1
|
Wang Z, Fang Z, Wang Z, Qin H, Guo Z, Liang X, Liu S, Dong M, Ye M. Microparticle-assisted protein capture method facilitates proteomic and glycoproteomic analysis of urine samples. Anal Chim Acta 2025; 1335:343448. [PMID: 39643303 DOI: 10.1016/j.aca.2024.343448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Serum tests have become a partial alternative to renal biopsy for diagnosing primary membranous nephropathy (pMN). However, urine tests, due to their non-invasive nature and ability to more accurately reflect glomerular diseases, hold great promise for the detection of pMN. However, the low protein concentration and the time-consuming sample preparation procedure of urine samples challenges the proteomic and glycoproteomic analysis to find urine-derived signatures associated with pMN. In this study, we presented a microparticle-assisted protein capture (MAPC) method to efficiently prepare urine samples. It was found that proteins and N-linked intact glycopeptides can be sensitively identified from urine samples of pMN patients and healthy controls by using this method. For comparison, proteins and N-linked intact glycopeptides from serum were also analyzed. Interestingly, discrepancy was found in the changing trends for proteins/intact glycopeptides between serum and urine. Moreover, urine derived proteins, N-linked intact glycopeptides, and glycans exhibited more pronounced changes between pMN and healthy control compared to serum sample. Notably, urine IgG4 not only up-regulated in pMN at global peptide level, its corresponding site-specific glycans were specifically identified in pMN urine with significantly up-regulations, suggested the potential of using glycosylated urine IgG4 for the non-invasive diagnosis of pMN.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhenzhen Wang
- Department of Nephrology, Central Hospital Affiliated with Dalian University of Technology, Dalian Key Laboratory of Intelligent Blood Purification, 116033, Dalian, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhimou Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinmiao Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuxin Liu
- Department of Nephrology, Central Hospital Affiliated with Dalian University of Technology, Dalian Key Laboratory of Intelligent Blood Purification, 116033, Dalian, China.
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 116000, Dalian, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Jiang P, Hakim MA, Saffarian Delkhosh A, Ahmadi P, Li Y, Mechref Y. 4-plex quantitative glycoproteomics using glycan/protein-stable isotope labeling in cell culture. J Proteomics 2025; 310:105333. [PMID: 39426592 DOI: 10.1016/j.jprot.2024.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Alterations in glycoprotein abundance and glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics is pivotal for biomarker discovery, but comprehensive analysis within biological samples remains challenging due to low abundance, complexity, and lack of universal technology. We developed a multiplex glycoproteomic approach using an LC-ESI-MS platform for direct comparison of glycoproteomic quantitation. Glycopeptides were isotopically labeled during cell culture, achieving high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation was validated by mixing the same cell line in a 1:1:1:1 ratio, with mathematical correction applied to deconvolute the ratios. This method proved reliable and was applied to a comparative glycoproteomic study of three breast cancer cell lines (HTB22, MDA-MB-231, MDA-MB-231BR) and one brain cancer cell line (CRL-1620), quantifying glycopeptides from three replicates. The expression of glycopeptides was relatively quantified, and up/down-regulation between cell lines was investigated. This approach provided insights into glycosylation microheterogeneity, crucial for breast cancer brain metastasis research. Benefits include eliminating fluctuations from nano electrospray ionization and reducing analysis time, enabling up to 4-plex profiling in a single injection. Metabolic labeling introduced mass differences at the MS1 level, ensuring increased sensitivity and higher resolution for accurate quantitation. SIGNIFICANCE: Alternations in glycoprotein abundance, changes in glycosylation levels, and variations in glycan structures are closely linked to numerous diseases. The quantitative exploration of glycoproteomics has emerged as a popular area of research for biomarker discovery. However, conducting a comprehensive quantitative analysis of the glycoproteome within biological samples remains challenging due to low abundance, inherent complexities, and the absence of universal quantitative technology. Here, we developed a multiplex glycoproteomic approach using an LC-ESI-MS platform to facilitate direct comparison of glycoproteomic quantitation and enhance throughput. This approach offers benefits such as eliminating quantitative fluctuations arising from nano electrospray ionization (ESI) and reducing analysis time, enabling up to 4-plex glycoproteomic profiling in a single injection. Glycopeptides were stable isotopic labeled during cell culture procedure, attaching to monosaccharides, amino acids, or both. We achieved a high labeling efficiency (≥ 95 %) for both glycans and peptides. Quantitation validation was tested on glycopeptides by mixing the same cell line with 1:1:1:1 ratio. Due to the overlapped isotopes, a mathematical correction was applied to deconvolute the ratio of 4-plex glycopeptides. This method demonstrated quantitative reliability and was successfully applied to a comparative glycoproteomic study of three breast cancer cells (HTB22, MDA-MB-231, and MDA-MB-231BR) and one brain cancer cell (CRL-1620), identifying a total of 264 glycopeptides from three replicates. The expression of glycopeptides among these four cells was relatively quantified and up/down-regulation between two cell lines was investigated. The exploration of glycosylation microheterogeneity through glycopeptide quantification may offer valuable insights for further investigation into breast cancer brain metastasis. Conclusion: The primary advantage of our presented work lies in the multiplexing offered by combining two established labeling techniques, SILAC and IDAWG, both of which have been effectively used and widely cited in the scientific community. This combination enhances the applicability and accuracy of our method, as demonstrated by the extensive citations and successful use of these techniques independently. We believe that this multiplexing approach significantly advances the field, despite the method's current limitation to cell systems.
Collapse
Affiliation(s)
- Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Arvin Saffarian Delkhosh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Parisa Ahmadi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Yunxiang Li
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
3
|
Li J, Liu D, Zhang Y, Jin Z, Xue Y, Sun S. High-abundance serum glycoproteins as valuable resources for glycopeptide standards. Carbohydr Polym 2025; 347:122746. [PMID: 39486975 DOI: 10.1016/j.carbpol.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
High-abundance serum proteins, mostly modified by N-glycans, are usually depleted from human sera to achieve in-depth analyses of serum proteome and sub-proteomes. In this study, we show that these high-abundance glycoproteins (HAGPs) can be used as valuable standard glycopeptide resources, as long as the structural features of their glycans have been well defined at the glycosite-specific level. By directly analyzing intact glycopeptides enriched from serum, we identified 1322 unique glycopeptides at 48 N-glycosites from the top 12 HAGPs (19 subclasses). These HAGPs could be further classified into four major groups based on the structural features of their attached N-glycans. Immunoglobins including IGHG1/2/3/4, IGHA1/2 and IGHM were mostly modified by core fucosylated and bisected N-glycans with rarely sialic acids. Alpha-1-acid glycoproteins (ORM1/2) and haptoglobins (HP) were mainly modified by tri-and tetra-antennary (40 %) N-glycans with antenna-fucoses and sialic acids. Complement components C3 and C4A/B were highly modified by oligo-mannose glycans. The other HAGPs including SERPINA1, A2M, TF, FGB/G and APOB mainly contain bi-antennary complex glycans with the common core structure and (sialyl-) LacNAc branch structures. These HAGPs are easily detected by LC-MS analysis and therefore could be used as standard glycopeptides for glycoproteomic methodology studies as well as possible clinical utilities.
Collapse
Affiliation(s)
- Jun Li
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Didi Liu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yingjie Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yue Xue
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
4
|
Fang Z, Dong M, Qin H, Ye M. GP-Plotter: Flexible Spectral Visualization for Proteomics Data with Emphasis on Glycoproteomics Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae069. [PMID: 39378133 DOI: 10.1093/gpbjnl/qzae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Identification evaluation and result dissemination are essential components in mass spectrometry-based proteomics analysis. The visualization of fragment ions in mass spectrum provides strong evidence for peptide identification and modification localization. Here, we present an easy-to-use tool, named GP-Plotter, for ion annotation of tandem mass spectra and corresponding image output. Identification result files of common searching tools in the community and user-customized files are supported as input of GP-Plotter. Multiple display modes and parameter customization can be achieved in GP-Plotter to present annotated spectra of interest. Different image formats, especially vector graphic formats, are available for image generation which is favorable for data publication. Notably, GP-Plotter is also well-suited for the visualization and evaluation of glycopeptide spectrum assignments with comprehensive annotation of glycan fragment ions. With a user-friendly graphical interface, GP-Plotter is expected to be a universal visualization tool for the community. GP-Plotter has been implemented in the latest version of Glyco-Decipher (v1.0.4) and the standalone GP-Plotter software is also freely available at https://github.com/DICP-1809.
Collapse
Affiliation(s)
- Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingming Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang Q, Liu X, Li Y, Wang Z, Fang Z, Wang Y, Guo X, Dong M, Ye M, Jia L. Rational development of functional hydrophilic polymer to characterize site-specific glycan differences between bovine milk and colostrum. Food Chem 2024; 460:140669. [PMID: 39094346 DOI: 10.1016/j.foodchem.2024.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
6
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Zeng WF, Yan G, Zhao HH, Liu C, Cao W. Uncovering missing glycans and unexpected fragments with pGlycoNovo for site-specific glycosylation analysis across species. Nat Commun 2024; 15:8055. [PMID: 39277585 PMCID: PMC11401942 DOI: 10.1038/s41467-024-52099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
Precision mapping of site-specific glycans using mass spectrometry is vital in glycoproteomics. However, the diversity of glycan compositions across species often exceeds database capacity, hindering the identification of rare glycans. Here, we introduce pGlycoNovo, a software within the pGlyco3 software environment, which employs a glycan first-based full-range Y-ion dynamic searching strategy. pGlycoNovo enables de novo identification of intact glycopeptides with rare glycans by considering all possible monosaccharide combinations, expanding the glycan search space to 16~1000 times compared to non-open search methods, while maintaining accuracy, sensitivity and speed. Reanalysis of SARS Covid-2 spike protein glycosylation data revealed 230 additional site-specific N-glycans and 30 previously unreported O-glycans. pGlycoNovo demonstrated high complementarity to six other tools and superior search speed. It enables characterization of site-specific N-glycosylation across five evolutionarily distant species, contributing to a dataset of 32,549 site-specific glycans on 4602 proteins, including 2409 site-specific rare glycans, and uncovering unexpected glycan fragments.
Collapse
Affiliation(s)
- Wen-Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
- Center for Infectious Disease Research & School of Engineering, Westlake University, Hangzhou, China
| | - Guoquan Yan
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Huan-Huan Zhao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Chao Liu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Guo X, Liu X, Zhao C, Fang Z, Sun D, Tang F, Ma T, Liu L, Zhu H, Wang Y, Wang Z, Li Y, Qin H, Huang W, Dong M, Ye M, Jia L. Quantitative Characterization of Protein N-Linked Core-Fucosylation by an Efficient Glycan Truncation Strategy. Anal Chem 2024; 96:10506-10514. [PMID: 38874382 DOI: 10.1021/acs.analchem.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Dysregulation of protein core-fucosylation plays a pivotal role in the onset, progression, and immunosuppression of cancer. However, analyzing core-fucosylation, especially the accurate determination of the core-fucosylation (CF) site occupancy ratio, remains challenging. To address these problems, we developed a truncation strategy that efficiently converts intact glycopeptides with hundreds of different glycans into two truncated forms, i.e., a monosaccharide HexNAc and a disaccharide HexNAc+core-fucose. Further combination with data-independent analysis to form an integrated platform allowed the measurement of site-specific core-fucosylation abundances and the determination of the CF occupancy ratio with high reproducibility. Notably, three times CF sites were identified using this strategy compared to conventional methods based on intact glycopeptides. Application of this platform to characterize protein core-fucosylation in two breast cancer cell lines, i.e., MDA-MB-231 and MCF7, yields a total of 1615 unique glycosites and about 900 CF sites from one single LC-MS/MS analysis. Differential analysis unraveled the distinct glycosylation pattern for over 201 cell surface drug targets between breast cancer subtypes and provides insights into developing new therapeutic strategies to aid precision medicine. Given the robust performance of this platform, it would have broad application in discovering novel biomarkers based on the CF glycosylation pattern, investigating cancer mechanisms, as well as detecting new intervention targets.
Collapse
Affiliation(s)
- Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Changrui Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deguang Sun
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Taiheng Ma
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Lei Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongqiang Qin
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116000, Liaoning, China
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
10
|
Hu Z, Liu R, Gao W, Li J, Wang H, Tang K. A Fully Automated Online Enrichment and Separation System for Highly Reproducible and In-Depth Analysis of Intact Glycopeptide. Anal Chem 2024; 96:8822-8829. [PMID: 38698557 DOI: 10.1021/acs.analchem.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A fully automated online enrichment and separation system for intact glycopeptides, named AutoGP, was developed in this study by integrating three different columns in a nano-LC system. Specifically, the peptide mixture from the enzymatic digestion of a complex biological sample was first loaded on a hydrophilic interaction chromatography (HILIC) column. The nonglycopeptides in the sample were washed off the column, and the glycopeptides retained by the HILIC column were eluted to a C18 trap column to achieve an automated glycopeptide enrichment. The enriched glycopeptides were further eluted to a C18 column for separation, and the separated glycopeptides were eventually analyzed by using an orbitrap mass spectrometer (MS). The optimal operating conditions for AutoGP were systemically studied, and the performance of the fully optimized AutoGP was compared with a conventional manual system used for glycopeptide analysis. The experimental evaluation shows that the total number of glycopeptides identified is at least 1.5-fold higher, and the median coefficient of variation for the analyses is at least 50% lower by using AutoGP, as compared to the results acquired by using the manual system. In addition, AutoGP can perform effective analysis even with a 1-μg sample amount, while a 10-μg sample at least will be needed by the manual system, implying an order of magnitude better sensitivity of AutoGP. All the experimental results have consistently proven that AutoGP can be used for much better characterization of intact glycopeptides.
Collapse
Affiliation(s)
- Zhonghan Hu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Rong Liu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Wenqing Gao
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Junhui Li
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Hongxia Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo 315211, PR China
- Zhenhai Institute of Mass Spectrometry, Ningbo 315211, PR China
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
11
|
Chen CW, Lin PY, Lai YM, Lin MH, Lin SY, Hsu CC. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Mol Cell Proteomics 2024; 23:100762. [PMID: 38608839 PMCID: PMC11098956 DOI: 10.1016/j.mcpro.2024.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.
Collapse
Affiliation(s)
- Chin-Wen Chen
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Mi Lai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yu Lin
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Academia Sinica, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Institution of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Molnarova K, Krizek T, Kozlik P. The potential of polyaniline-coated stationary phase in hydrophilic interaction liquid chromatography-based solid-phase extraction for glycopeptide enrichment. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1237:124099. [PMID: 38547700 DOI: 10.1016/j.jchromb.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
Glycopeptide enrichment is a crucial step in glycoproteomic analysis, often achieved through solid-phase extraction (SPE) on polar stationary phases in hydrophilic interaction liquid chromatography (HILIC). This study explores the potential of polyaniline (PANI)-coated silica gel for enriching human immunoglobulin G (IgG). Experimental conditions were varied to assess their impact on glycopeptide enrichment efficiency, comparing PANI-cotton wool SPE with conventional cotton wool as SPE sorbents. Two formic acid concentrations (0.1% and 1%) in elution solvent were tested, revealing that higher concentrations led to earlier elution of studied glycopeptides, especially for sialylated glycopeptides. Substituting formic acid with acetic acid increased the interaction of neutral glycopeptides with the PANI-modified sorbent, while sialylated glycopeptides showed no significant change in enrichment efficiency. Acetonitrile concentration in the elution solvent (5%, 10%, and 20%) affected the enrichment efficiency with most glycopeptides eluting at the lowest acetonitrile concentration. The acetonitrile concentration in conditioning and washing solutions (65%, 75%, and 85%) played a crucial role; at 65% acetonitrile, glycopeptides were least retained on the stationary phase, and neutral glycopeptides were even detected in the flow-through fraction. This study shows the potential of in-house-prepared PANI-modified sorbents for SPE-HILIC glycopeptide enrichment, highlighting the crucial role of tuning experimental conditions in sample preparation to enhance enrichment efficiency and selectivity.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomas Krizek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Liu L, Liu L, Wang Y, Fang Z, Bian Y, Zhang W, Wang Z, Gao X, Zhao C, Tian M, Liu X, Qin H, Guo Z, Liang X, Dong M, Nie Y, Ye M. Robust Glycoproteomics Platform Reveals a Tetra-Antennary Site-Specific Glycan Capping with Sialyl-Lewis Antigen for Early Detection of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306955. [PMID: 38084450 PMCID: PMC10916543 DOI: 10.1002/advs.202306955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Indexed: 03/07/2024]
Abstract
The lack of efficient biomarkers for the early detection of gastric cancer (GC) contributes to its high mortality rate, so it is crucial to discover novel diagnostic targets for GC. Recent studies have implicated the potential of site-specific glycans in cancer diagnosis, yet it is challenging to perform highly reproducible and sensitive glycoproteomics analysis on large cohorts of samples. Here, a highly robust N-glycoproteomics (HRN) platform comprising an automated enrichment method, a stable microflow LC-MS/MS system, and a sensitive glycopeptide-spectra-deciphering tool is developed for large-scale quantitative N-glycoproteome analysis. The HRN platform is applied to analyze serum N-glycoproteomes of 278 subjects from three cohorts to investigate glycosylation changes of GC. It identifies over 20 000 unique site-specific glycans from discovery and validation cohorts, and determines four site-specific glycans as biomarker candidates. One candidate has branched tetra-antennary structure capping with sialyl-Lewis antigen, and it significantly outperforms serum CEA with AUC values > 0.89 compared against < 0.67 for diagnosing early-stage GC. The four-marker panel can provide improved diagnostic performances. Besides, discrimination powers of four candidates are also testified with a verification cohort using PRM strategy. This findings highlight the value of this strong tool in analyzing aberrant site-specific glycans for cancer detection.
Collapse
Affiliation(s)
- Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Lei Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Yangyang Bian
- The College of Life SciencesNorthwest UniversityXi'an710127China
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xianchun Gao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Changrui Zhao
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Mingming Dong
- MOE Key Laboratory of Bio‐Intelligent Manufacturing, School of BioengineeringDalian University of TechnologyDalian116024China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'an710068China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of Chinese Academy of SciencesBeijing101408China
- State Key Laboratory of Medical ProteomicsBeijing102206China
| |
Collapse
|
14
|
Kong L, Li F, Fang W, Du Z, Wang G, Zhang Y, Ge WP, Zhang W, Qin W. Sensitive N-Glycopeptide Profiling of Single and Rare Cells Using an Isobaric Labeling Strategy without Enrichment. Anal Chem 2023; 95:11326-11334. [PMID: 37409763 DOI: 10.1021/acs.analchem.3c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Single-cell omics is critical in revealing population heterogeneity, discovering unique features of individual cells, and identifying minority subpopulations of interest. As one of the major post-translational modifications, protein N-glycosylation plays crucial roles in various important biological processes. Elucidation of the variation in N-glycosylation patterns at single-cell resolution may largely facilitate the understanding of their key roles in the tumor microenvironment and immune therapy. However, comprehensive N-glycoproteome profiling for single cells has not been achieved due to the extremely limited sample amount and incompatibility with the available enrichment strategies. Here, we have developed an isobaric labeling-based carrier strategy for highly sensitive intact N-glycopeptide profiling for single cells or a small number of rare cells without enrichment. Isobaric labeling has unique multiplexing properties, by which the "total" signal from all channels triggers MS/MS fragmentation for N-glycopeptide identification, while the reporter ions provide quantitative information. In our strategy, a carrier channel using N-glycopeptides obtained from bulk-cell samples significantly improved the "total" signal of N-glycopeptides and, therefore, promoted the first quantitative analysis of averagely 260 N-glycopeptides from single HeLa cells. We further applied this strategy to study the regional heterogeneity of N-glycosylation of microglia in mouse brain and discovered region-specific N-glycoproteome patterns and cell subtypes. In conclusion, the glycocarrier strategy provides an attractive solution for sensitive and quantitative N-glycopeptide profiling of single/rare cells that cannot be enriched by traditional workflows.
Collapse
Affiliation(s)
- Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wei Fang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Zhuokun Du
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Guibin Wang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| |
Collapse
|
15
|
Wang Z, Fang Z, Liu L, Zhu H, Wang Y, Zhao C, Guo Z, Qin H, Nie Y, Liang X, Dong M, Ye M. Development of an Integrated Platform for the Simultaneous Enrichment and Characterization of N- and O-Linked Intact Glycopeptides. Anal Chem 2023; 95:7448-7457. [PMID: 37146305 DOI: 10.1021/acs.analchem.2c04305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Both N-linked glycosylation and O-linked glycosylation play essential roles in the onset and progression of various diseases including cancer, and N-/O-linked site-specific glycans have been proven to be promising biomarkers for the discrimination of cancer. However, the micro-heterogeneity and low abundance nature of N-/O-linked glycosylation, as well as the time-consuming and tedious procedures for the enrichment of O-linked intact glycopeptides, pose great challenges for their efficient and accurate characterization. In this study, we developed an integrated platform for the simultaneous enrichment and characterization of N- and O-linked intact glycopeptides from the same serum sample. By fine-tuning the experimental conditions, we demonstrated that this platform allowed the selective separation of N- and O-linked intact glycopeptides into two fractions, with 85.1% O-linked intact glycopeptides presented in the first fraction and 93.4% N-linked intact glycopeptides presented in the second fraction. Determined with high reproducibility, this platform was further applied to the differential analysis of serum samples of gastric cancer and health control, which revealed 17 and 181 significantly changed O-linked and N-linked intact glycopeptides. Interestingly, five glycoproteins containing both significant regulation of N- and O-glycosylation were observed, hinting potential co-regulation of different types of glycosylation during tumor progress. In summary, this integrated platform opened a potentially useful avenue for the global analysis of protein glycosylation and can serve as a useful tool for the characterization of N-/O-linked intact glycopeptides at the proteomics scale.
Collapse
Affiliation(s)
- Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Changrui Zhao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| | - Mingming Dong
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, Liaoning 116023, China
| |
Collapse
|
16
|
Yin H, Zhu J. Methods for quantification of glycopeptides by liquid separation and mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:887-917. [PMID: 35099083 PMCID: PMC9339036 DOI: 10.1002/mas.21771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 05/05/2023]
Abstract
Recent advances in analytical techniques provide the opportunity to quantify even low-abundance glycopeptides derived from complex biological mixtures, allowing for the identification of glycosylation differences between healthy samples and those derived from disease states. Herein, we discuss the sample preparation procedures and the mass spectrometry (MS) strategies that have facilitated glycopeptide quantification, as well as the standards used for glycopeptide quantification. For sample preparation, various glycopeptide enrichment methods are summarized including the columns used for glycopeptide separation in liquid chromatography separation. For MS analysis strategies, MS1 level-based quantification and MS2 level-based quantification are described, either with or without labeling, where we have covered isotope labeling, TMT/iTRAQ labeling, data dependent acquisition, data independent acquisition, multiple reaction monitoring, and parallel reaction monitoring. The strengths and weaknesses of these methods are compared, particularly those associated with the figures of merit that are important for clinical biomarker studies and the pathological and functional studies of glycoproteins in various diseases. Possible future developments for glycopeptide quantification are discussed.
Collapse
Affiliation(s)
- Haidi Yin
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| | - Jianhui Zhu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence to: Haidi Yin, Shenzhen Bay Laboratory, A1201, Shenzhen, Guangdong, 518132, China. Phone: 0755-26849276. , Jianhui Zhu, Department of Surgery, University of Michigan, 1150 West Medical Center Drive, Building MSRB1, Rm A500, Ann Arbor, MI 48109-0656, USA. Tel: 734-615-2567. Fax: 734-615-2088.
| |
Collapse
|
17
|
Liu Y, Yang Q, Du Z, Liu J, Zhang Y, Zhang W, Qin W. Synthesis of Surface-Functionalized Molybdenum Disulfide Nanomaterials for Efficient Adsorption and Deep Profiling of the Human Plasma Proteome by Data-Independent Acquisition. Anal Chem 2022; 94:14956-14964. [PMID: 36264706 DOI: 10.1021/acs.analchem.2c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood is one of the most important clinical samples for protein biomarker discovery, as it provides rich physiological and pathological information and is easy to obtain with low invasiveness. However, the discovery of protein biomarkers in the blood by mass spectrometry (MS)-based proteomic strategies has been shown to be highly challenging due to the particularly large concentration range of proteins and the strong interference by the high-abundant proteins in the blood. Therefore, developing sensitive methods for low-abundant biomarker protein identification is a key issue that has received great attention. Here, we report the synthesis and characterization of surface-functionalized magnetic molybdenum disulfide (MoS2) for the large-scale adsorption of low-abundant plasma proteins and deep profiling by MS. MoS2 nanomaterials resulted in the coverage of more than 3400 proteins (including a single-peptide hit) in a single LC-MS analysis without peptide prefractionation using pooled plasma samples, which were five times more than those obtained by the direct analysis of the plasma proteome. A detection limit in the low ng L-1 range was obtained, which is rare compared with previous reports.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Qianying Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhuokun Du
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
18
|
Chen Y, Tang F, Qin H, Yue X, Nie Y, Huang W, Ye M. Endo-M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O-GlcNAcylation Analysis. Angew Chem Int Ed Engl 2022; 61:e202117849. [PMID: 35289036 DOI: 10.1002/anie.202117849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/23/2022]
Abstract
To selectively enrich O-linked β-N-acetylglucosamine (O-GlcNAc) peptides in their original form from complex samples, we report the first reversible chemoenzymatic labeling approach for proteomic analysis. In this strategy, the O-GlcNAc moieties are ligated with long N-glycans using an Endo-M mutant, which enables the enrichment of the labeled glycopeptides by hydrophilic interaction liquid chromatography (HILIC). The attached glycans on the enriched glycopeptides are removed by wild-type Endo-M/S to restore the O-GlcNAc moiety. Compared with classic chemoenzymatic labeling, this approach enables the tag-free identification, and eliminates the interference of bulky tags in glycopeptide detection. This approach presents a unique avenue for the proteome-wide analysis of protein O-GlcNAcylation to promote its mechanism research.
Collapse
Affiliation(s)
- Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Feng Tang
- University of Chinese Academy of Sciences, 101408, Beijing, China.,CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Xuyang Yue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, China
| | - Wei Huang
- University of Chinese Academy of Sciences, 101408, Beijing, China.,CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 101408, Beijing, China
| |
Collapse
|
19
|
Fang Z, Qin H, Mao J, Wang Z, Zhang N, Wang Y, Liu L, Nie Y, Dong M, Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat Commun 2022; 13:1900. [PMID: 35393418 PMCID: PMC8990002 DOI: 10.1038/s41467-022-29530-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Glycopeptides with unusual glycans or poor peptide backbone fragmentation in tandem mass spectrometry are unaccounted for in typical site-specific glycoproteomics analysis and thus remain unidentified. Here, we develop a glycoproteomics tool, Glyco-Decipher, to address these issues. Glyco-Decipher conducts glycan database-independent peptide matching and exploits the fragmentation pattern of shared peptide backbones in glycopeptides to improve the spectrum interpretation. We benchmark Glyco-Decipher on several large-scale datasets, demonstrating that it identifies more peptide-spectrum matches than Byonic, MSFragger-Glyco, StrucGP and pGlyco 3.0, with a 33.5%-178.5% increase in the number of identified glycopeptide spectra. The database-independent and unbiased profiling of attached glycans enables the discovery of 164 modified glycans in mouse tissues, including glycans with chemical or biological modifications. By enabling in-depth characterization of site-specific protein glycosylation, Glyco-Decipher is a promising tool for advancing glycoproteomics analysis in biological research.
Collapse
Affiliation(s)
- Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Zhongyu Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luyao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
20
|
Qin S, Qin S, Tian Z. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123234. [DOI: 10.1016/j.jchromb.2022.123234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
|
21
|
Chen Y, Tang F, Qin H, Yue X, Nie Y, Huang W, Ye M. Endo‐M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for
O
‐GlcNAcylation Analysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 101408 Beijing China
| | - Feng Tang
- University of Chinese Academy of Sciences 101408 Beijing China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Center for Biotherapeutics Discovery Research Shanghai Institute of Material Medical Chinese Academy of Sciences 201203 Shanghai China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 101408 Beijing China
| | - Xuyang Yue
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases Fourth Military Medical University 710032 Xi'an China
| | - Wei Huang
- University of Chinese Academy of Sciences 101408 Beijing China
- CAS Key Laboratory of Receptor Research CAS Center for Excellence in Molecular Cell Science Center for Biotherapeutics Discovery Research Shanghai Institute of Material Medical Chinese Academy of Sciences 201203 Shanghai China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 101408 Beijing China
| |
Collapse
|
22
|
Yang L, Liu J, Li H, Liu Y, He A, Huang P, Gao W, Cao H, Xu R, Tian R. A fully integrated sample preparation strategy for highly sensitive intact glycoproteomics. Analyst 2022; 147:794-798. [PMID: 35142304 DOI: 10.1039/d1an02166d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A fully integrated sample preparation technology, termed Intact GlycoSISPROT, was developed for the highly sensitive analysis of site-specific glycopeptides. Through integrating all glycoproteomic sample preparation steps into a single spintip, Intact GlycoSISPROT provided a tool for site-specific glycosylation analysis with low micrograms to even nanograms of protein sample.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilian Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - An He
- Department of Chemistry and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Peiwu Huang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Weina Gao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hua Cao
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Ruijun Tian
- Department of Chemistry and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
24
|
[Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 2021; 39:1045-1054. [PMID: 34505426 PMCID: PMC9404232 DOI: 10.3724/sp.j.1123.2021.06011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。
Collapse
|