Commun 2023; 14:8237. [PMID: 38086798 PMCID: PMC10716174 DOI: 10.1038/s41467-023-43919-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The analysis of proteins that are newly synthesized upon a cellular perturbation can provide detailed insight into the proteomic response that is elicited by specific cues. This can be investigated by pulse-labeling of cells with clickable and stable-isotope-coded amino acids for the enrichment and mass spectrometric characterization of newly synthesized proteins (NSPs), however convoluted protocols prohibit their routine application. Here we report the optimization of multiple steps in sample preparation, mass spectrometry and data analysis, and we integrate them into a semi-automated workflow for the quantitative analysis of the newly synthesized proteome (QuaNPA). Reduced input requirements and data-independent acquisition (DIA) enable the analysis of triple-SILAC-labeled NSP samples, with enhanced throughput while featuring high quantitative accuracy. We apply QuaNPA to investigate the time-resolved cellular response to interferon-gamma (IFNg), observing rapid induction of targets 2 h after IFNg treatment. QuaNPA provides a powerful approach for large-scale investigation of NSPs to gain insight into complex cellular processes.
Collapse
Affiliation(s)
- Toman Borteçen
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Torsten Müller
- Heidelberg University, Medical Faculty, Im Neuenheimer Feld 581, Heidelberg, Germany
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, Germany.
- Heidelberg University, Medical Faculty, Im Neuenheimer Feld 581, Heidelberg, Germany.
| |
Collapse
|
7
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Exploring novel ANGICon-EIPs through ameliorated peptidomics techniques: Can deep learning strategies as a core breakthrough in peptide structure and function prediction? Food Res Int 2023; 174:113640. [PMID: 37986483 DOI: 10.1016/j.foodres.2023.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Dairy-derived angiotensin-I-converting enzyme inhibitory peptides (ANGICon-EIPs) have been regarded as a relatively safe supplementary diet-therapy strategy for individuals with hypertension, and short-chain peptides may have more relevant antihypertensive benefits due to their direct intestinal absorption. Our previous explorations have confirmed that endogenous goat milk short-chain peptides are also an essential source of ANGICon-EIPs. Nonetheless, there are limited explorations on endogenous ANGICon-EIPs owing to the limitations of the extraction and enrichment of endogenous peptides, currently. This review outlined ameliorated pre-treatment strategies, data acquisition methods, and tools for the prediction of peptide structure and function, aiming to provide creative ideas for discovering novel ANGICon-EIPs. Currently, deep learning-based peptide structure and function prediction algorithms have achieved significant advancements. The convolutional neural network (CNN) and peptide sequence-based multi-label deep learning approach for determining the multi-functionalities of bioactive peptides (MLBP) can predict multiple peptide functions with absolute true value and accuracy of 0.699 and 0.708, respectively. Utilizing peptide sequence input, torsion angles, and inter-residue distance to train neural networks, APPTEST predicted the average backbone root mean square deviation (RMSD) value of peptide (5-40 aa) structures as low as 1.96 Å. Overall, with the exploration of more neural network architectures, deep learning could be considered a critical research tool to reduce the cost and improve the efficiency of identifying novel endogenous ANGICon-EIPs.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi goat milk product quality supervision and Inspection Center), Weinan 711700, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. MASS SPECTROMETRY REVIEWS 2023; 42:2324-2348. [PMID: 35645145 DOI: 10.1002/mas.21781] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Collapse
Affiliation(s)
| | - Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
Hay BN, Akinlaja MO, Baker TC, Houfani AA, Stacey RG, Foster LJ. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities. Proteomics 2023; 23:e2200278. [PMID: 37144656 DOI: 10.1002/pmic.202200278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Proteomics technologies are continually advancing, providing opportunities to develop stronger and more robust protein interaction networks (PINs). In part, this is due to the ever-growing number of high-throughput proteomics methods that are available. This review discusses how data-independent acquisition (DIA) and co-fractionation mass spectrometry (CF-MS) can be integrated to enhance interactome mapping abilities. Furthermore, integrating these two techniques can improve data quality and network generation through extended protein coverage, less missing data, and reduced noise. CF-DIA-MS shows promise in expanding our knowledge of interactomes, notably for non-model organisms (NMOs). CF-MS is a valuable technique on its own, but upon the integration of DIA, the potential to develop robust PINs increases, offering a unique approach for researchers to gain an in-depth understanding into the dynamics of numerous biological processes.
Collapse
Affiliation(s)
- Brenna N Hay
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mopelola O Akinlaja
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Teesha C Baker
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Di Y, Li W, Salovska B, Ba Q, Hu Z, Wang S, Liu Y. A basic phosphoproteomic-DIA workflow integrating precise quantification of phosphosites in systems biology. BIOPHYSICS REPORTS 2023; 9:82-98. [PMID: 37753060 PMCID: PMC10518521 DOI: 10.52601/bpr.2023.230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 09/28/2023] Open
Abstract
Phosphorylation is one of the most important post-translational modifications (PTMs) of proteins, governing critical protein functions. Most human proteins have been shown to undergo phosphorylation, and phosphoproteomic studies have been widely applied due to recent advancements in high-resolution mass spectrometry technology. Although the experimental workflow for phosphoproteomics has been well-established, it would be useful to optimize and summarize a detailed, feasible protocol that combines phosphoproteomics and data-independent acquisition (DIA), along with follow-up data analysis procedures due to the recent instrumental and bioinformatic advances in measuring and understanding tens of thousands of site-specific phosphorylation events in a single experiment. Here, we describe an optimized Phos-DIA protocol, from sample preparation to bioinformatic analysis, along with practical considerations and experimental configurations for each step. The protocol is designed to be robust and applicable for both small-scale phosphoproteomic analysis and large-scale quantification of hundreds of samples for studies in systems biology and systems medicine.
Collapse
Affiliation(s)
- Yi Di
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Wenxue Li
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Barbora Salovska
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Qian Ba
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yansheng Liu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Abstract
Accurate protein quantification is key to identifying protein markers, regulatory relationships between proteins, and pathophysiological mechanisms. Realizing this potential requires sensitive and deep protein analysis of a large number of samples. Toward this goal, proteomics throughput can be increased by parallelizing the analysis of both precursors and samples using multiplexed data independent acquisition (DIA) implemented by the plexDIA framework: https://plexDIA.slavovlab.net. Here we demonstrate the improved precisions of retention time estimates within plexDIA and how this enables more accurate protein quantification. plexDIA has demonstrated multiplicative gains in throughput, and these gains may be substantially amplified by improving the multiplexing reagents, data acquisition, and interpretation. We discuss future directions for advancing plexDIA, which include engineering optimized mass-tags for high-plexDIA, introducing isotopologous carriers, and developing algorithms that utilize the regular structures of plexDIA data to improve sensitivity, proteome coverage, and quantitative accuracy. These advances in plexDIA will increase the throughput of functional proteomic assays, including quantifying protein conformations, turnover dynamics, modifications states and activities. The sensitivity of these assays will extend to single-cell analysis, thus enabling functional single-cell protein analysis.
Collapse
Affiliation(s)
- Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, United States
- Parallel Squared Technology Institute, Watertown, Massachusetts 02472, United States
| |
Collapse
|
13
|
Li W, Salovska B, Fornasiero EF, Liu Y. Toward a hypothesis-free understanding of how phosphorylation dynamically impacts protein turnover. Proteomics 2023; 23:e2100387. [PMID: 36422574 PMCID: PMC10964180 DOI: 10.1002/pmic.202100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The turnover measurement of proteins and proteoforms has been largely facilitated by workflows coupling metabolic labeling with mass spectrometry (MS), including dynamic stable isotope labeling by amino acids in cell culture (dynamic SILAC) or pulsed SILAC (pSILAC). Very recent studies including ours have integrated themeasurement of post-translational modifications (PTMs) at the proteome level (i.e., phosphoproteomics) with pSILAC experiments in steady state systems, exploring the link between PTMs and turnover at the proteome-scale. An open question in the field is how to exactly interpret these complex datasets in a biological perspective. Here, we present a novel pSILAC phosphoproteomic dataset which was obtained during a dynamic process of cell starvation using data-independent acquisition MS (DIA-MS). To provide an unbiased "hypothesis-free" analysis framework, we developed a strategy to interrogate how phosphorylation dynamically impacts protein turnover across the time series data. With this strategy, we discovered a complex relationship between phosphorylation and protein turnover that was previously underexplored. Our results further revealed a link between phosphorylation stoichiometry with the turnover of phosphorylated peptidoforms. Moreover, our results suggested that phosphoproteomic turnover diversity cannot directly explain the abundance regulation of phosphorylation during cell starvation, underscoring the importance of future studies addressing PTM site-resolved protein turnover.
Collapse
Affiliation(s)
- Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Derks J, Leduc A, Wallmann G, Huffman RG, Willetts M, Khan S, Specht H, Ralser M, Demichev V, Slavov N. Increasing the throughput of sensitive proteomics by plexDIA. Nat Biotechnol 2023; 41:50-59. [PMID: 35835881 PMCID: PMC9839897 DOI: 10.1038/s41587-022-01389-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/13/2022] [Indexed: 01/22/2023]
Abstract
Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Collapse
Affiliation(s)
- Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| | - Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Georg Wallmann
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - R Gray Huffman
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Saad Khan
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Harrison Specht
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Smith IR, Eng JK, Barente AS, Hogrebe A, Llovet A, Rodriguez-Mias RA, Villén J. Coisolation of Peptide Pairs for Peptide Identification and MS/MS-Based Quantification. Anal Chem 2022; 94:15198-15206. [PMID: 36306373 PMCID: PMC9851627 DOI: 10.1021/acs.analchem.2c01711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stable-isotope labeling with amino acids in cell culture (SILAC)-based metabolic labeling is a widely adopted proteomics approach that enables quantitative comparisons among a variety of experimental conditions. Despite its quantitative capacity, SILAC experiments analyzed with data-dependent acquisition (DDA) do not fully leverage peptide pair information for identification and suffer from undersampling compared to label-free proteomic experiments. Herein, we developed a DDA strategy that coisolates and fragments SILAC peptide pairs and uses y-ions for their relative quantification. To facilitate the analysis of this type of data, we adapted the Comet sequence database search engine to make use of SILAC peptide paired fragments and developed a tool to annotate and quantify MS/MS spectra of coisolated SILAC pairs. This peptide pair coisolation approach generally improved expectation scores compared to the traditional DDA approach. Fragment ion quantification performed similarly well to precursor quantification in the MS1 and achieved more quantifications. Lastly, our method enables reliable MS/MS quantification of SILAC proteome mixtures with overlapping isotopic distributions. This study shows the feasibility of the coisolation approach. Coupling this approach with intelligent acquisition strategies has the potential to improve SILAC peptide sampling and quantification.
Collapse
Affiliation(s)
- Ian R Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Jimmy K Eng
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Anthony S Barente
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Alexander Hogrebe
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ariadna Llovet
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Ricard A Rodriguez-Mias
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Ba Q, Hei Y, Dighe A, Li W, Maziarz J, Pak I, Wang S, Wagner GP, Liu Y. Proteotype coevolution and quantitative diversity across 11 mammalian species. SCIENCE ADVANCES 2022; 8:eabn0756. [PMID: 36083897 PMCID: PMC9462687 DOI: 10.1126/sciadv.abn0756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and variabilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic processes particularly show higher interspecies versus interindividual variation. Our results further indicate that while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degradation exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a phosphorylation coevolution network independent of protein abundance.
Collapse
Affiliation(s)
- Qian Ba
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Yuanyuan Hei
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Anasuya Dighe
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Irene Pak
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Günter P. Wagner
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
17
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
18
|
Beller NC, Hummon AB. Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis. Mol Omics 2022; 18:579-590. [PMID: 35723214 PMCID: PMC9378559 DOI: 10.1039/d2mo00077f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The field of proteomics is continually improving, requiring the development of new quantitative methods. Stable isotope labeling in cell culture (SILAC) is a metabolic labeling technique originating in the early 2000s. By incorporating isotopically labeled amino acids into the media used for cell culture, unlabeled versus labeled cells can be differentiated by the mass spectrometer. Traditional SILAC labeling has been expanded to pulsed applications allowing for a new quantitative dimension of proteomics - temporal analysis. The complete introduction of Heavy SILAC labeling chased with surplus unlabeled medium mimics traditional pulse-chase experiments and allows for the loss of heavy signal to track proteomic changes over time. In a similar fashion, pulsed SILAC (pSILAC) monitors the initial incorporation of a heavy label across a period of time, which allows for the rate of protein label integration to be assessed. These innovative techniques have aided in inspiring numerous SILAC-based temporal and spatial labeling applications, including super SILAC, spike-in SILAC, spatial SILAC, and a revival in label multiplexing. This review reflects upon the evolution of SILAC and the pulsed SILAC application, introduces advances in SILAC labeling, and proposes future perspectives for this novel and exciting field.
Collapse
Affiliation(s)
- Nicole C Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210.
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA, 43210
| |
Collapse
|
19
|
High Sesitivity and High-Confidence Compound Identification with a Flexible BoxCar Acquisition Method. J Pharm Biomed Anal 2022; 219:114973. [DOI: 10.1016/j.jpba.2022.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
20
|
Mehta D, Scandola S, Uhrig RG. BoxCar and Library-Free Data-Independent Acquisition Substantially Improve the Depth, Range, and Completeness of Label-Free Quantitative Proteomics. Anal Chem 2022; 94:793-802. [DOI: 10.1021/acs.analchem.1c03338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada
| |
Collapse
|
21
|
Pino L, Schilling B. Proximity labeling and other novel mass spectrometric approaches for spatiotemporal protein dynamics. Expert Rev Proteomics 2021; 18:757-765. [PMID: 34496693 PMCID: PMC8650568 DOI: 10.1080/14789450.2021.1976149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Proteins are highly dynamic and their biological function is controlled by not only temporal abundance changes but also via regulated protein-protein interaction networks, which respond to internal and external perturbations. A wealth of novel analytical reagents and workflows allow studying spatiotemporal protein environments with great granularity while maintaining high throughput and ease of analysis. AREAS COVERED We review technology advances for measuring protein-protein proximity interactions with an emphasis on proximity labeling, and briefly summarize other spatiotemporal approaches including protein localization, and their dynamic changes over time, specifically in human cells and mammalian tissues. We focus especially on novel technologies and workflows emerging within the past 5 years. This includes enrichment-based techniques (proximity labeling and crosslinking), separation-based techniques (organelle fractionation and size exclusion chromatography), and finally sorting-based techniques (laser capture microdissection and mass spectrometry imaging). EXPERT OPINION Spatiotemporal proteomics is a key step in assessing biological complexity, understanding refined regulatory mechanisms, and forming protein complexes and networks. Studying protein dynamics across space and time holds promise for gaining deep insights into how protein networks may be perturbed during disease and aging processes, and offer potential avenues for therapeutic interventions, drug discovery, and biomarker development.
Collapse
Affiliation(s)
- Lindsay Pino
- University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, CA 94945, USA
| |
Collapse
|