1
|
Yu X, Li W, Huang W, Xiao B, Long J, Wang Q, Wang G, Wang C, Yu M, Yu J, Diao X. Simultaneous Quantification of Total Antibody and Conjugated Payload for DS001 in Rat Serum Using a Hybrid Immuno-Capture LC-MS/MS. AAPS J 2025; 27:23. [PMID: 39775231 DOI: 10.1208/s12248-024-01007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Antibody-drug conjugates (ADCs) are intricate compounds that pose significant challenges in bioanalytical characterization. Therefore, multiple bioanalytical methods are required to comprehensively elucidate their pharmacokinetic (PK) profiles. In this study, we investigated DS001, an ADC consisting of a humanized monoclonal antibody (hRS7), a cleavable chemical linker, and the microtubule inhibitor monomethyl auristatin E (MMAE), with a drug-to-antibody ratio (DAR) of 8. This study established a rapid and sensitive hybrid immunoaffinity liquid-chromatography-tandem-mass-spectrometry (LC-MS/MS) approach for the simultaneous quantification of the total antibody and the enzymatically cleavable conjugated payload of DS001. This method is capable of monitoring fluctuations in average DAR values during PK assessments. The sample preparation procedure involved immunocapture, denaturation, trypsin digestion, papain digestion, and termination, all completed within a total processing time of less than 4 h. The method demonstrated linearity for the total antibody in the range of 100 ng/mL (lower-limit-of-quantification, LLOQ) to 100,000 ng/mL, and for the conjugated payload from 3.495 ng/mL (LLOQ) to 3495 ng/mL in rat serum. Both analytes exhibited standard curve correlation coefficients (r) greater than 0.990 within their respective linear ranges. The precision and accuracy of the method were within ± 15% (± 20% for LLOQ). The verified LC-MS/MS approach was successfully employed in the PK analysis following intravenous administration of 0.2 mg/kg DS001 in rats via tail vein injection.
Collapse
MESH Headings
- Animals
- Tandem Mass Spectrometry/methods
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/administration & dosage
- Immunoconjugates/blood
- Immunoconjugates/chemistry
- Rats
- Chromatography, Liquid/methods
- Rats, Sprague-Dawley
- Oligopeptides/pharmacokinetics
- Oligopeptides/blood
- Oligopeptides/chemistry
- Oligopeptides/administration & dosage
- Male
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/administration & dosage
- Liquid Chromatography-Mass Spectrometry
Collapse
Affiliation(s)
- Xiong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Weiqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wensi Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xiao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jing Long
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Qi Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Guifeng Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhe Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Yang J, Yuan J, Huang Y, Rosenbaum AI. Reference-free thio-succinimide isomerization characterization by electron-activated dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9910. [PMID: 39287024 DOI: 10.1002/rcm.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
RATIONALE Isomerism can be an important aspect in pharmaceutical drug development. Identification of isomers can provide insights into drug pharmacology and contribute to better design of drug molecules. The general approaches to differentiate isomers include Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and circular dichroism. Additionally, a commonly used method to differentiate isomers is liquid chromatography coupled with mass spectrometry (LC-MS). Notably, LC-MS is routinely applied to leucine and isoleucine differentiation to facilitate protein sequencing. This work focuses on isomer differentiation of widely employed thio-succinimide structure bridging the antibody backbone and linker-payload of antibody-drug conjugates (ADCs). Thio-succinimide hydrolysis stabilizes the payload-protein structure while generating a pair of constitutional isomers: thio-aspartyl and thio-isoaspartyl. METHODS This paper introduces a hybrid method using ligand binding assay (LBA) and liquid chromatography coupled with tandem MS (LC-MS/MS) to reveal isomerization details of thio-succinimide hydrolysis over time in plasma samples incubated with ADC. Application of two orthogonal dissociation methods, collision-induced dissociation (CID) and electron-activated dissociation (EAD) revealed different MS/MS spectra for this pair of isomers. This observation enables a unique approach in distinguishing thio-succinimide hydrolysis isomers. RESULTS We observed signature [R1 + Thio + 57 + H]+, [R2 + Succ + H2O - 57 + H]+, and [R2 + Succ + H2O - 44 + 2H]2+ product ions (Succ = succinimide) that differentiated thio-aspartyl and thio-isoaspartyl isomers using EAD. A newly discovered [R2 + ThioSucc + H2O - 44 + 2H]2+ ion also served as additional evidence that further supported our findings. CONCLUSIONS This study is a first-to-date identification of thio-succinimide hydrolysis isomers without using synthesized reference materials. This approach should be applicable to all thio-succinimide-linked molecules. Correct identification of thio-succinimide hydrolysis isomers may eventually benefit the development of ADCs in the future.
Collapse
Affiliation(s)
- Junyan Yang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, California, USA
| |
Collapse
|
3
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
4
|
Lei Y, Shen Y, Chen F, He R, Zhang Z, Zhou Y, Yu JC, Crommen J, Jiang Z, Wang Q. Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates. Acta Pharm Sin B 2024; 14:4962-4976. [PMID: 39664422 PMCID: PMC11628813 DOI: 10.1016/j.apsb.2024.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 12/13/2024] Open
Abstract
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.
Collapse
Affiliation(s)
- Yutian Lei
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Shen
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Feng Chen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Rui He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhang Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jin-Chen Yu
- Bio-Thera Solutions, Ltd, Guangzhou 510700, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Yuan J, Tan HY, Huang Y, Rosenbaum AI. Digestion-Free Middle-Down Mass Spectrometry Method for Absolute Quantification of Conjugated Payload from Antibody-Drug Conjugates. Anal Chem 2024; 96:16475-16480. [PMID: 39298786 PMCID: PMC11503511 DOI: 10.1021/acs.analchem.4c03383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Antibody-drug conjugate (ADC) is a therapeutic modality that aims to improve payload delivery specificity and reduce systemic toxicity. Considering the complex structure of ADCs, various bioanalytical methods by liquid chromatography coupled with mass spectrometry (LC-MS), ligand binding assay (LBA) and hybrid LBA-LC-MS approaches have been established for ADC characterization and quantification. LCMS-based assays enable drug-antibody ratio (DAR) sensitive quantification of the conjugated payload. Typically, for quantitative, DAR-sensitive, assessment by LC-MS/MS,the conjugated payload is enzymatically liberated and quantified. Despite recent advances in ADC bioanalytical methods, the DAR-sensitive quantification of noncleavable linker ADCs by LC-MS/MS remains challenging. Thus, we developed a novel digestion-free middle-down mass spectrometry (DF-MDMS) using a collision-induced dissociation approach for absolute quantification of conjugated payload from four different ADCs in a biological matrix with minimum sample preparation. These results demonstrate that ADCs with different linker-payload structures can be quantified, including a noncleavable linker ADC, trastuzumab emtansine. It also shows that the assay sensitivity is comparable to the conventional ADC quantification method by linker-payload cleavage using enzyme, while the assay dynamic range depends on factors including payload ionization and dissociation efficiency, DAR and its distribution, and species abundance. By demonstrating absolute quantification of both cleavable and noncleavable linker ADCs, this novel middle-down ADC approach demonstrates its potential application in bioanalysis and analytical characterization, especially for early discovery where high-throughput screening is required as the new approach saves time and resources by not requiring enzymatic digestion for cleavable ADCs or development of anti-payload antibodies for noncleavable linker ADCs.
Collapse
Affiliation(s)
| | | | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology
& Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I. Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology
& Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Huang Y, Tan HY, Yuan J, Mu R, Yang J, Ball K, Vijayakrishnan B, Masterson L, Kinneer K, Luheshi N, Liang M, Rosenbaum AI. Extensive Biotransformation Profiling of AZD8205, an Anti-B7-H4 Antibody-Drug Conjugate, Elucidates Pathways Underlying Its Stability In Vivo. Anal Chem 2024; 96:16525-16533. [PMID: 39392424 PMCID: PMC11503519 DOI: 10.1021/acs.analchem.4c02309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
What happens to macromolecules in vivo? What drives the structure-activity relationship and in vivo stability for antibody-drug conjugates (ADCs)? These interrelated questions are increasingly relevant due to the re-emerging importance of ADCs as an impactful therapeutic modality and the gaps that exist in our understanding of ADC structural determinants that underlie ADC in vivo stability. Complex macromolecules, such as ADCs, may undergo changes in vivo due to their intricate structure as biotransformations may occur on the linker, the payload, and/or at the modified conjugation site. Furthermore, the dissection of ADC metabolism presents a substantial analytical challenge due to the difficulty in the identification or quantification of minor changes on a large macromolecule. We employed immunocapture-LCMS methods to evaluate in vivo changes in the drug-antibody ratio (DAR) profile in four different lead ADCs. This comprehensive characterization revealed that a critical structural determinant contributing to the ADC design was the linker, and competition of the thio-succinimide hydrolysis reaction over retro-Michael deconjugation can result in superb conjugation stability in vivo. These data, in conjunction with additional factors, informed the selection of AZD8205, puxitatug samrotecan, a B7-H4-directed cysteine-conjugated ADC bearing a novel topoisomerase I inhibitor payload, with durable DAR, currently being studied in the clinic for the potential treatment of solid malignancies (NCT05123482). These results highlight the relevance of studying macromolecule biotransformation and elucidating the ADC structure-in vivo stability relationship. The comprehensive nature of this work increases our confidence in the understanding of these processes. We hope this analytical approach can inform future development of bioconjugate drug candidates.
Collapse
Affiliation(s)
- Yue Huang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Hui Yin Tan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Ruipeng Mu
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Junyan Yang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Kathryn Ball
- Clinical
Pharmacology and Quantitative Pharmacology, Clinical Pharmacology
and Safety Sciences, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | | | - Luke Masterson
- TTD,
Oncology R&D, AstraZeneca, London E1 2AX, United Kingdom
| | - Krista Kinneer
- Translational
Medicine, Oncology R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Nadia Luheshi
- Oncology
R&D, AstraZeneca, Cambridge CB2 8PA, United
Kingdom
| | - Meina Liang
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I. Rosenbaum
- Integrated
Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Li Y, Wang Y, Shenoy VM, Niu S, Jenkins GJ, Sarvaiya H. Intact quantitation of cysteine-conjugated antibody-drug conjugates using native mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9774. [PMID: 38812280 DOI: 10.1002/rcm.9774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE A common strategy for antibody-drug conjugate (ADC) quantitation from in vivo study samples involves measurement of total antibody, conjugated ADC, and free payload concentrations using multiple reaction monitoring (MRM) mass spectrometry. This not only provides a limited picture of biotransformation but can also involve lengthy method development. Quantitation of ADCs directly at the intact protein level in native conditions using high-resolution mass spectrometers presents the advantage of measuring exposure readout as well as monitoring the change in average drug-to-antibody ratio (DAR) and in vivo stability of new linker payloads with minimal method development. Furthermore, site-specific cysteine-conjugated ADCs often rely on non-covalent association to retain their quaternary structure, which highlights the unique capabilities of native mass spectrometry (nMS) for intact ADC quantitation. METHODS We developed an intact quantitation workflow involving three stages: automated affinity purification, nMS analysis, and data processing in batch fashion. The sample preparation method was modified to include only volatile ion-pairing reagents in the buffer systems. A capillary size-exclusion chromatography (SEC) column was coupled to a quadrupole time-of-flight high-resolution mass spectrometer for high-throughput nMS analysis. Samples from two mouse pharmacokinetic (PK) studies were analyzed using both intact quantitation workflow and the conventional MRM-based approach. RESULTS A linear dynamic range of 5-100 μg/mL was achieved using 20 μL of serum sample volume. The results of mouse in vivo PK measurement using the intact quantitation workflow and the MRM-based approach were compared, revealing excellent method agreement. CONCLUSIONS We demonstrated the feasibility of utilizing nMS for the quantitation of ADCs at the intact protein level in preclinical PK studies. Our results indicate that this intact quantitation workflow can serve as an alternative generic method for high-throughput analysis, enabling an in-depth understanding of ADC stability and safety in vivo.
Collapse
Affiliation(s)
- Yihan Li
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Yuting Wang
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Vikram M Shenoy
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| | - Shuai Niu
- Department of Quantitative, Translational & ADME Sciences, AbbVie, Worcester, Massachusetts, USA
| | - Gary J Jenkins
- Department of Quantitative, Translational & ADME Sciences, AbbVie, North Chicago, Illinois, USA
| | - Hetal Sarvaiya
- Department of Quantitative, Translational & ADME Sciences, AbbVie, South San Francisco, California, USA
| |
Collapse
|
8
|
Murphy A, Hill R, Berna M. Bioanalytical approaches to support the development of antibody-oligonucleotide conjugate (AOC) therapeutic proteins. Xenobiotica 2024; 54:552-562. [PMID: 38607350 DOI: 10.1080/00498254.2024.2339983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterise the ADME properties of an AOC during development to optimise distribution to target tissues, to minimise the impact of biotransformation on exposure, and to characterise the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterisation of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterisation of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.
Collapse
Affiliation(s)
- Anthony Murphy
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Hill
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael Berna
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
9
|
Parit S, Manchare A, Gholap AD, Mundhe P, Hatvate N, Rojekar S, Patravale V. Antibody-Drug Conjugates: A promising breakthrough in cancer therapy. Int J Pharm 2024; 659:124211. [PMID: 38750981 DOI: 10.1016/j.ijpharm.2024.124211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Antibody-drug conjugates (ADCs) provide effective cancer treatment through the selective delivery of cytotoxic payloads to the cancer cells. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. Despite several advantages, there is a requirement for innovations in the molecular design of ADC owing to drug resistance, cancer heterogeneity along the adverse effects of treatment. The review critically analyses ADC function mechanisms, unraveling the intricate interplay between antibodies, linkers, and payloads in facilitating targeted drug delivery to cancer cells. The article also highlights notable advancements in antibody engineering, which aid in creating highly selective and potent ADCs. Additionally, the review details significant progress in clinical ADC development with an in-depth examination of pivotal trials and approved formulations. Antibody Drug Conjugates (ADCs) are a ground-breaking approach to targeted drug delivery, especially in cancer treatment. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. This review provides a comprehensive examination of the current state of ADC development, covering their design, mechanisms of action, and clinical applications. The article emphasizes the need for greater precision in drug delivery and explains why ADCs are necessary.
Collapse
Affiliation(s)
- Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Prashant Mundhe
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Satish Rojekar
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
10
|
Watts E, Bashyal A, Dunham SD, Crittenden CM, Brodbelt JS. Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation. Antibodies (Basel) 2024; 13:30. [PMID: 38651410 PMCID: PMC11036284 DOI: 10.3390/antib13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Sean D. Dunham
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| |
Collapse
|
11
|
Werth EG, Roos D, Philip ET. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024; 16:165-177. [PMID: 38348660 DOI: 10.4155/bio-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Implementation of immunocapture LC-MS methods to characterize the pharmacokinetic profile of large molecule drugs has become a widely used technique over the past decade. As the pharmaceutical industry strives for speediness into clinical development without jeopardizing quality, robust assays with generic application across the pipeline are becoming instrumental in bioanalysis, especially in early-stage development. This review highlights the capabilities and challenges involved in hybrid immunocapture LC-MS techniques and its continued applications in nonclinical and clinical pharmacokinetic assay design. This includes a comparison of LC-MS-based approaches to conventional ligand-binding assays and the driving demands in large molecule drug portfolios including growing sensitivity requirements and the unique challenges of new modalities requiring innovation in the bioanalytical laboratory.
Collapse
Affiliation(s)
- Emily G Werth
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - David Roos
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Elsy T Philip
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| |
Collapse
|
12
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Szapacs M, Jian W, Spellman D, Cunliffe J, Verburg E, Kaur S, Kellie J, Li W, Mehl J, Qian M, Qiu X, Sirtori FR, Rosenbaum AI, Sikorski T, Surapaneni S, Wang J, Wilson A, Zhang J, Xue Y, Post N, Huang Y, Goykhman D, Yuan L, Fang K, Casavant E, Chen L, Fu Y, Huang M, Ji A, Johnson J, Lassman M, Li J, Saad O, Sarvaiya H, Tao L, Wang Y, Zheng N, Dasgupta A, Abhari MR, Ishii-Watabe A, Saito Y, Mendes Fernandes DN, Bower J, Burns C, Carleton K, Cho SJ, Du X, Fjording M, Garofolo F, Kar S, Kavetska O, Kossary E, Lu Y, Mayer A, Palackal N, Salha D, Thomas E, Verhaeghe T, Vinter S, Wan K, Wang YM, Williams K, Woolf E, Yang L, Yang E, Bandukwala A, Hopper S, Maher K, Xu J, Brodsky E, Cludts I, Irwin C, Joseph J, Kirshner S, Manangeeswaran M, Maxfield K, Pedras-Vasconcelos J, Solstad T, Thacker S, Tounekti O, Verthelyi D, Wadhwa M, Wagner L, Yamamoto T, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2023; 15:955-1016. [PMID: 37650500 DOI: 10.4155/bio-2023-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | - Yongjun Xue
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ola Saad
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
16
|
Toshima A, Shiraishi Y, Shinmi D, Kagawa Y, Enokizono J. Comprehensive Analyses of the Intracellular and in Vivo Disposition of Fab- Small Interfering RNA Conjugate to Identify Key Issues to Improve Its in Vivo Activity. Drug Metab Dispos 2023; 51:338-347. [PMID: 36460478 DOI: 10.1124/dmd.122.001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive analyses of intracellular disposition and in vivo pharmacokinetics were performed for small interfering RNA (siRNA) conjugated with the Fab fragment of panitumumab, a fully humanized monoclonal antibody against epidermal growth factor receptor (EGFR). The Fab-siRNA conjugate was internalized into EGFR-expressing cancer cells in an antigen-dependent manner. Intracellular disposition was quantitatively evaluated using fluorescent-labeled panitumumab and confocal microscopy. The majority of internalized panitumumab was suggested to be transferred into lysosomes. In vivo pharmacokinetics were evaluated in EGFR-expressing tumor-bearing mice. Intact Fab-siRNA was measured by immunoprecipitation using anti-Fab antibody followed by quantitative polymerase chain reaction. The Fab portion was measured by a ligand binding assay. Intact Fab-siRNA concentrations rapidly decreased in the plasma and tumor, although the Fab portion concentration remained high, suggesting extensive degradation in the linker-siRNA portion. After incubation of Fab-siRNA in mouse plasma, samples were digested with proteinase K, and extracted siRNA tagged with Fab-derived peptide was subjected to an ion-pair reversed-phase liquid chromatography with mass spectrometry analysis. Results suggested that hydrolysis from the 3' end of the antisense strand of siRNA is the major metabolizing pathway. Based on these findings, endosomal escape and stability in lysosomes, blood, and tumor are key factors to improve to achieve efficient target gene knockdown in tumors, and stabilizing the 3' end of the antisense strand was suggested to be most efficient. Our approaches clearly identified the key issues of Fab-siRNA from a pharmacokinetics aspect, which will be useful for improving the in vivo activity of siRNA conjugated with not only Fab but also other immunoproteins. SIGNIFICANCE STATEMENT: The intracellular and in vivo disposition of Fab-small interfering RNA (siRNA) conjugate was comprehensively investigated using various approaches, including newly developed analytical methods. This study clearly shows that improvements in siRNA stability in lysosomes, blood, and tumor are needed for target gene knockdown in tumors. The major metabolic pathway of Fab-siRNA is 3' exonuclease degradation, suggesting that optimization of the conjugation site to Fab might help improve stability.
Collapse
Affiliation(s)
- Asami Toshima
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yasuhisa Shiraishi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Daisuke Shinmi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yoshiyuki Kagawa
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Junichi Enokizono
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| |
Collapse
|
17
|
Kim H, Cheon DH, Yang WS, Baek JH. Simultaneous Quantification of Apolipoprotein C-III O-Glycoforms by Protein-MRM. J Proteome Res 2023; 22:91-100. [PMID: 36412001 DOI: 10.1021/acs.jproteome.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein C-III (APOC-III) regulates triglyceride levels, associated with a risk of cardiovascular disease. One gene generates several proteoforms, each with a different molecular mass and a unique function. Unlike peptide multiple reaction monitoring (MRM), protein-MRM without digestion is required to analyze clinically relevant individual proteoforms. We developed a protein-MRM method without digestion to individually quantify APOC-III proteoforms in human serum. We optimized the protein-MRM method following 60% acetonitrile extraction with C18 filtration. Bovine serum and myoglobin served as supporting cushions and the internal standard during sample preparation, respectively. Furthermore, we evaluated the LOD, lower limit of quantification, linearity, accuracy, and precision. Good correlation compared with turbidimetric immunoassay (TIA) and peptide-MRM was observed using 30 clinical sera. Individual APOC-III O-glycoforms were identified by top-down proteomics and simultaneously quantified using the protein-MRM method. The sum abundance of APOC-III proteoforms was significantly correlated with TIA and peptide-MRM. Our protein-MRM method provides an affordable and rapid quantification of potential disease-specific proteoforms. Precise quantification of each proteoform allows investigators to identify novel biological roles potentially related to cardiovascular disease or novel biomarkers. We expect our protein-oriented method to be more clinically useful than antibody-based immunoassays and peptide-oriented MRM analysis, especially for quantification of a biomarker proteoform with certain post-translational modifications.
Collapse
Affiliation(s)
- Hyojin Kim
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Dong Huey Cheon
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Won Suk Yang
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seongdong-gu, Seoul 04805, Korea
| |
Collapse
|
18
|
MacNeill R, Thomas S, Anand P, Koleto M, Powers B, Ledvina A. The Origin-Adjusted Approach for Reliable Quantification of Endogenous Analytes in Mass Spectrometric Bioanalysis. ACS OMEGA 2022; 7:47372-47377. [PMID: 36570202 PMCID: PMC9774370 DOI: 10.1021/acsomega.2c06850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The reliably accurate and precise quantification of biomarkers is a priceless objective in the drug development and diagnostic arenas. To employ a technique that brings such reliability and furthermore involves a simpler, faster, and inexpensive regime would only underline the potential importance of the concept and technique. To the existing established approaches for biomarker quantification in bioanalytical LC-MS, surrogate matrix (SUR-M) and surrogate analyte (SUR-A), in this Letter we present an approach that fulfills the aforementioned advantages. The concept builds on the historic method of standard addition (SA), in which one source of biological matrix is spiked with analyte to form a calibration curve. With the SA curve back-calculated, the heart of this procedure is the subsequent adjustment of the intercept to zero, the origin, and using only the slope of the curve for interpolation giving calculated sample concentrations. In SA, the concentration axis intercept indicates the endogenous analyte concentration, and our zeroing of this is equivalent to removing the endogenous level. This key shift of the calculated line to the origin unveils our novel origin-adjusted (OA) approach. It enables use akin to a regular xenobiotic method, with no need to ultimately account for the endogenous analyte level in the control matrix used for calibrants. We present a comparison of OA against the control approach of SUR-M in a representative application for kynurenine and tryptophan in human plasma by LC-MS. A numerical performance analysis performed is demonstrative of equivalence between the two approaches for both analytes.
Collapse
|
19
|
Determination of drug-to-antibody ratio of antibody-drug conjugate in biological samples using microflow-liquid chromatography/high-resolution mass spectrometry. Bioanalysis 2022; 14:1533-1545. [PMID: 36825963 DOI: 10.4155/bio-2022-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: Antibody-drug conjugates (ADCs) are a promising modality for cancer treatment; however, considering their complicated nature, analytical complexity in understanding their pharmacokinetics and pharmacodynamics in the body presents a significant challenge. Results: Vorsetuzumab maleimidocaproyl valine-citrulline p-aminobenzyloxycarbonyl monomethyl auristatin E was used to develop pretreatment and analytical workflows suitable for ADCs. Monomethyl auristatin E release and drug-to-antibody ratio retention were consistent in mouse plasma but inconsistent in monkey and human plasma. Further, metabolites were species-specific. Microflow-liquid chromatography/high-resolution mass spectrometry (LC-HRMS) resulted in a 4-7-fold improvement in detection sensitivity compared with conventional flow LC-HRMS. Conclusion: Microflow-LC-HRMS can be a useful tool in understanding the complex properties of ADCs in the body from a drug metabolism and pharmacokinetics point of view.
Collapse
|
20
|
Qin Q, Gong L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules 2022; 27:6299. [PMID: 36234836 PMCID: PMC9572530 DOI: 10.3390/molecules27196299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of biotherapeutics, consisting of a cytotoxic payload covalently bound to an antibody by a linker. Ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) are the favored techniques for the analysis of ADCs in biomatrices. The goal of our review is to provide current strategies related to a series of bioanalytical assays for pharmacokinetics (PK) and anti-drug antibody (ADA) assessments. Furthermore, the strengths and limitations of LBA and LC-MS platforms are compared. Finally, potential factors that affect the performance of the developed assays are also provided. It is hoped that the review can provide valuable insights to bioanalytical scientists on the use of an integrated analytical strategy involving LBA and LC-MS for the bioanalysis of ADCs and related immunogenicity evaluation.
Collapse
Affiliation(s)
- Qiuping Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
21
|
Beaumont K, Pike A, Davies M, Savoca A, Vasalou C, Harlfinger S, Ramsden D, Ferguson D, Hariparsad N, Jones O, McGinnity D. ADME and DMPK considerations for the discovery and development of antibody drug conjugates (ADCs). Xenobiotica 2022; 52:770-785. [PMID: 36314242 DOI: 10.1080/00498254.2022.2141667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.
Collapse
Affiliation(s)
- Kevin Beaumont
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Andy Pike
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Michael Davies
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Adriana Savoca
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Christina Vasalou
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Steffi Harlfinger
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Diane Ramsden
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Douglas Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Niresh Hariparsad
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Boston, MA, USA
| | - Owen Jones
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| | - Dermot McGinnity
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, Cambridge, UK
| |
Collapse
|
22
|
Gregson SJ, Pugh K, Patel N, Afif-Rider S, Vijayakrishnan B, Santos K, Riedl J, Hutchinson I, Kang GD, Chooi KP, Beard R, Adams L, Barry CS, Ball K, Masterson LA, McFarlane M, Hartley JA, Howard PW. Efficacy, Tolerability, and Pharmacokinetic Studies of Antibody-Drug Conjugates Containing a Low-Potency Pyrrolobenzodiazepine Dimer. Mol Cancer Ther 2022; 21:1439-1448. [PMID: 35793464 DOI: 10.1158/1535-7163.mct-22-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugate (ADC) research has typically focused on the release of highly potent cytotoxic agents to achieve antitumor efficacy. However, recently approved ADCs trastuzumab deruxtecan and sacituzumab govitecan release lower-potency topoisomerase inhibitors. This has prompted interest in ADCs that release lower-potency cytotoxic drugs to potentially enhance therapeutic index and reduce unwanted toxicity. Pyrrolobenzodiazepine (PBD) dimer ADCs have been widely investigated in human clinical trials, which have focused on high-potency PBDs. In this study, we evaluated five ADCs that release the low-potency PBD dimer SG3650. The relatively low cLogD for this agent facilitated higher drug-to-antibody ratio (DAR) conjugation without the need for antibody engineering or functionalization of the drug. The rank order of potency for DAR 2 site-specific ADCs (conjugated at the C239i position) matched the order for the corresponding free drugs in vitro. Despite free drug SG3650 being inactive in vivo, the DAR 2 ADCs derived from the corresponding drug-linker SG3584 showed antitumor efficacy in solid (anti-HER2) and hematological (anti-CD22) xenograft models. Antitumor activity could be enhanced by conjugating SG3584 to trastuzumab at higher DARs of 4 and 8 and by adjusting dosing and schedule. Higher-DAR conjugates were stable and displayed good rat pharmacokinetic profiles as measured by ELISA and LC-MS/MS. A single intravenous dose of isotype control SG3584 DAR 2 ADC resulted in no mortality in rats or monkeys at doses of up to 25 and 30 mg/kg, respectively. These findings suggest that further investigations of low-potency PBD dimers in ADCs that target hematological and solid tumors are warranted.
Collapse
Affiliation(s)
- Stephen J Gregson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Kathryn Pugh
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Neki Patel
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | | | | | - Kathleen Santos
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Jitka Riedl
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Ian Hutchinson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Gyoung-Dong Kang
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - K Phin Chooi
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Rhiannon Beard
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Lauren Adams
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Conor S Barry
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Kathryn Ball
- AstraZeneca, Granta Park, Cambridge, United Kingdom
| | - Luke A Masterson
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | | | - John A Hartley
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| | - Philip W Howard
- TTD Chemistry, AstraZeneca, QMB Innovation Centre, 42 New Road, London, United Kingdom
| |
Collapse
|
23
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
24
|
Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs 2022; 36:181-196. [PMID: 35362869 PMCID: PMC8972746 DOI: 10.1007/s40259-022-00518-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
In recent years, an increase in the discovery and development of biotherapeutics employing new modalities, such as bioconjugates or novel routes of delivery, has created bioanalytical challenges. The inherent complexity of conjugated molecular structures means that quantification of the bioconjugate and its multiple components is critical for preclinical/clinical studies to inform drug discovery and development. Moreover, bioconjugates involve additional multifactorial complexity because of the potential for in vivo catabolism and biotransformation, which may require thorough investigations in multiple biological matrices. Furthermore, excipients that enhance absorption are frequently evaluated and employed for the development of oral and inhaled biotherapeutics. Risk-benefit assessments are required for novel or existing excipients that utilize dosages above previously approved levels. Bioanalytical methods that can measure both excipients and potential drug metabolites in biological matrices are highly relevant to these emerging bioanalysis challenges. We discuss the bioanalytical strategies for analyzing bioconjugates such as antibody-drug conjugates and antibody-oligonucleotide conjugates and review recent advances in bioanalytical methods for the quantification and characterization of novel bioconjugates. We also discuss bioanalytical considerations for both biotherapeutics and excipients through novel administration routes and review analyses in various biological matrices, from the extensively studied serum or plasma to tissue biopsy in the context of preclinical and clinical studies from both technical and regulatory perspectives.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - John K Meissen
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Si Mou
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.
| |
Collapse
|
25
|
Nagornov KO, Gasilova N, Kozhinov AN, Virta P, Holm P, Menin L, Nesatyy VJ, Tsybin YO. Drug-to-Antibody Ratio Estimation via Proteoform Peak Integration in the Analysis of Antibody-Oligonucleotide Conjugates with Orbitrap Fourier Transform Mass Spectrometry. Anal Chem 2021; 93:12930-12937. [PMID: 34519496 DOI: 10.1021/acs.analchem.1c02247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic efficacy and pharmacokinetics of antibody-drug conjugates (ADCs) in general, and antibody-oligonucleotide conjugates (AOCs) in particular, depend on the drug-to-antibody ratio (DAR) distribution and average value. The DAR is considered a critical quality attribute, and information pertaining to it needs to be gathered during ADC/AOC development, production, and storage. However, because of the high structural complexity of ADC/AOC samples, particularly in the initial drug-development stages, the application of the current state-of-the-art mass spectrometric approaches can be limited for DAR analysis. Here, we demonstrate a novel approach for the analysis of complex ADC/AOC samples, following native size-exclusion chromatography Orbitrap Fourier transform mass spectrometry (FTMS). The approach is based on the integration of the proteoform-level mass spectral peaks in order to provide an estimate of the DAR distribution and its average value with less than 10% error. The peak integration is performed via a truncation of the Orbitrap's unreduced time-domain ion signals (transients) before mass spectra generation via FT processing. Transient recording and processing are undertaken using an external data acquisition system, FTMS Booster X2, coupled to a Q Exactive HF Orbitrap FTMS instrument. This approach has been applied to the analysis of whole and subunit-level trastuzumab conjugates with oligonucleotides. The obtained results indicate that ADC/AOC sample purification or simplification procedures, for example, deglycosylation, could be omitted or minimized prior to the DAR analysis, streamlining the drug-development process.
Collapse
Affiliation(s)
| | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Pasi Virta
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Patrik Holm
- Protein and Antibody Engineering Unit, Orion Pharma, 20380 Turku, Finland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Victor J Nesatyy
- Protein and Antibody Engineering Unit, Orion Pharma, 20380 Turku, Finland
| | | |
Collapse
|