1
|
Tang Q, Wang J, Zhang J, Zeng H, Su Z, Zhu X, Wei J, Gong Y, Tang Q, Zhang K, Liao X. Electrochemiluminescence biosensor for MMP-2 determination using CRISPR/Cas13a and EXPAR amplification: a novel approach for anti-aging research. Mikrochim Acta 2024; 191:665. [PMID: 39397178 DOI: 10.1007/s00604-024-06707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Matrix metalloproteinase-2 (MMP-2) plays a pivotal role in anti-aging research. Developing advanced detection platforms for MMP-2 with high specificity, sensitivity, and accessibility is crucial. This study introduces a novel electrochemiluminescence (ECL) biosensor for MMP-2 determination, leveraging the CRISPR/Cas13a system and Exponential Amplification Reaction (EXPAR). The biosensor operates by utilizing the T7 RNA polymerase to transcribe RNA from a DNA template upon MMP-2 interaction. This RNA activates Cas13a, leading to signal amplification and ECL detection. The incorporation of the "photoswitch" molecule [Ru(phen)2dppz]2+ streamlines the process by eliminating the need for extensive electrode modification and cleaning. Under optimized conditions, the biosensor achieved an impressive detection limit of 12.8 aM for MMP-2. The platform demonstrated excellent selectivity, reproducibility, and stability, making it highly suitable for detecting MMP-2 in complex biological samples. This innovative approach shows great potential for applications in molecular diagnostics and anti-aging research.
Collapse
Affiliation(s)
- Qiang Tang
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jie Wang
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jiayi Zhang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Hongyu Zeng
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhixue Su
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiying Zhu
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Jihua Wei
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research On Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
2
|
Wang Q, Yu L, Peng Y, Sheng M, Jin Z, Zhang T, Huang J, Yang X. Electrochemiluminescence Biosensor Based on a Duplex-Specific Nuclease and Dual-Output Toehold-Mediated Strand Displacement Cascade Amplification Strategy for Sensitive Detection of MicroRNA-499. Anal Chem 2024; 96:15624-15630. [PMID: 39295453 DOI: 10.1021/acs.analchem.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The timely and accurate diagnosis of acute myocardial infarction (AMI) is of great significance to reduce mortality and morbidity associated with the condition. Herein, we developed an electrochemiluminescence (ECL) biosensor for the detection of the potential AMI biomarker microRNA-499 (miRNA-499), which was based on duplex-specific nuclease-assisted target recycling and dual-output toehold-mediated strand displacement (TMSD). First, miRNA-499 was converted into a large amount of single-stranded DNA through the DSN-assisted target recycling, which was further incubated with the DNA triple-stranded complex (S) to implement TMSD cycles. Thus, the Ru(bpy)32+-labeled signal strands were released and captured by the capture probe on the electrode surface, resulting in an intense ECL signal. Owing to the prominent cascade signal amplification, the constructed biosensor exhibited a good linear response to miRNA-499 within the range of 100 aM-100 pM with a detection limit of 69.99 aM. Furthermore, it demonstrated superior selectivity, stability, and reproducibility. In addition, the biosensor was successfully applied to detect miRNA-499 in real human serum samples, demonstrating its potential for nucleic acid detection in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Tingting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| |
Collapse
|
3
|
Zhang Y, Hu C, Yin Y, Ren K, He Y, Gao Y, Han H, Zhu C, Wang W. CRISPR/Cas12a-Responsive Smart DNA Hydrogel for Sensitive Electrochemiluminescence Detection of the Huanglongbing Outer Membrane Protein Gene. Anal Chem 2024; 96:11611-11618. [PMID: 38943567 DOI: 10.1021/acs.analchem.4c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Citrus Huanglongbing (HLB) is known as the cancer of citrus, where Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain causing HLB. In this study, we report a novel electrochemiluminescence (ECL) biosensor for the highly sensitive detection of the CLas outer membrane protein (Omp) gene by coupling rolling circle amplification (RCA) with a CRISPR/Cas12a-responsive smart DNA hydrogel. In the presence of the target, a large number of amplicons are generated through RCA. The amplicons activate the trans-cleavage activity of CRISPR/Cas12a through hybridizing with crRNA, triggering the response of smart DNA hydrogel to release the encapsulated AuAg nanoclusters (AuAg NCs) on the electrode and therefore leading to a decreased ECL signal. The ECL intensity change (I0 - I) is positively correlated with the concentration of the target in the range 50 fM to 5 nM, with a limit of detection of 40 fM. The performance of the sensor has also been evaluated with 10 samples of live citrus leaves (five HLB negative and five HLB positive), and the result is in excellent agreement with the gold standard qPCR result. The sensing strategy has expanded the ECL versatility for detecting varying levels of dsDNA or ssDNA in plants with high sensitivity.
Collapse
Affiliation(s)
- Yutian Zhang
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Can Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Yin
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Kejing Ren
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingsi He
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanru Gao
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenjing Wang
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Wei J, Zhang J, Wang W, Zhou H, Ma H, Gong Y, Tang Q, Zhang K, Liao X. Precision miRNA profiling: Electrochemiluminescence powered by CRISPR-Cas13a and hybridization chain reaction. Anal Chim Acta 2024; 1307:342641. [PMID: 38719418 DOI: 10.1016/j.aca.2024.342641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024]
Abstract
The article details a groundbreaking platform for detecting microRNAs (miRNAs), crucial biomolecules involved in gene regulation and linked to various diseases. This innovative platform combines the CRISPR-Cas13a system's precise ability to specifically target and cleave RNA molecules with the amplification capabilities of the hybridization chain reaction (HCR). HCR aids in signal enhancement by creating branched DNA structures. Additionally, the platform employs electrochemiluminescence (ECL) for detection, noted for its high sensitivity and low background noise, making it particularly effective. A key application of this technology is in the detection of miR-17, a biomarker associated with multiple cancer types. It exhibits remarkable detection capabilities, characterized by low detection limits (14.38 aM) and high specificity. Furthermore, the platform's ability to distinguish between similar miRNA sequences and accurately quantify miR-17 in cell lysates underscores its significant potential in clinical and biomedical fields. This combination of precise targeting, signal amplification, and sensitive detection positions the platform as a powerful tool for miRNA analysis in medical diagnostics and research.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Jiayi Zhang
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wei Wang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Haidong Zhou
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Huade Ma
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Xianjiu Liao
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
5
|
Chen LG, Li J, Sun L, Wang HB. Ratiometric fluorometric assay triggered by alkaline phosphatase: Proof-of-concept toward a split-type biosensing strategy for DNA detection. Talanta 2024; 271:125703. [PMID: 38271841 DOI: 10.1016/j.talanta.2024.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Herein, a sensitive ratiometric and split-type fluorescent sensing platform has been constructed for DNA detection based on one signal precursor and two fluorescent signal indicators. In this assay, o-phenylenediamine (OPD) was selected as the signal precursor. On one hand, Cu2+ can oxidize OPD to produce 2, 3-diaminophenazine (DAP), which with an emission peak at 555 nm. On the other hand, ascorbic acid (AA) could react with Cu2+ to generate dehydroascorbic acid (DHAA), which could further react with OPD to form 3-(1, 2-dihydroxy ethyl)furo[3, 4-b]quinoxalin-1 (3H)-on (DFQ) with a strong emission peak at 420 nm. As a result, the formation of DAP was inhibited, and leading to the decrease of fluorescence intensity at 555 nm. Alkaline phosphatase (ALP) could catalyze the substrate l-ascorbic acid-2-phosphate (AA2P) to produce AA in situ. Inspired by the successful use of ALP as a biocatalytic marker in bioassay, a split-type ratiometric fluorescent assay has been designed for DNA detection by using H1N1 DNA as the target model. It was realized for ratiometric fluorescent determination of H1N1 in a linear ranging from 50 pM to 1.5 nM with a limit of detection of 10 pM. The novel strategy could reduce the mutual interferences between the biomolecular recognition system and the fluorescence signal conversion system, which improving the accuracy of detection and effectively reducing the background signal. Furthermore, the strategy provided a promising platform for biomarkers detection in the fields of ratiometric fluorescent biosensors and bioanalysis.
Collapse
Affiliation(s)
- Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Jiajun Li
- CNOOC Tianjin Research and Design Institute of Chemical Industry, Tianjin, 300131, PR China
| | - Lu Sun
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, PR China.
| |
Collapse
|
6
|
Zhang Z, Li J, Chen C, Tong Y, Liu D, Li C, Lu H, Huang L, Feng W, Sun X. Exploring T7 RNA polymerase-assisted CRISPR/Cas13a amplification for the detection of BNP via electrochemiluminescence sensing platform. Anal Chim Acta 2024; 1300:342409. [PMID: 38521567 DOI: 10.1016/j.aca.2024.342409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
Brain natriuretic peptide (BNP) is considered to be an important biomarker of heart failure (HF) attracting attention. However, its low concentration and short half-life in blood lead to a low-sensitivity detection of BNP, which is a challenge that has to be overcome. In this work, we propose a highly specific, highly sensitive T7 RNA polymerase-assisted clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a system to detect BNP via an electrochemiluminescence (ECL) sensing platform and incorporate exonuclease III (Exo III)-hairpin and dumbbell-shaped hybridization chain reaction (HCR) technologies. In this detection scheme, the ECL sensing platform possesses low background signal and high sensitivity. Firstly, the T7 promoter-initiated T7 RNA polymerase acts as a signal amplification technique to generate large amounts of RNAs that can activate CRISPR/Cas13a activity. Secondly, CRISPR/Cas13a is able to trans-cleave the surrounding trigger strand to produce DNA1. Thirdly, DNA1 is involved in the co-amplification reaction of Exo III and hairpin DNA, which subsequently triggers a dumbbell-shaped HCR technology. Eventually, a large number of Ru (II) molecules are inserted into the interstitial space of the dumbbell-shaped HCR to generate a strong ECL signal. The CRISPR/Cas13a possesses outstanding specificity for a single base and increased sensitivity. The tightly conformed dumbbell-shaped HCR provides higher sensitivity than the traditional linear HCR amplification technique. Ultimately, the clever combination of several amplification reactions enables the limit of detection (LOD) as low as 3.2 fg/mL. It showed promise for clinical sample testing, with recovery rates ranging from 98.4% to 103% in 5% human serum samples. This detection method offered a valuable tool for early HF detection, emphasizing the synergy of amplification strategies and specificity conferred by CRISPR/Cas13a technology.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Jinglong Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Chunlin Chen
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Yuwei Tong
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Dehui Liu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Cuizhi Li
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Huan Lu
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China.
| | - Li Huang
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Wanling Feng
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| | - Xiaoting Sun
- Department of Cardiology, Guangzhou Eighth People's Hospital Guangzhou Medical University, Guangzhou, 510440, PR China
| |
Collapse
|
7
|
Zhu F, Zhang H, Wu R, Lu Y, Wang J, A R, G TS, Zhu N, Zhang Z, Tang J. A dual-signal aptasensor based on cascade amplification for ultrasensitive detection of aflatoxin B1. Biosens Bioelectron 2024; 250:116057. [PMID: 38286091 DOI: 10.1016/j.bios.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Aflatoxin B1 (AFB1) is considered as a serious carcinogenic mycotoxin that was widely detected in grains and foods, and its sensitive analysis is of key importance to avoid the health threats for consumers. In this study, a dual-signal aptasensor based on cascade of entropy-driven strand displacement reaction (ESDR) and linear rolling circle amplification (LRCA) was fabricated for ultrasensitive determination of AFB1. At the sensing system, the complementary strand would be released after the aptamer combined with AFB1, which will bring about the functional domains exposed, triggering the subsequent ESDR. Meanwhile, the two strands that were outputted by ESDR would incur the downstream LRCA reaction to produce a pair of long strands to assist in the generation of fluorescence and absorbance signals. Under the optimized conditions, the proposed aptasensor could achieve excellent sensitivity (limit of detection, 0.427 pg/mL) with satisfactory accuracy (recoveries, 92.8-107.9 %; RSD, 2.4-5.0 %), mainly ascribed to the cascade amplification. Importantly, owing to the flexibility design of nucleic acid primer, this analytical method can be applied in monitoring various hazardous substances according to the specific requirements. Our strategy provides some novel insights at signal amplification for rapid detection of AFB1 and other targets.
Collapse
Affiliation(s)
- Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hu Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ruoxi Wu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yanyan Lu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jin Wang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ravikumar A
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tamil Selvan G
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nuanfei Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Ye Z, Ma M, Chen Y, Liu R, Zhang Y, Ma P, Song D. Dual-microRNA-Controlled Electrochemiluminescence Biosensor for Breast Cancer Diagnosis and Supplemental Identification of Breast Cancer Metastasis. Anal Chem 2024; 96:3636-3644. [PMID: 38357821 DOI: 10.1021/acs.analchem.3c05766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Breast cancer remains the most frequently diagnosed cancer globally, and the metastasis of this malignancy is the primary cause of mortality in breast cancer patients. Hence, prompt diagnosis and timely detection of metastatic breast cancer are critical for effective therapeutic intervention. Both progression and metastasis of this malignancy are closely associated with aberrant expression of specific microRNAs (miRNAs) and enzymes. To facilitate breast cancer diagnosis and concomitant identification of metastatic breast cancer, we have engineered an innovative electrochemiluminescence (ECL)-based sensing platform integrated with enzyme-free DNA amplification circuits for dual functionality. Specifically, microRNA-21 (miR-21) is employed as a biomarker for breast cancer, and miR-21 induces the quenching of the ECL signal from luminophores via a strategically designed catalytic three-hairpin assembly (CTHA) circuit. Subsequently, miR-105 levels are measured via toehold-mediated strand displacement reactions (TSDR). Here, miR-105 restores the initially quenched ECL signal, enabling the assessment of the metastatic propensity. Our experimental data demonstrate that the devised ECL biosensor offers broad linear detection ranges and low detection limits for both miR-21 and miR-105. Importantly, our novel platform was also successfully validated by using cellular and serum samples. This biosensor not only discriminates breast cancer cell lines MCF-7 and MDA-MB-231 from nonbreast cancer cells like HepG2, TPC-1, and HeLa, but it also distinguishes between malignant MCF-7 and metastatic MDA-MB-231 cells. Consequently, our novel approach holds significant promise for clinical applications and precise cancer screening.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ruiyan Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
9
|
Hu Z, Wang H, Chen H, Fan GC, Luo X. Target-triggered cascade signal amplification in nanochannels: An ingenious strategy for ultrasensitive photoelectrochemical DNA bioanalysis. Biosens Bioelectron 2023; 242:115724. [PMID: 37801836 DOI: 10.1016/j.bios.2023.115724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Artificial solid-state nanochannels have aroused intense interests in biosensors and bioelectronics because of their special architectures. Herein, we pioneered an ingenious approach of target-triggered cascade signal amplification in porous anodic aluminum oxide (AAO) nanochannels for ultrasensitive photoelectrochemical (PEC) DNA bioanalysis. In the design, AAO nanochannels were modified initially with capture DNA (cDNA) and then incorporated with a photoelectrode, yielding the desired architecture of highly ordered nanoarrays on top of the signal transducer. For target DNA (tDNA) probing, exonuclease III (Exo-III) mediated target recycling (ETR) was first activated to generate plenty of output DNA (oDNA) fragments. After oDNA and the conjugate of Au-labeled probe DNA (Au-pDNA) were anchored within the nanochannels via DNA hybridization, in-situ synthesis of Ag shells on tethered Au nanoparticles was conducted. The resulting large-sized Au@Ag core-shell nanostructure within the nanochannels would cause conspicuous blocking effect to hinder the transportation of electrons accessing the photoelectrode. Since the signal inhibition was directly related to tDNA concentration, an innovative nanochannels PEC DNA assay was exploited and qualified for ultrasensitive detection. The anti-interference ability of this platform was also emphasized by the split AAO membrane for biological incubation without participation of the photoelectrode. This featured nanochannels PEC strategy with cascade amplification launched a novel detecting platform for trace levels of DNA, and it could spark more inspiration for a follow-up exploration of other smart nanochannels PEC bioassays.
Collapse
Affiliation(s)
- Ze Hu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hao Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huimin Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
10
|
Cheng L, He Y, Yang Y, Su C, He H, You M, Chen J, Lin Z, Hong G. Highly specific and sensitive sandwich-type electrochemiluminescence biosensor for HPV16 DNA detection based on the base-stacking effect and bovine serum albumin carrier platform. Biosens Bioelectron 2023; 241:115706. [PMID: 37757512 DOI: 10.1016/j.bios.2023.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The detection of specific DNA sequences and the identification of single nucleotide polymorphisms are important for disease diagnosis. Herein, by combining the high specificity of the base-stacking effect with the high reproducibility of bovine serum albumin (BSA) modified electrodes and the high loading performance of DNA nanoclews (DNA NCs), a novel sandwich-type electrochemiluminescence (ECL) biosensor is reported for the highly specific detection of HPV16 (chosen as the model target). The capture probes are loaded by BSA carrier platforms modified on the gold electrode surface to improve reproducibility. DNA NCs loaded with a large amount of Ru(phen)32+ worked as signal probes. The template probe is composed of the complementary strand of the target and two free nucleic acid anchors at the head and tail. In the presence of the target DNA, the template probes can form stacked base pairs with target, generating high base-stacking energy. This results in the shorter free anchors of template probes being able to bind to the capture and signal probes. This eventually forms a sandwich structure that allows Ru(phen)32+ to be near the electrode surface, producing an ECL signal. There is a linear relationship between the signal and the target concentration range from 10 fM to 100 pM, with a detection limit of 5.03 fM (S/N=3). Moreover, the base-stacking effect has single base recognition ability for base pairs, effectively avoiding false positive signals. The results of this strategy for clinical samples are consistent with classical methods.
Collapse
Affiliation(s)
- Lingjun Cheng
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinghao He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Canping Su
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hongzhang He
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Mingming You
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiaming Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China.
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
11
|
Chen YL, Sun X, He JW, Xin MK, Liu D, Li CY. Light-Driven and Metal-Organic Framework Synergetic Loaded DNA Tetrahedral Amplifier for Exonuclease III-Powered All-in-One Biosensing and Chemotherapy in Live Biosystems. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410886 DOI: 10.1021/acsami.3c06626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
As a result of inaccurate biosensing and difficult synergetic loading, it is challenging to further impel DNA amplifiers to perform therapeutic application. Herein, we introduce some innovative solutions. First, a smart light-driven biosensing concept based on embedding nucleic acid modules with a simple photocleavage-linker is proposed. In this system, the target identification component is exposed on irradiation with ultraviolet light, thus avoiding an always-on biosensing response during biological delivery. Further, in addition to providing controlled spatiotemporal behavior and precise biosensing information, a metal-organic framework is used for the synergetic loading of doxorubicin in the internal pores, whereafter a rigid DNA tetrahedron-sustained exonuclease III-powered biosensing system is attached to prevent drug leakage and enhance resistance to enzymatic degradation. By selecting a next-generation breast cancer correlative noncoding microRNA biomarker (miRNA-21) as a model low-abundance analyte, a highly sensitive in vitro detection ability even allowing to distinguish single-base mismatching is demonstrated. Moreover, the all-in-one DNA amplifier shows excellent bioimaging competence and good chemotherapy efficacy in live biosystems. These findings will drive research into the use of DNA amplifiers in diagnosis and therapy integrated fields.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
12
|
Gulinaizhaer A, Zou M, Ma S, Yao Y, Fan X, Wu G. Isothermal nucleic acid amplification technology in HIV detection. Analyst 2023; 148:1189-1208. [PMID: 36825492 DOI: 10.1039/d2an01813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nucleic acid testing for HIV plays an important role in the early diagnosis and monitoring of antiretroviral therapy outcomes in HIV patients and HIV-infected infants. Currently, the main molecular diagnostic methods employed are complex, time-consuming, and expensive to operate in resource-limited areas. Isothermal nucleic acid amplification technology overcomes some of the shortcomings of traditional assays and makes it possible to use point-of-care tests for molecular HIV detection. Here, we summarize and discuss the latest technological advances in isothermal nucleic acid amplification for HIV detection, with the intent of providing guidance for the development of subsequent HIV assays with high sensitivity and specificity.
Collapse
Affiliation(s)
- Abudushalamu Gulinaizhaer
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Mingyuan Zou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China.,Department of Laboratory Medicine, Medical School of Southeast University, Nanjing 210009, Jiangsu, China. .,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
13
|
Li H, Pu J, Wang S, Yu R. Fluorescence biosensing of the leukemia gene by combining Target-Programmed controllable signal inspiring engineering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121579. [PMID: 35803107 DOI: 10.1016/j.saa.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Clinical diagnosis urgently requires ultrasensitive, accurate and rapid monitoring of low-abundance biomarkers. A biosensing strategy capable of detecting target genes at the femtomolar scale was designed in this work. In the biosensing strategy, the target can induce the specially designed hairpin probe H1 to self-fold and form a 3' blunt-ended structure. When there are the hybrid double-stranded P1-T1, ligase, polymerase and nickase, the target gene was recycled, and at the same time the system produces a lot of T1 and T2. T1 and T2 can simultaneously trigger HCR, causing the modified fluorophore FAM on the DNA strand to move away from the quencher group BHQ. The amplified fluorescent signal can be captured by a fluorescence instrument. It is exciting for us that three signal amplifications are involved to achieve femtomolar detection of target genes, namely target recycling, dual-triggered HCR of T1 and T2, and HCR. In addition, it still has good detection ability in actual samples simulated by serum. We expect that the sensing strategy proposed in this paper offers great potential for biomarker detection of leukemia for early clinical diagnosis.
Collapse
Affiliation(s)
- Hongbo Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China; College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Jiamei Pu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
14
|
Strategies for Enhancing the Sensitivity of Electrochemiluminescence Biosensors. BIOSENSORS 2022; 12:bios12090750. [PMID: 36140135 PMCID: PMC9496703 DOI: 10.3390/bios12090750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Electrochemiluminescence (ECL) has received considerable attention as a powerful analytical technique for the sensitive and accurate detection of biological analytes owing to its high sensitivity and selectivity and wide dynamic range. To satisfy the growing demand for ultrasensitive analysis techniques with high efficiency and accuracy in complex real sample matrices, considerable efforts have been dedicated to developing ECL strategies to improve the sensitivity of bioanalysis. As one of the most effective approaches, diverse signal amplification strategies have been integrated with ECL biosensors to achieve desirable analytical performance. This review summarizes the recent advances in ECL biosensing based on various signal amplification strategies, including DNA-assisted amplification strategies, efficient ECL luminophores, surface-enhanced electrochemiluminescence, and ratiometric strategies. Sensitivity-enhancing strategies and bio-related applications are discussed in detail. Moreover, the future trends and challenges of ECL biosensors are discussed.
Collapse
|
15
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
16
|
Liu WW, Zhang XL, Zhu L, Xu S, Chai YQ, Li ZH, Yuan R. Mismatch-fueled catalytic hairpin assembly mediated ultrasensitive biosensor for rapid detection of MicroRNA. Anal Chim Acta 2022; 1204:339663. [PMID: 35397899 DOI: 10.1016/j.aca.2022.339663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022]
Abstract
Herein, a mismatch-fueled catalytic hairpin assembly (MCHA) was rationally engineered, which possessed higher amplification efficiency and faster rate than catalytic hairpin assembly (CHA). Once input target microRNA-21(miRNA-21) triggers the MCHA, the hairpin DNA H1 will be opened to form the duplex H1-miRNA-21, then the mismatched hairpin DNA H2 could easily hybridize with H1-miRNA-21 to generate duplex H1-H2 and the miRNA-21 could be released to enter next cycle, thus generating amounts of output products. Impressively, the MCHA realizes a pretty shorter complete reaction time of 40 min and quite higher amplification efficiency of 9.56 × 106, which dramatically transcended the barrier: low amplification times and long reaction time in traditional CHA. As a proof of the concept, the elaborated MCHA as a hyper-efficiency and high-speed DNA signal-magnifier was successfully applied in ultrasensitive and rapid detection of miRNA-21 with the detection limit of 0.17 fM, which exploited an ingenious nucleic acid signal amplification technique for sensitive and fast detection of biomarkers in biosensing assay and clinic diagnose.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Sai Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhao-Hui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing Southwest University, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
Wang Y, Sun W, Wang J, Wang X, Xu Y, Guo Y, Wang Y, Zhang M, Jiang L, Liu S, Huang J. Ultrasensitive Uracil-DNA Glycosylase Activity Assay and Its Inhibitor Screening Based on Primer Remodeling Jointly via Repair Enzyme and Polymerase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3868-3875. [PMID: 35298179 DOI: 10.1021/acs.langmuir.2c00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of isothermal nucleic acid amplification techniques has great significance for highly sensitive biosensing in modern biology and biomedicine. A facile and robust exponential rolling circle amplification (RCA) strategy is proposed based on primer-remodeling amplification jointly via a repair enzyme and polymerase, and uracil-DNA glycosylase (UDG) is selected as a model analyte. Two kinds of complexes, complex I and complex II, are preprepared by hybridizing a circular template (CT) with a uracil-containing hairpin probe and tetrahydrofuran abasic site mimic (AP site)-embedded fluorescence-quenched probe (AFP), respectively. The target UDG specifically binds to complex I, resulting in the generation of an AP site, followed by cleavage via endonuclease IV (Endo IV) and the successive trimming of unmatched 3' terminus via phi29 DNA polymerase, thus producing a useable primer-CT complex that actuates the primary RCA. Then, numerous complex II anneal with the first-generation RCA product (RP), generating a complex II-RP assembly containing AP sites within the DNA duplex. With the aid of Endo IV and phi29, AFP, as a pre-primer in complex II, is converted into a mature primer to initiate additional rounds of RCA. So, countless AFPs are cleaved, releasing remarkably strong fluorescent signals. The biosensor is demonstrated to enable rapid and accurate detection of the UDG activity with an improved detection limit as low as 4.7 × 10-5 U·mL-1. Moreover, this biosensor is successfully applied for UDG inhibitor screening and complicated biological samples analysis. Compared to the previous exponential RCA methods, our proposed strategy offers additional advantages, including excellent stability, optional design of CT, and simplified operating steps. Therefore, this proposed strategy may create a useful and practical platform for ultrasensitive detection of low levels of analytes in clinical diagnosis and fundamental biomedicine research.
Collapse
Affiliation(s)
- Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Wenyu Sun
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Jingfeng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xu Wang
- Shandong Institute of Metrology and Science, Jinan 250014, P. R. China
| | - Yicheng Xu
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yuanzhen Guo
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Yeru Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Manru Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Long Jiang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
18
|
Zhao J, Chen CX, Zhu JW, Zong HL, Hu YH, Wang YZ. Ultrasensitive and Visual Electrochemiluminescence Ratiometry Based on a Constant Resistor-Integrated Bipolar Electrode for MicroRNA Detection. Anal Chem 2022; 94:4303-4310. [PMID: 35230810 DOI: 10.1021/acs.analchem.1c04971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, a new electrochemiluminescence (ECL) platform was constructed for detecting the prostate cancer marker microRNA-141 (miRNA-141) on a constant resistor-integrated closed bipolar electrode (BPE). It consisted of two reservoirs and a constant resistor, and both ends were connected to the anode of the driving electrode and the cathode of BPE. The cathode of BPE was modified with boron nitride quantum dots (BNQDs), and the anode reservoir was the [Ru(bpy)3](PF6)2/TPrA system. After introducing a certain amount of hairpin DNA 3 (H3) and ferrocene-labeled single-stranded DNA (Fc-ssDNA) on the surface of the BNQDs, the ECL emission signal of the BNQDs was difficult to be observed by the naked eye, while [Ru(bpy)3](PF6)2 emitted a strong and visible ECL signal. In the presence of the target, bipedal DNA assembled by catalytic hairpin assembly (CHA) took away the Fc-ssDNA and the ECL intensity of the BNQDs was enlarged, and as the concentration of miRNA-141 increased to the cutoff value, yellow-green light was visible by the naked eye. Meanwhile, the red emission signal of [Ru(bpy)3](PF6)2/TPrA became weakened. Thus, an ultrasensitive "color switch" ECL biosensor for detection of miRNA-141 was constructed and endowed with a wide linear range from 10-17 to 10-7 M and a detection limit of 10-17 M (S/N = 3). This study provides the potential for investigating portable devices in the detection of low-concentration nucleic acids.
Collapse
Affiliation(s)
- Jie Zhao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Chuan-Xiang Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Jia-Wan Zhu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Hui-Long Zong
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yong-Hong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yin-Zhu Wang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
19
|
Liu S, Huo Y, Fan L, Ning B, Sun T, Gao Z. Rapid and ultrasensitive detection of DNA and microRNA-21 using a zirconium porphyrin metal-organic framework-based switch fluorescence biosensor. Anal Chim Acta 2022; 1192:339340. [PMID: 35057960 DOI: 10.1016/j.aca.2021.339340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023]
Abstract
Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
20
|
Zhao X, Yuan Y, Liu X, Mao F, Xu G, Liu Q. A Versatile Platform for Sensitive and Label-Free Identification of Biomarkers through an Exo-III-Assisted Cascade Signal Amplification Strategy. Anal Chem 2022; 94:2298-2304. [PMID: 35040308 DOI: 10.1021/acs.analchem.1c05012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of a versatile and sensitive analytical biomarker detection platform is important for both early diagnosis and treatment of diseases. In the present study, we propose a novel fluorescence-based, ultrasensitive, and label-free biomarker detection platform. This platform relies on a flexible probe design compatible for multiple biomarker identification and Exo-III enzyme-triggered cascade signal amplification. We have validated that this label-free platform exhibits high sensitivity and specificity. Indeed, this platform exhibited brilliant analytical performance in qualifying a carcinoembryonic antigen and small extracellular vesicles (sEVs). It also shows excellent capability in multiplexing mapping of surface proteins of various cancer-derived sEVs. Therefore, we believe that the proposed sensing platform has great potential for clinical diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- Xianxian Zhao
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ye Yuan
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Xiaoya Liu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fajiang Mao
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ge Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|