1
|
Wu Q, Wang Y, Wang L, Su Y, He G, Chen X, Hou L, Zhang W, Wang YY. A Portable Electrochemical Biosensor Based on an Amino-Modified Ionic Metal-Organic Framework for the One-Site Detection of Multiple Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39363450 DOI: 10.1021/acsami.4c13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Constructing stable, portable sensors and revealing their mechanisms is challenging. Ion metal-organic frameworks (IMOFs) are poised to serve as highly effective electrochemical sensors for detecting organophosphorus pesticides (OPs), leveraging their unique charge properties. In this work, an amino-modified IMOF was constructed and combined with near-field communication (NFC) technology to develop a portable, touchless, and battery-free electrochemical biosensor NH2-IMOF@CS@AChE. -NH2 in NH2-IMOF gives the framework a higher electropositivity compared to IMOF, enhancing the electrostatic attraction with acetylcholinesterase (AChE), which is beneficial for immobilizing AChE. Furthermore, the uncoordinated O atoms and the (CH3)2NH2+ groups in NH2-IMOF help to form stronger bonds with AChE through hydrogen bonds. The results showed a wide linear response range of 1 × 10-15 to 1 × 10-9 M and a low detection limit of 1.24 × 10-13 M for glyphosate (Gly) in the practical detection of OPs. Additionally, electrochemical biosensor arrays were constructed to effectively identify and distinguish multiple OPs on the basis of their unique differential pulse voltammetry (DPV) electrochemical signals. This work provides a simple and effective solution for on-site OP analysis and can be widely applied in food safety and water quality monitoring.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Linxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yu Su
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Guorong He
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Xiaojiang Chen
- International Joint Research Centre for the Battery-Free Internet of Things, Advanced Battery-Free Sensing and Computing Technology International Science and Technology Cooperation Base, Northwest University, Xi'an 710127, PR China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Wenyan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| |
Collapse
|
2
|
Critch-Doran O, Jenkins K, Hashemihedeshi M, Mommers AA, Green MK, Dorman FL, Jobst KJ. Toward Part-per-Million Precision in the Determination of an Ion's Collision Cross Section Using Multipass Cyclic Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:775-783. [PMID: 38498916 DOI: 10.1021/jasms.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In cyclic ion mobility (cIMS), ions are permitted to travel multiple passes around the drift cell, increasing the distance traveled and the relative separation between ions. This study tests the hypothesis that multiple passes around the cell can also result in improved precision when measuring an ion's mobility and the collision cross section (TWCCS) derived therefrom. Experiments were performed with a diverse set of compounds, including 16 polycyclic aromatic hydrocarbons using gas chromatographic atmospheric pressure chemical ionization and a set of drug molecules by direct infusion electrospray ionization. The average periodic drift time, viz., the average time required for the ion to travel around the cIMS cell once, shifts dramatically, approaching part-per-million (ppm) precision as the number of passes increases to ∼100. Extrapolation of the precision of the CCS values with respect to the number of passes led to the prediction that the precision will reach 1000 ppm after 50 passes, 100 ppm after 100 passes, and <10 ppm after 150 passes. Experiments wherein the number of passes exceeded 100 produced TWCCS values having within-run precisions ranging between 15 and 117 ppm. The improved precision with an increasing number of passes may be a consequence of mitigating space-charge effects by allowing the ions to occupy a larger region of the cIMS cell. A method is proposed to enable practical measurements of TWCCS with ppm precision and is demonstrated to characterize an unknown drug mixture.
Collapse
Affiliation(s)
- Olivia Critch-Doran
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Kevin Jenkins
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Mahin Hashemihedeshi
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Alexander A Mommers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - M Kirk Green
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Frank L Dorman
- Department of Chemistry, Dartmouth College, Hannover, New Hampshire 03755, United States
- Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
3
|
Song XC, Canellas E, Dreolin N, Goshawk J, Lv M, Qu G, Nerin C, Jiang G. Application of Ion Mobility Spectrometry and the Derived Collision Cross Section in the Analysis of Environmental Organic Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21485-21502. [PMID: 38091506 PMCID: PMC10753811 DOI: 10.1021/acs.est.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/27/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis. An up-to-date CCS compendium for environmental contaminants was produced by combining CCS databases and data sets of particular types of environmental OMPs, including pesticides, drugs, mycotoxins, steroids, plastic additives, per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs), as well as their well-known transformation products. A total of 9407 experimental CCS values from 4170 OMPs were retrieved from 23 publications, which contain both drift tube CCS in nitrogen (DTCCSN2) and traveling wave CCS in nitrogen (TWCCSN2). A selection of publicly accessible and in-house CCS prediction tools were also investigated; the chemical space covered by the training set and the quality of CCS measurements seem to be vital factors affecting the CCS prediction accuracy. Then, the applications of IMS and the derived CCS in the screening of various OMPs were summarized, and the benefits of IMS and CCS, including increased peak capacity, the elimination of interfering ions, the separation of isomers, and the reduction of false positives and false negatives, were discussed in detail. With the improvement of the resolving power of IMS and enhancements of experimental CCS databases, the practicability of IMS in the analysis of environmental OMPs will continue to improve.
Collapse
Affiliation(s)
- Xue-Chao Song
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Nicola Dreolin
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters
Corporation, Stamford
Avenue, Altrincham Road, SK9 4AX Wilmslow, United Kingdom
| | - Meilin Lv
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, 110819 Shenyang, China
| | - Guangbo Qu
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Cristina Nerin
- Department
of Analytical Chemistry, Aragon Institute of Engineering Research
I3A, EINA, University of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
| | - Guibin Jiang
- School
of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
4
|
Li T, Su W, Zhong L, Liang W, Feng X, Zhu B, Ruan T, Jiang G. An Integrated Workflow Assisted by In Silico Predictions To Expand the List of Priority Polycyclic Aromatic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20854-20863. [PMID: 38010983 DOI: 10.1021/acs.est.3c07087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The limited information in existing mass spectral libraries hinders an accurate understanding of the composition, behavior, and toxicity of organic pollutants. In this study, a total of 350 polycyclic aromatic compounds (PACs) in 9 categories were successfully identified in fine particulate matter by gas chromatography high resolution mass spectrometry. Using mass spectra and retention indexes predicted by in silico tools as complementary information, the scope of chemical identification was efficiently expanded by 27%. In addition, quantitative structure-activity relationship models provided toxicity data for over 70% of PACs, facilitating a comprehensive health risk assessment. On the basis of extensive identification, the cumulative noncarcinogenic risk of PACs warranted attention. Meanwhile, the carcinogenic risk of 53 individual analogues was noteworthy. These findings suggest that there is a pressing need for an updated list of priority PACs for routine monitoring and toxicological research since legacy polycyclic aromatic hydrocarbons (PAHs) contributed modestly to the overall abundance (18%) and carcinogenic risk (8%). A toxicological priority index approach was applied for relative chemical ranking considering the environmental occurrence, fate, toxicity, and analytical availability. A list of 39 priority analogues was compiled, which predominantly consisted of high-molecular-weight PAHs and alkyl derivatives. These priority PACs further enhanced source interpretation, and the highest carcinogenic risk was attributed to coal combustion.
Collapse
Affiliation(s)
- Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxia Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Muller HB, Scholl G, Far J, De Pauw E, Eppe G. Sliding Windows in Ion Mobility (SWIM): A New Approach to Increase the Resolving Power in Trapped Ion Mobility-Mass Spectrometry Hyphenated with Chromatography. Anal Chem 2023; 95:17586-17594. [PMID: 37976440 DOI: 10.1021/acs.analchem.3c03039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.
Collapse
Affiliation(s)
- Hugo B Muller
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Georges Scholl
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, University of Liège, Liège 4000, Belgium
| |
Collapse
|
6
|
Deng J, Xie J, Lu Q, Xiao X, Wu Y, Liu N, Luo L, Luan T, Yang Y. Nanospray Laser-Induced Plasma Ionization Mass Spectrometry for Rapid and Sensitive Analysis of Polycyclic Aromatic Hydrocarbons and Halogenated Derivatives. Anal Chem 2023; 95:16791-16795. [PMID: 37937882 DOI: 10.1021/acs.analchem.3c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and halogenated derivatives are a series of environmental pollutants with potential toxicity and health risks on biosystems and the ecosystem. Rapid and sensitive analysis of trace PAHs and halogenated PAHs in complex environmental samples is a challenging topic for analytical science. Here we report the development of a nanospray laser-induced plasma ionization MS method for rapid and sensitive analysis of trace PAHs and halogenated PAHs under ambient and open-air conditions. A nanospray tip was applied for loading samples and placed pointing to the MS inlet, being a nanospray emitter with the application of a high voltage. A beam of laser was focused to induce energetic plasma between the nanospray emitter and the MS inlet for ionization of PAHs and halogenated PAHs for mass spectrometric analysis. Meanwhile, an inner-wall naphthyl-coated nanospray emitter was developed and applied as a solid-phase microextraction (SPME) probe for highly selective enrichment of trace PAHs and halogenated PAHs in complex environmental samples, and some organic solvent was applied to desorb the analytes for nanospray laser-induced plasma ionization MS analysis. Satisfactory linearity for each target PAH and halogenated PAH was obtained, with correlation coefficient values (r) no less than 0.9917. The method showed extremely high sensitivity for analysis of trace PAHs and halogenated PAHs in water, with limits of detection (LODs) and quantification (LOQs) of 0.0001-0.02 and 0.0003-0.08 μg/L, respectively. By using the inner-wall naphthyl-coated nanospray laser-induced plasma ionization MS method, sensitive detection of trace PAHs and halogenated PAHs in real sewage and wastewater samples was successfully achieved.
Collapse
Affiliation(s)
- Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialiang Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xu Xiao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| | - Yuehua Wu
- Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Ning Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yunyun Yang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| |
Collapse
|
7
|
Huang Q, Zhou H, Wu X, Song C, Zheng J, Lei M, Mu P, Wu P. Simultaneous determination of the residues of anesthetics and sedatives in fish using LC-QLIT-MS/MS combined with DSPE. Food Chem 2023; 403:134407. [PMID: 36183462 DOI: 10.1016/j.foodchem.2022.134407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Liquid chromatography coupled with quadrupole linear ion trap tandem mass spectrometry (LC-QLIT-MS/MS) technology operated in electrospray ionization (ESI) was developed for tracing anesthetic (AETs) and sedatives (SDTs) in fish. Sampling procedure was achieved by using acetonitrile extraction followed by dispersive solid phase extraction (DSPE) clean-up. Under the optimized laboratory conditions, reliable qualitative confirmation was obtained through the multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode. Results indicated a favorable linear in the concentration range of 1-100 μg∙kg-1 (0.1-10 μg∙kg-1 for MS-222), with regression coefficient not less than 0.9997. The detection limit ranges from 0.03 to 0.4 μg∙kg-1 (S/N = 3). The validated method was applied to determine AETs and SDTs in fish with satidfied recoveries of 86.3 %-111.7 % and the relative standard deviations (RSD) of 1.9 %-8.9 % (n = 6). Practical samples analysis indicated that the proposed method is simple, rapid, sensitive and accurate for identification of AETs and SDTs.
Collapse
|
8
|
Galmiche M, Sonnette A, Wolf M, Sutter C, Delhomme O, François YN, Millet M. Simultaneous Determination of 79 Polar and Non-Polar Polycyclic Aromatic Compounds in Airborne Particulate Matter by Gas Chromatography – Tandem Mass Spectrometry. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathieu Galmiche
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
- Laboratoire de Spectrométrie de Masse Des Interactions et Des Systèmes (LSMIS), Université de Strasbourg – CNRS, UMR 7140, Strasbourg, France
| | - Alexandre Sonnette
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Michel Wolf
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Christophe Sutter
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Olivier Delhomme
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
- UFR Sciences Fondamentales et Appliquées, Université de Lorraine, Metz, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse Des Interactions et Des Systèmes (LSMIS), Université de Strasbourg – CNRS, UMR 7140, Strasbourg, France
| | - Maurice Millet
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| |
Collapse
|
9
|
Ma X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022; 27:6466. [PMID: 36235003 PMCID: PMC9572214 DOI: 10.3390/molecules27196466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS) has become the central technique that is extensively used for the analysis of molecular structures of unknown compounds in the gas phase. It manipulates the molecules by converting them into ions using various ionization sources. With high-resolution MS, accurate molecular weights (MW) of the intact molecular ions can be measured so that they can be assigned a molecular formula with high confidence. Furthermore, the application of tandem MS has enabled detailed structural characterization by breaking the intact molecular ions and protonated or deprotonated molecules into key fragment ions. This approach is not only used for the structural elucidation of small molecules (MW < 2000 Da), but also crucial biopolymers such as proteins and polypeptides; therefore, MS has been extensively used in multiomics studies for revealing the structures and functions of important biomolecules and their interactions with each other. The high sensitivity of MS has enabled the analysis of low-level analytes in complex matrices. It is also a versatile technique that can be coupled with separation techniques, including chromatography and ion mobility, and many other analytical instruments such as NMR. In this review, we aim to focus on the technical advances of MS-based structural elucidation methods over the past five years, and provide an overview of their applications in complex mixture analysis. We hope this review can be of interest for a wide range of audiences who may not have extensive experience in MS-based techniques.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Ayala-Cabrera JF, Montero L, Meckelmann SW, Uteschil F, Schmitz OJ. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies. Anal Chim Acta 2022; 1238:340353. [DOI: 10.1016/j.aca.2022.340353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
|
11
|
Ayala-Cabrera JF, Montero L, Meckelmann SW, Uteschil F, Schmitz OJ. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part II: Current applications. Anal Chim Acta 2022; 1238:340379. [DOI: 10.1016/j.aca.2022.340379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
12
|
Review on chromatographic and specific detection methodologies for unravelling the complexity of MOAH in foods. Anal Chim Acta 2022; 1234:340098. [DOI: 10.1016/j.aca.2022.340098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022]
|
13
|
Wise SA, Rodgers RP, Reddy CM, Nelson RK, Kujawinski EB, Wade TL, Campiglia AD, Liu Z. Advances in Chemical Analysis of Oil Spills Since the Deepwater Horizon Disaster. Crit Rev Anal Chem 2022; 53:1638-1697. [PMID: 35254870 DOI: 10.1080/10408347.2022.2039093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.
Collapse
Affiliation(s)
- Stephen A Wise
- Scientist Emeritus, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Ryan P Rodgers
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Terry L Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA
| |
Collapse
|
14
|
Marine sediment analysis – A review of advanced approaches and practices focused on contaminants. Anal Chim Acta 2022; 1209:339640. [DOI: 10.1016/j.aca.2022.339640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
|
15
|
Nontargeted Screening Using Gas Chromatography-Atmospheric Pressure Ionization Mass Spectrometry: Recent Trends and Emerging Potential. Molecules 2021; 26:molecules26226911. [PMID: 34834002 PMCID: PMC8624013 DOI: 10.3390/molecules26226911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Gas chromatography–high-resolution mass spectrometry (GC–HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC–HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC–API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion–molecule reactions that are otherwise difficult to perform using conventional GC–MS instrumentation. This literature review addresses the merits of GC–API for nontargeted screening while summarizing recent applications using various GC–API techniques. One perceived drawback of GC–API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC–MS ion source used to identify unknowns.
Collapse
|