1
|
Liang Y, Wang Y, Yu M, Jiang Y, Shang J, Liu X, Wang F. Redox-stimulated catalytic DNA circuit for high-fidelity imaging of microRNA and in situ interpretation of the relevant regulatory pathway. Biosens Bioelectron 2024; 272:117109. [PMID: 39756268 DOI: 10.1016/j.bios.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Biomolecules play essential roles in regulating the orderly progression of biochemical reaction networks. DNA-based biocircuits supplement an attractive and ideal approach for the visual imaging of endogenous biomolecules, yet their sensing performance is commonly encumbered by the undesired signal leakage. To solve this issue, here we proposed a glutathione (GSH)-activated DNA circuit for achieving the spatio-selective microRNA imaging through the successive response of a GSH-specific activation procedure and a non-enzymatic catalytic signal amplification procedure. In this design, by incorporating a disulfide bond into the pre-sealed nucleic acid probe, the uncontrolled circuitry leakage could be effectively ameliorated. In target cancer cells with high-abundant GSH and miR-21, endogenous GSH recognized and cleaved the pre-installed disulfide bond within DNA probes, thereby restoring the activity of circuitry components. The miR-21 then catalyzed the specific operation of circuitry for generating an amplified readout signal. We demonstrate that this system not only enables the effective discriminations of various cell types, but also contributes to the exploration of the correlationship between GSH and miR-21. This on-site activated DNA circuit can be extended to the robust analysis and exploration of different biomolecular interactions, offering a reliable reference for the in-depth understanding of biochemical interaction networks.
Collapse
Affiliation(s)
- Yujing Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China
| | - Yifei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China
| | - Mengdi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China
| | - Yuqian Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Beijing Life Science Academy, Beijing, 102209, PR China.
| | - Fuan Wang
- Department of Gastroenterology, Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, 430072, PR China; Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, PR China.
| |
Collapse
|
2
|
Yang Y, Zhang N, Jiang W. Functional DNA-Zn 2+ coordination nanospheres for sensitive imaging of 8-oxyguanine DNA glycosylase activity in living cells. Talanta 2024; 280:126779. [PMID: 39217713 DOI: 10.1016/j.talanta.2024.126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Sensitive monitoring of human 8-oxyguanine DNA glycosylase (hOGG1) activity in living cells is helpful to understand its function in damage repair and evaluate its role in disease diagnosis. Herein, a functional DNA-Zn2+ coordination nanospheres was proposed for sensitive imaging of hOGG1 in living cells. The nanospheres were constructed through the coordination-driven self-assembly of the entropy driven reaction (EDR) -deoxyribozyme (DNAzyme) system with Zn2+, where DNAzyme was designed to split structure and assembled into the EDR system. When the nanospheres entered the cell, the competitive coordination between phosphate in the cell and Zn2+ leaded to the disintegration of the nanospheres, releasing DNA and some Zn2+. The released Zn2+ acted as a cofactor of DNAzyme. In the presence of hOGG1, the EDR was completed, accompanied by fluorescence recovery and the generation of a complete DNAzyme. With the assistance of Zn2+, DNAzyme continuously cleaved substrates to produce plenty of fluorescence signals, thus achieving sensitive imaging of hOGG1 activity. The nanospheres successfully achieved sensitive imaging of hOGG1 in human cervical cancer cells (HeLa), human non-small cell lung cancer cells and human normal colonic epithelial cells, and assayed changes in hOGG1 activity in HeLa cells. This nanospheres may provide a new tool for intracellular hOGG1 imaging and related biomedical studies.
Collapse
Affiliation(s)
- Yayun Yang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
3
|
Chen Y, Liu Z, Zhang B, Wu H, Lv X, Zhang Y, Lin Y. Biomedical Utility of Non-Enzymatic DNA Amplification Reaction: From Material Design to Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404641. [PMID: 39152925 DOI: 10.1002/smll.202404641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoying Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Song Y, Mao C, Zhang W, Deng D, Chen H, Sun P, Liu M, Feng C, Luo L. Catalytic hairpin assembly-based AIEgen/graphene oxide nanocomposite for fluorescence-enhanced and high-precision spatiotemporal imaging of microRNA in living cells. Biosens Bioelectron 2024; 259:116416. [PMID: 38797033 DOI: 10.1016/j.bios.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The low abundance, heterogeneous expression, and temporal changes of miRNA in different cellular locations pose significant challenges for both the detection sensitivity of miRNA liquid biopsy and intracellular imaging. In this work, we report an intelligently assembled biosensor based on catalytic hairpin assembly (CHA) and aggregation-induced emission (AIE), named as catalytic hairpin aggregation-induced emission (CHAIE), for the ultrasensitive detection and intracellular imaging of miRNA-155. To achieve such goal, tetraphenylethylene-N3 (TPE-N3) is used as AIE luminogen (AIEgen), while graphene oxide is introduced to quench the fluorescence. When the target miRNA is present, CHA reaction is triggered, causing the AIEgen to self-assemble with the hairpin DNA. This will restrict the intramolecular rotation of the AIEgen and produce a strong AIE fluorescence. Interestingly, CHAIE does not require any enzyme or expensive thermal cycling equipment, and therefore provides a rapid detection. Under optimal conditions, the proposed biosensor can determine miRNA in the concentration range from 2 pM to 200 nM within 30 min, with the detection limit of 0.42 pM. The proposed CHAIE biosensor in this work offers a low background signal and high sensitivity, making it applicable for highly precise spatiotemporal imaging of target miRNA in living cells.
Collapse
Affiliation(s)
- Yuchen Song
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Changqing Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wenjiao Zhang
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Meiyin Liu
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
5
|
Zhong Y, Li B, Xin H, Wang C. Endogenous mRNA-Driven "One-To-More" Signal Amplification of DNA Probe for Intracellular miR155 Sensing. Chem Asian J 2024; 19:e202400401. [PMID: 38725283 DOI: 10.1002/asia.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Indexed: 06/13/2024]
Abstract
The detection of specific intracellular microRNAs could be potentially helpful in understanding the underlying mechanisms of cancer metastasis and invasion. MiRNAs are usually present in lower expression levels, especially in early stage of cancer. Here, we proposed a "one-to-more" amplification strategy for miRNA imaging, by virtue of DNA strand displacements with dual-amplification. This approach involves leveraging high-abundance endogenous mRNA as fuel strand to drive cascade reactions between DNA strands for amplification, enabling the monitoring of low-abundance intracellular microRNA155. Notably, in comparison to the traditional "one-to-one" signal triggering mode, our "one-to-more" amplification strategy led to a remarkable 11.8-fold increase in fluorescence signal. Our approach not only demonstrates a high sensitivity and specificity in detecting miR155, but also allows for discrimination of miR155 expression levels in different cell lines. With the advantages of intracellular signal amplification and reduced background signal, this approach holds substantial potential in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| |
Collapse
|
6
|
Gao Y, Gong C, Chen M, Huan S, Zhang XB, Ke G. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells. Anal Chem 2024; 96:9453-9459. [PMID: 38818873 DOI: 10.1021/acs.analchem.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Selective and sensitive imaging of intracellular mature microRNAs (miRNAs) is of great importance for biological process study and medical diagnostics. However, this goal remains challenging because of the interference of precursor miRNAs (pre-miRNAs) and the low abundance of mature miRNAs. Herein, we develop an endogenous enzyme-driven amplified DNA nanocage probe (Acage) for the selective and sensitive imaging of mature miRNAs in living cells. The Acage consists of a microRNA-responsive probe, an endogenous enzyme-driven fuel strand, and a DNA nanocage framework with an inner cavity. Benefiting from the size selectivity of DNA nanocage, smaller mature miRNAs rather than larger pre-miRNAs are allowed to enter the cavity of DNA nanocage for molecular recognition; thus, Acage can significantly reduce the signal interference of pre-miRNAs. Moreover, with the driving force of an endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) for efficient signal amplification, Acage enables sensitive intracellular miRNA imaging without an additional external intervention. With these features, Acage was successfully applied for intracellular imaging of mature miRNAs during drug treatment. We believe that this strategy provides a promising pathway for better understanding the functions of mature microRNAs in biological processes and medical diagnostics.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chaonan Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Zhou Y, Zhang J, Sun S, Chen W, Wang Y, Shi H, Yang R, Qing Z. Amplified Biosensors Powered by Endogenous Molecules for Intracellular Fluorescence Imaging. Anal Chem 2024; 96:8078-8090. [PMID: 38622818 DOI: 10.1021/acs.analchem.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jun Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Shuanghong Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Weiju Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yuping Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
8
|
Zhang YW, Wang SM, Li XQ, Kang B, Chen HY, Xu JJ. Endogenous AND Logic DNA Nanomachine for Highly Specific Cancer Cell Imaging. Anal Chem 2024; 96:7030-7037. [PMID: 38656919 DOI: 10.1021/acs.analchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Zhang M, Zhang Y, Wang Q, Liu K, Li L, Yu Z, Hou L, Zhang X, Zhao H, Cheng W, Zhang W. An APE1 gated signal amplified biosensor driven by catalytic hairpin assembly for the specific imaging of microRNA in situ. Int J Biol Macromol 2024; 262:129902. [PMID: 38307426 DOI: 10.1016/j.ijbiomac.2024.129902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
In situ imaging of microRNA (miRNA) content and distribution is valuable for monitoring tumor progression. However, tumor specific in situ imaging remains a challenge due to low miRNA abundance, lack of biological compatibility, and poor specificity. In this study, we designed a DNA tetrahedral framework complex with hairpins (DTF-HPAP) consisting of an apurinic/apyrimidinic site (AP site) that could be specifically recognized and cleaved by apurinic/apyrimidinic endonuclease 1 (APE1). Efficient and specific in situ imaging of miR-21 in tumors was thus achieved through catalytic hairpin assembly (CHA) reaction. In this study, DTF-HPAP was successfully constructed to trigger the cumulative amplification of fluorescence signal in situ. The specificity, sensitivity and serum stability of DTF-HPAP were verified in vitro, and DTF-HPAP could be easily taken up by cells, acting as a biosensor to detect tumors in mice. Furthermore, we verified the ability of DTF-HPAP to specifically image miR-21 in tumors, and demonstrated its capability for tumor-specific imaging in clinical samples.
Collapse
Affiliation(s)
- Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Qionglin Wang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Kangbo Liu
- Henan Medical Equipment Inspection Institute, Zhengzhou 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Huan Zhao
- Department of oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
10
|
He S, Shang J, He Y, Wang F. Enzyme-Free Dynamic DNA Reaction Networks for On-Demand Bioanalysis and Bioimaging. Acc Chem Res 2024. [PMID: 38271669 DOI: 10.1021/acs.accounts.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
ConspectusThe pursuit of in-depth studying the nature and law of life activity has been dominating current research fields, ranging from fundamental biological studies to applications that concern synthetic biology, bioanalysis, and clinical diagnosis. Motivated by this intention, the spatiotemporally controlled and in situ analysis of living cells has been a prospective branch by virtue of high-sensitivity imaging of key biomolecules, such as biomarkers. The past decades have attested that deoxyribonucleic acid (DNA), with biocompatibility, programmability, and customizable features, is a competitive biomaterial for constructing high-performance molecular sensing tools. To conquer the complexity of the wide extracellular-intracellular distribution of biomarkers, it is a meaningful breakthrough to explore high-efficiently amplified DNA circuits, which excel at operating complex yet captivating dynamic reaction networks for various bioapplications. In parallel, the multidimensional performance improvements of nucleic acid circuits, including the availability, detection sensitivity, and reliability, are critical parameters for realizing accurate imaging and cell regulation in bioanalysis.In this Account, we summarize our recent work on enzyme-free dynamic DNA reaction networks for bioanalysis from three main aspects: DNA circuitry functional extension of molecular recognition for epigenetic analysis and regulation, DNA circuitry amplification ability improvement for sensitive biomarker detection, and site-specific activation of DNA circuitry systems for reliable and accurate cell imaging. In the first part, we have designed an epigenetically responsive deoxyribozyme (DNAzyme) circuitry system for intracellular imaging and gene regulation, which enriches the possible analyzed species by chemically modifying conventional DNAzyme. For example, an exquisite N6-methyladenine (m6A)-caged DNAzyme was built for achieving the precise FTO (fat mass and obesity-associated protein)-directed gene regulation. In addition, varieties of DNAzyme-based nanoplatforms with self-sufficient cofactor suppliers were assembled, which subdued the speed-limiting hardness of DNAzyme cofactors in live-cell applications. In the second part, we have developed a series of hierarchically assembled DNA circuitry systems to improve the signal transduction ability of traditional DNA circuits. First, the amplification ability of the DNAzyme circuit has been significantly enhanced via several heterogeneously or homogeneously concatenated circuitry models. Furthermore, a feedback reaction pathway was integrated into these concatenated circuits, thus dramatically increasing the amplification efficiency. Second, considering the complex cellular environment, we have simplified the redundancy of multicomponents or reaction procedures of traditional cascaded circuits, relying on the minimal component complexity and merely one modular catalytic reaction, which guaranteed high cell-delivering uniformity while fostering reaction kinetics and analysis reliability. In the third part, we have constructed in-cell-selective endogenous-stimulated DNA circuitry systems via the multiply guaranteed molecular recognitions, which could not only eliminate the signal leakage, but could also retain its on-site and multiplex signal amplification. Based on the site-specific activation strategy, more circuitry availability in cellular scenarios has been acquired for reliable and precise biological sensing and regulation. These enzyme-free dynamic DNA reaction networks demonstrate the purpose-to-concreteness engineering for tailored multimolecule recognition and multiple signal amplification, achieving high-gain signal transduction and high-reliability targeted imaging in bioanalysis. We envision that the enzyme-free dynamic DNA reaction network can contribute to more bioanalytical layouts, which will facilitate the progression of clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Shizhen He
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
11
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
12
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
13
|
He J, Luo S, Deng H, Yang C, Zhang Y, Li M, Yuan R, Xu W. Fluorescent Features and Applicable Biosensing of a Core-Shell Ag Nanocluster Shielded by a DNA Tetrahedral Nanocage. Anal Chem 2023; 95:14805-14815. [PMID: 37738392 DOI: 10.1021/acs.analchem.3c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The DNA frame structure as a natural shell to stably shield the sequence-templated Ag nanocluster core (csAgNC) is intriguing yet challenging for applicable fluorescence biosensing, for which the elaborate programming of a cluster scaffold inside a DNA-based cage to guide csAgNC nucleation might be crucial. Herein, we report the first design of a symmetric tetrahedral DNA nanocage (TDC) that was self-assembled in a one-pot process using a C-rich csAgNC template strand and four single strands. Inside the as-constructed soft TDC architecture, the template sequence was logically bridged from one side to another, not in the same face, thereby guiding the in situ synthesis of emissive csAgNC. Because of the strong electron-repulsive capability of the negatively charged TDC, the as-formed csAgNC displayed significantly improved fluorescence stability and superb spectral behavior. By incorporating the recognizable modules of targeted microRNAs (miRNAs) in one vertex of the TDC, an updated TDC (uTDC) biosensing platform was established via the photoinduced electron transfer effect between the emissive csAgNC reporter and hemin/G-quadruplex (hG4) conjugate. Because of the target-interrupted csAgNC switching in three states with the spatial proximity and separation to hG4, an "on-off-on" fluorescing signal response was executed, thus achieving a wide linear range to miRNAs and a limit of detection down to picomoles. Without complicated chemical modifications, this simpler and more cost-effective strategy offered accurate cell imaging of miRNAs, further suggesting possible therapeutic applications.
Collapse
Affiliation(s)
- Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shihua Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Huilin Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mengdie Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Wang S, Li H, Dong K, Shu W, Zhang J, Zhang J, Zhao R, Wei S, Feng D, Xiao X, Zhang W. A universal and specific RNA biosensor via DNA circuit-mediated PAM-independent CRISPR/Cas12a and PolyA-rolling circle amplification. Biosens Bioelectron 2023; 226:115139. [PMID: 36774734 DOI: 10.1016/j.bios.2023.115139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Point of care testing (POCT) has important clinical significance for the diagnosis and prognosis evaluation of diseases. At present, the biosensor based on CRISPR/Cas12a has become a powerful diagnostic tool due to its high sensitivity. However, CRISPR/Cas12a requires PAM sequence to recognize target double strand and only can recognize specific sequence, so it is not universal. The current RNA detection techniques either lack consideration for specificity and universality, are expensive and difficult, or both. Therefore, it is crucial to create a CRISPR/Cas12a-based RNA detection system that is easy to use, cheap, specific, and universal in order to further its use in molecular diagnostics. Here, we established a DNA circuit-mediated PAM-independent CRISPR/Cas12a coupled PolyA-rolling circle amplification for RNA detection biosensor, namely DCPRBiosensor. The DCPRBiosensor not only functions as a simple, inexpensive, and highly sensitive RNA detection sensor, but it also boasts innovative specificity and universality features. More importantly, DCPRBiosensor removes the PAM restriction of CRISPR/Cas12a. The DCPRBiosensor's detection limit reached 100 aM and it had a linear relationship between 100 aM and 10 pM. We detected four piRNAs to verify the universality and stability of DCPRBiosensor. Then, we verified that DCPRBiosensor has good discrimination ability for single-base mismatch. Finally, we successfully detected piRNA in DLD-1 and HCT-116 cells and urine mixed samples within 4.5 h. In conclusion, we believe that DCPRBiosensor will have a substantial impact on both the development of CRISPR/as12a's applications and the investigation of the clinical value of piRNA.
Collapse
Affiliation(s)
- Sidan Wang
- Queen Mary School, Nanchang University, Nanchang, 330006, China
| | - Haojia Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jiarui Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
16
|
Yang X, Yuan L, Xu Y, He B. Target-catalyzed self-assembled spherical G-quadruplex/hemin DNAzymes for highly sensitive colorimetric detection of microRNA in serum. Anal Chim Acta 2023; 1247:340879. [PMID: 36781247 DOI: 10.1016/j.aca.2023.340879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions. As a horseradish peroxidase-mimic, GQ/hemin DNAzyme could catalyze the redox reaction and color change of the substrates. Taking miRNA-21 as an example, the developed method exhibited satisfactory specificity as well as high sensitivity with a detection limit of 90.3 fM. Furthermore, the sensing platform has been successfully employed to detect miRNA-21 in spiked serum, providing a promising tool for early diagnosis of cancers.
Collapse
Affiliation(s)
- Xuejiao Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
17
|
Chen H, Chen X, Chen Y, Zhang C, Sun Z, Mo J, Wang Y, Yang J, Zou D, Luo Y. High-fidelity imaging of intracellular microRNA via a bioorthogonal nanoprobe. Analyst 2023; 148:1682-1693. [PMID: 36912705 DOI: 10.1039/d3an00088e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The spatiotemporal visualization of intracellular microRNA (miRNA) plays a critical role in the diagnosis and treatment of malignant disease. Although DNAzyme-based biosensing has been regarded as the most promising candidate, inefficient analytical resolution is frequently encountered. Here, we propose a bioorthogonal approach toward high-fidelity imaging of intracellular miRNA by designing a multifunctional nanoprobe that integrates MnO2 nanosheet-mediated intracellular delivery and activation by a fat mass and obesity-associated protein (FTO)-switched positive feedback. MnO2 nanosheets facilitate nanoprobe delivery and intracellular DNAzyme cofactors are released upon glutathione-triggered reduction. Meanwhile, an m6A-caged DNAzyme probe could be bioorthogonally activated by intracellular FTO to eliminate potential off-target activation. Therefore, the activated DNAzyme probe and substrate probe could recognize miRNA to perform cascade signal amplification in the initiation of the release of Mn2+ from MnO2 nanosheets. This strategy realized high-fidelity imaging of intracellular aberrant miRNA within tumor cells with a satisfactory detection limit of 9.7 pM, paving the way to facilitate clinical tumor diagnosis and prognosis monitoring.
Collapse
Affiliation(s)
- Hengyi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Yi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Chong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Jiaxi Mo
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Dongsheng Zou
- College of Computer Science, Chongqing University Chongqing, 400044, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China. .,College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, P.R. China.,Department of Laboratory Medicine, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, P.R. China
| |
Collapse
|
18
|
He L, Shang M, Chen Z, Yang Z. Metal-Organic Frameworks Nanocarriers for Functional Nucleic Acid Delivery in Biomedical Applications. CHEM REC 2023:e202300018. [PMID: 36912736 DOI: 10.1002/tcr.202300018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Indexed: 03/14/2023]
Abstract
Metal-organic frameworks (MOFs), a distinctive funtionalmaterials which is constructed by various metal ions and organic molecules, have gradually attracted researchers' attention from they were founded. In the last decade, MOFs emerge as a biomedical material with potential applications due to their unique properties. However, the MOFs performed as nanocarriers for functional nucleic acid delivery in biomedical applications rarely summarized. In this review, we introduce recent developments of MOFs for nucleic acid delivery in various biologically relevant applications, with special emphasis on cancer therapy (including siRNA, ASO, DNAzyme, miRNA and CpG oligodeoxynucleotides), bioimaging, biosensors and separation of biomolecules. We expect the accomplishment of this review could benefit certain researchers in biomedical field to develop novel sophisticated nanocarriers for functional nucleic acid delivery based on the promising material of MOFs.
Collapse
Affiliation(s)
- Li He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengdi Shang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhongkai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Chen Y, Xing Y, Wang Z, Li L, Wang H, Tang S, Cai K, Zhang J. Dual factor coactivatable fluorescent nanosensor with boosted cytoplasmic biomarker accessibility toward selective tumor imaging. Biosens Bioelectron 2023; 223:115026. [PMID: 36565544 DOI: 10.1016/j.bios.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Fluorescent nanosensor-based tumor imaging holds great promise in cancer diagnosis and treatment assistance, yet the signal contrast is heavily hampered by the unspecific/unwanted activation at microscopic regions with a highly restricted local abundance of biomarkers. Herein, we developed an activation boosting strategy by the integration and manipulation of dual-factor coactivation of sensing and lysosome escape facilitated the rise of cytosolic biomarker accessibility. By employing hybrid DNA probes on gold nanoquenchers, ATP sensing initiated conformation switch of the corresponding aptamer units triggered the exposure of a hidden toehold in a loop structure. Sequentially, miRNA-21 sensing was triggered by toehold-mediated strand displacement and detachment of the binding complexes. The application of lysosomotropic agent chloroquine at optimized time interval facilitated the release of nanosensors into the cytosol and a ∼10.5-fold increment of intracellular fluorescence in vitro, while coactivation improved the cancer-to-normal cell signal ratio by ∼5.9 times. The synergy effects led to a high tumor-to-normal tissue ratio value of ∼7.9 in the in vivo imaging results. This strategy establishes a new paradigm of fluorescent nanosensors for selective and specific tumor imaging.
Collapse
Affiliation(s)
- Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Hailing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, PR China.
| |
Collapse
|
20
|
Yang C, Wang K, Tian S, Mo L, Lin W. Functionalized photosensitive metal-organic framework as a theranostic nanoplatform for turn-on detection of MicroRNA and photodynamic therapy. Anal Chim Acta 2023; 1239:340689. [PMID: 36628708 DOI: 10.1016/j.aca.2022.340689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Developing a theranostic platform integrating precise diagnostic and efficient treatment is significant but challenging. Here, we reported a new theranostic platform - hairpin probe - photosensitizing MOFs (HPMOF) composed of photosensitizing MOFs (PMOFs) and hairpin probes labeled with fluorophore and quencher, in which PMOF played the role of photosensitizer and nanocarrier of the hairpin probe. The HPMOF was covered with a layer of ZIF-8 to achieve the dual-layered nanotheranostics (HPMOF@ZIF-8). The HPMOF@ZIF-8 achieved high DNA loading capacity and intracellular delivery for tumor-related miRNA imaging. Moreover, HPMOF@ZIF-8 could generate reactive oxygen species with high efficiency, which induced cell apoptosis, leading to efficient photodynamic therapy. Due to the different expression of miRNA between normal cells and cancer cells, the HPMOF@ZIF-8 could recognize cancer cells through imaging of miRNA, leading to more accurate treatment of cancer, providing a promising theranostic nanoplatform.
Collapse
Affiliation(s)
- Chan Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Kun Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Shuo Tian
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Liuting Mo
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
21
|
Liu Q, Huang Y, Li Z, Li L, Zhao Y, Li M. An Enzymatically Gated Catalytic Hairpin Assembly Delivered by Lipid Nanoparticles for the Tumor-Specific Activation of Signal Amplification in miRNA Imaging. Angew Chem Int Ed Engl 2022; 61:e202214230. [PMID: 36383756 DOI: 10.1002/anie.202214230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) imaging in disease sites is vital to elucidate their role in cancer progression. However, limited tumor specificity remains a major barrier for traditional amplification approaches due to associated background signal leakage. Here, we report a generalizable approach via the combination of enzymatically triggered catalytic hairpin assembly with lipid nanoparticles (LNPs)-based delivery strategy for tumor-specific activation of signal amplification and therefore sensitive miRNA imaging. The signal amplification is established via engineering of traditional catalytic hairpin assembly with enzymatically activated motifs to achieve triggable miRNA imaging in cancer cells. Furthermore, by the introduction of LNPs to combat biological barriers, we demonstrate that the system enables amplified miRNA imaging in vivo with reduced off-tumor signal, leading to enhanced tumor-to-background contrast compared with traditional methods. This approach that relies on specific triggers and controlled delivery to distinguish miRNA in cancer cells from normal cells should be useful in tumor diagnosis.
Collapse
Affiliation(s)
- Qing Liu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
22
|
Liu Q, Huang Y, Li Z, Li L, Zhao Y, Li M. An Enzymatically Gated Catalytic Hairpin Assembly Delivered by Lipid Nanoparticles for the Tumor‐Specific Activation of Signal Amplification in miRNA Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Qing Liu
- Advanced Research Institute of Multidisciplinary Science School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Zhengping Li
- School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
23
|
Su J, Du J, Ge R, Sun C, Qiao Y, Wei W, Pang X, Zhang Y, Lu H, Dong H. Metal–Organic Framework-Loaded Engineering DNAzyme for the Self-Powered Amplified Detection of MicroRNA. Anal Chem 2022; 94:13108-13116. [DOI: 10.1021/acs.analchem.2c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yufan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
24
|
Huang X, Zhang Y, Chen J, Zhang L, Xu Y, Yin W, Shi Y, Liu SY, Zou X, Dai Z. Dual-Locked DNAzyme Platform for In Vitro and In Vivo Discrimination of Cancer Cells. Anal Chem 2022; 94:12221-12230. [PMID: 36000958 DOI: 10.1021/acs.analchem.2c02788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imaging of tumor-associated microRNAs (miRNAs) can provide abundant information for cancer diagnosis, whereas the occurrence of trace amounts of miRNAs in normal cells inevitably causes an undesired false-positive signal in the discrimination of cancer cells during miRNA imaging. In this study, we propose a dual-locked (D-locked) platform consisting of the enzyme/miRNA-D-locked DNAzyme sensor and the honeycomb MnO2 nanosponge (hMNS) nanocarrier for highly specific cancer cell imaging. For a proof-of-concept demonstration, apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 were chosen as key models. The hMNS nanocarrier can efficiently release the D-locked DNAzyme sensor in living cells due to the decomposition of hMNS by glutathione, which can also supply Mn2+ for DNAzyme cleavage. Ascribing to the smart design of the D-locked DNAzyme sensor, the fluorescence signal can only be generated by the synergistic response of APE1 and miR-21 that are overexpressed in cancer cells. Compared with the miRNA single-locked DNAzyme sensor and the small-molecule (ATP)/miRNA D-locked DNAzyme sensor, the proposed enzyme (APE1)/miRNA D-locked DNAzyme sensor exhibited 2.6-fold and 2.4-fold higher discrimination ratio (Fcancer/Fnormal) for cancer cell discrimination, respectively. Owing to the superior performance, the D-locked strategy can selectively generate a fluorescence signal in cancer cells, facilitating accurate discrimination of cancer both in vitro and in vivo. Furthermore, this D-locked platform is easily adaptable toward other target molecules by redesigning the DNA sequences. The outstanding performance and expansibility of this D-locked platform holds promising prospects for cancer diagnosis and related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lang Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
25
|
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine 2022; 17:3511-3529. [PMID: 35966148 PMCID: PMC9365495 DOI: 10.2147/ijn.s370767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers’ catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Wen Cheng; Bolin Wu, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13313677182; +86 15663615088, Fax +86 451 85718392; +86 451 86298651, Email ;
| |
Collapse
|
26
|
Meng X, Pang X, Zhang K, Gong C, Yang J, Dong H, Zhang X. Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202035. [PMID: 35762403 DOI: 10.1002/smll.202202035] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence imaging with high sensitivity and minimal invasiveness has received tremendous attention, which can accomplish visualized monitoring and evaluation of cancer progression. Compared with the conventional first near-infrared (NIR-I) optical window (650-950 nm), fluorescence imaging in the second NIR optical window (NIR-II, 950-1700 nm) exhibits deeper tissue penetration capability and higher temporal-spatial resolution with lower background interference for achieving deep-tissue in vivo imaging and real-time monitoring of cancer development. Encouraged by the significant preponderances, a variety of multifunctional NIR-II fluorophores have been designed and fabricated for sensitively imaging biomarkers in vivo and visualizing the treatment procedure of cancers. In this review, the differences between NIR-I and NIR-II fluorescence imaging are briefly introduced, especially the advantages of NIR-II fluorescence imaging for the real-time visualization of tumors in vivo and cancer diagnosis. An important focus is to summarize the NIR-II fluorescence imaging for deep-tissue biomarker analysis in vivo and tumor tissue visualization, and a brief introduction of NIR-II fluorescence imaging-guided cancer therapy is also presented. Finally, the significant challenges and reasonable prospects of NIR-II fluorescence imaging for cancer diagnosis in clinical applications are outlined.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Xuejiao Pang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
| | - Kai Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenchen Gong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junyan Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 10083, P. R. China
- Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
27
|
Chen P, Wang L, Qin P, Yin BC, Ye BC. An RNA-based catalytic hairpin assembly circuit coupled with CRISPR-Cas12a for one-step detection of microRNAs. Biosens Bioelectron 2022; 207:114152. [DOI: 10.1016/j.bios.2022.114152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022]
|
28
|
Li J, Luo H. Nicking site enzyme assisted catalytic hairpin assembly based scaffold for sensitive monitoring of miRNA-21. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Bai H, Yan Y, Li D, Fan N, Cheng W, Yang W, Ju H, Li X, Ding S. Dispersion-to-localization of catalytic hairpin assembly for sensitive sensing and imaging microRNAs in living cells from whole blood. Biosens Bioelectron 2022; 198:113821. [PMID: 34840013 DOI: 10.1016/j.bios.2021.113821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Localized DNA circuits have shown good performance regarding reaction rate and sensitivity for sensing intracellular microRNAs (miRNAs). However, these methods reported recently require large kinds of DNA strands and suffer from low signal-to-background (S/B) ratio, which hinder their clinical application. To circumvent these issues, we herein developed a novel strategy for sensitive sensing and imaging miRNAs in living cells based on dispersion-to-localization of catalytic hairpin assembly (DL-CHA). This strategy consists of only three classes of DNA strands (two hairpins and a linker strand), which largely reduces sequence design complexity. Additionally, owing to the unique engineering of the substrate transformation from dispersion to localization, the DL-CHA exhibits not only minimal background leakage but also intensive signal amplification, thus significantly improving the S/B ratio. In particular, the simple sensing method is capable of imaging miRNAs in cells from clinical blood samples for the diagnosis of breast cancer. Therefore, this work provides a powerful tool for intracellular molecules detection and gives a much broader design space for constructing high-performance DNA circuits.
Collapse
Affiliation(s)
- Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenqian Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Chai X, Fan Z, Yu MM, Zhao J, Li L. A Redox-Activatable DNA Nanodevice for Spatially-Selective, AND-Gated Imaging of ATP and Glutathione in Mitochondria. NANO LETTERS 2021; 21:10047-10053. [PMID: 34807619 DOI: 10.1021/acs.nanolett.1c03732] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Design of biosensors capable of imaging ATP and glutathione (GSH) in mitochondria remains a challenge, despite their importance in elucidating their correlated pathophysiological events. Here, we report a new strategy that uses redox-activatable aptamer sensor design combined with nanoparticle-based targeting capability to achieve spatially controlled, AND-gated imaging of ATP and GSH in mitochondria. The DNA nanodevice was designed by the controlled assembly of the redox-responsive ATP aptamer probe on the nanoparticles and further decorated with mitochondria-targeting signals. We demonstrate that the system allows for mitochondria-specific, correlated imaging of ATP and GSH in living cells and in vivo. Furthermore, because the system can be lighted up only when meeting the "dual keys" (overexpressed ATP and GSH in mitochondria) simultaneously, the DNA nanodevice enables specific imaging of tumors in vivo with improved tumor-to-normal tissue ratio. This work illustrates the potential of the DNA nanodevices in the imaging of mitochondrial multivariate targets.
Collapse
Affiliation(s)
- Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zetan Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ming-Ming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Chen Y, Gong X, Gao Y, Shang Y, Shang J, Yu S, Li R, He S, Liu X, Wang F. Bioorthogonal regulation of DNA circuits for smart intracellular microRNA imaging. Chem Sci 2021; 12:15710-15718. [PMID: 35003602 PMCID: PMC8654030 DOI: 10.1039/d1sc05214d] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Catalytic DNA circuits represent a versatile toolbox for tracking intracellular biomarkers yet are constrained with low anti-interference capacity originating from their severe off-site activation. Herein, by introducing an unprecedented endogenous DNA repairing enzyme-powered pre-selection strategy, we develop a sequential and specific on-site activated catalytic DNA circuit for achieving the cancer cell-selective imaging of microRNA with high anti-interference capacity. Initially, the circuitry reactant is firmly caged by an elongated stabilizing duplex segment with a recognition/cleavage site of a cell-specific DNA repairing enzyme, which can prevent undesired signal leakage prior to its exposure to target cells. Then, the intrinsic DNA repairing enzyme of target cells can liberate the DNA probe for efficient intracellular microRNA imaging via the multiply guaranteed molecular recognition/activation procedures. This bioorthogonal regulated DNA circuit presents a modular and programmable amplification strategy for highly reliable assays of intracellular biomarkers, and provides a pivotal molecular toolbox for living systems. An on-site bioorthogonal regulated DNA circuit was developed by introducing an endogenous DNA repairing enzyme-mediated sequential activation strategy to achieve cancer cell-selective microRNA imaging with high anti-interference ability.![]()
Collapse
Affiliation(s)
- Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yu Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China.,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
32
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
33
|
Wu J, Zhou X, Li P, Lin X, Wang J, Hu Z, Zhang P, Chen D, Cai H, Niessner R, Haisch C, Sun P, Zheng Y, Jiang Z, Zhou H. Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Anal Chem 2021; 93:8799-8809. [PMID: 34076420 DOI: 10.1021/acs.analchem.1c00478] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sensitive and simultaneous detection of multiple cancer-related biomarkers in serum is essential for diagnosis, therapy, prognosis, and staging of cancer. Herein, we proposed a magnetically assisted sandwich-type surface-enhanced Raman scattering (SERS)-based biosensor for ultrasensitive and multiplex detection of three hepatocellular carcinoma-related microRNA (miRNA) biomarkers. The biosensor consists of an SERS tag (probe DNA-conjugated DNA-engineered fractal gold nanoparticles, F-AuNPs) and a magnetic capture substrate (capture DNA-conjugated Ag-coated magnetic nanoparticles, AgMNPs). The proposed strategy achieved simultaneous and sensitive detection of three miRNAs (miRNA-122, miRNA-223, and miRNA-21), and the limits of detection of the three miRNAs in human serum are 349 aM for miRNA-122, 374 aM for miRNA-223, and 311 aM for miRNA-21. High selectivity and accuracy of the SERS biosensor were proved by practical analysis in human serum. Moreover, the biosensor exhibited good practicability in multiplex detection of three miRNAs in 92 clinical sera from AFP-negative patients, patients before and after hepatectomy, recurred and relapse-free patients after hepatectomy, and hepatocellular carcinoma patients at distinct Barcelona clinic liver cancer stages. The experiment results demonstrate that our SERS-based assay is a promising candidate in clinical application and exhibited potential for the prediction, diagnosis, monitoring, and staging of cancers.
Collapse
Affiliation(s)
- Jiamin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xia Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ping Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaoling Lin
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinhua Wang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziwei Hu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Pengcheng Zhang
- College of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, China
| | - Dong Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Reinhard Niessner
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University of Munich, Marchioninistr. 17, Munich D-81377, Germany
| | - Christoph Haisch
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technical University of Munich, Marchioninistr. 17, Munich D-81377, Germany
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yun Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhengjin Jiang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|