1
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
Wu W, Mu Y. Microfluidic technologies for advanced antimicrobial susceptibility testing. BIOMICROFLUIDICS 2024; 18:031504. [PMID: 38855477 PMCID: PMC11162290 DOI: 10.1063/5.0190112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance is getting serious and becoming a threat to public health worldwide. The improper and excessive use of antibiotics is responsible for this situation. The standard methods used in clinical laboratories, to diagnose bacterial infections, identify pathogens, and determine susceptibility profiles, are time-consuming and labor-intensive, leaving the empirical antimicrobial therapy as the only option for the first treatment. To prevent the situation from getting worse, evidence-based therapy should be given. The choosing of effective drugs requires powerful diagnostic tools to provide comprehensive information on infections. Recent progress in microfluidics is pushing infection diagnosis and antimicrobial susceptibility testing (AST) to be faster and easier. This review summarizes the recent development in microfluidic assays for rapid identification and AST in bacterial infections. Finally, we discuss the perspective of microfluidic-AST to develop the next-generation infection diagnosis technologies.
Collapse
Affiliation(s)
- Wenshuai Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Mu
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
4
|
Prasetyanto EA, Wasisto HS, Septiadi D. Cellular lasers for cell imaging and biosensing. Acta Biomater 2022; 143:39-51. [PMID: 35314365 DOI: 10.1016/j.actbio.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
The possibility to produce laser action involving biomaterials, in particular (single) biological cells, has fostered the development of cellular lasers as a novel approach in biophotonics. In this respect, cells that are engineered to carry gain medium (e.g., fluorescent dyes or proteins) are placed inside an optical cavity (i.e., typically a sandwich of highly reflective mirrors), allowing the generation of stimulated emission upon sufficient optical pumping. In another scenario, micron-sized optical resonators supporting whispering-gallery mode (WGM) or semiconductor-based laser probes can be internalized by the cells and support light amplification. This review summarizes the recent advances in the fields of biolasers and cellular lasers, and most importantly, highlights their potential applications in the fields of in vitro and in vivo cell imaging and analysis. They include biosensing (e.g., in vitro detection of sodium chloride (NaCl) concentration), cancer cell imaging, laser-emission-based microscope, cell tracking, cell distinction study, and tissue contraction monitoring in zebrafish. Lastly, several fundamental issues in developing cellular lasers including laser probe fabrication, biocompatibility of the system, and alteration of local refractive index of optical cavities due to protein absorption or probe aggregation are described. Cellular lasers are foreseen as a promising tool to study numerous biological and biophysical phenomena. STATEMENT OF SIGNIFICANCE: Biolasers are generation of laser involving biological materials. Biomaterials, including single cells, can be engineered to incorporate laser probes or fluorescent proteins or fluorophores, and the resulting light emission can be coupled to optical resonator, allowing generation of cellular laser emission upon optical pumping. Unlike fluorescence, this stimulated emission is very sensitive and is capable of detecting small alterations in the optical property of the cells and their environment. In this review, recent development and applications of cellular lasers in the fields of in vitro and in vivo cell imaging, cell tracking, biosensing, and cell/tissue analysis are highlighted. Several challenges in developing cellular lasers including probe fabrication and biocompatibility as well as alteration of cellular environment are explained.
Collapse
Affiliation(s)
- Eko Adi Prasetyanto
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University, Jl. Pluit Raya 2, Jakarta 14440, Indonesia
| | | | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland.
| |
Collapse
|
5
|
Xu Z, Hong Q, Ge K, Shi X, Wang X, Deng J, Zhou Z, Zhai T. Random Lasing from Label-Free Living Cells for Rapid Cytometry of Apoptosis. NANO LETTERS 2022; 22:172-178. [PMID: 34978455 DOI: 10.1021/acs.nanolett.1c03580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A random laser carrying the scattering information on a biological host is a promising tool for the characterization of biophysical properties. In this work, random lasing from label-free living cells is proposed to achieve rapid cytometry of apoptosis. Random lasing is achieved by adding biocompatible gain medium to a confocal dish containing cells under optically pumped conditions. The random lasing characteristics are distinct at different stages of cell apoptosis after drug treatment. By analyzing the power Fourier transform results of the random lasing spectra, the percentage of apoptotic cells could be distinguished within two seconds, which is more than an order of magnitude faster than traditional flow cytometry. These results provide a label-free approach for rapid cytometry of apoptosis, which is advantageous for further research of random lasers in the biological field.
Collapse
Affiliation(s)
- Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Qihao Hong
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaolei Wang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jinxiang Deng
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - ZhiXiang Zhou
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Capocefalo A, Quintiero E, Conti C, Ghofraniha N, Viola I. Droplet Lasers for Smart Photonic Labels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51485-51494. [PMID: 34666483 PMCID: PMC9296018 DOI: 10.1021/acsami.1c14972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microscopic lasers represent a promising tool for the development of cutting-edge photonic devices thanks to their ability to enhance light-matter interaction at the microscale. In this work, we realize liquid microlasers with tunable emission by exploiting the self-formation of three-dimensional liquid droplets into a polymeric matrix driven by viscoelastic dewetting. We design a flexible device to be used as a smart photonic label which is detachable and reusable on various types of substrates such as paper or fabric. The innovative lasing emission mechanism proposed here is based on whispering gallery mode emission coupled to random lasing, the latter prompted by the inclusion of dielectric compounds into the active gain medium. The wide possibility of modulating the emission wavelength of the microlasers by acting on different parameters, such as the cavity size, type and volume fraction of the dielectrics, and gain medium, offers a multitude of spectroscopic encoding schemes for the realization of photonic barcodes and labels to be employed in anticounterfeiting applications and multiplexed bioassays.
Collapse
Affiliation(s)
- A. Capocefalo
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - E. Quintiero
- CNR
NANOTEC, Istituto di Nanotecnologia, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - C. Conti
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - N. Ghofraniha
- CNR
ISC, Istituto dei Sistemi Complessi, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - I. Viola
- CNR
NANOTEC, Istituto di Nanotecnologia, c/o Università Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
7
|
Gong C, Qiao Z, Zhu S, Wang W, Chen YC. Self-Assembled Biophotonic Lasing Network Driven by Amyloid Fibrils in Microcavities. ACS NANO 2021; 15:15007-15016. [PMID: 34533023 DOI: 10.1021/acsnano.1c05266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled biological structures have played a significant role in many living systems for its functionality and distinctiveness. Here, we experimentally demonstrate that the random dynamic behavior of strong light-matter interactions in complex biological structures can provide hidden information on optical coupling in a network. The concept of biophotonic lasing network is therefore introduced, where a self-assembled human amyloid fibril network was confined in a Fabry-Perot optical cavity. Distinctive lasing patterns were discovered from self-assembled amyloids with different structural dimensions (0D, 1D, 2D, and 3D) confined in a microcavity. Network laser emission exhibiting evidence of light coupling at different wavelengths and locations was spectrally resolved. Dynamic changes of lasing patterns can therefore be interpreted into a graph to reveal the optical correlation in biophotonic networks. Our findings indicate that each graph represents the highly unclonable features of a self-assembled network which can sensitively respond to environmental stimulus. This study offers the potential for studying dynamic biological networks through amplified interactions, shedding light on the development of biologically controlled photonic devices, biosensing, and information encryption.
Collapse
Affiliation(s)
- Chaoyang Gong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wenjie Wang
- Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, 79 Yingze Street, Taiyuan 030024, PR China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|