1
|
Huang C, Yang J, Chen S, Han SI, Zhang H, Samuel J, Van Schaik E, de Figueiredo P, Han A. μREACT: A microfluidic system for rapid evaluation of trans-kingdom interactions. Biosens Bioelectron 2025; 267:116838. [PMID: 39393191 DOI: 10.1016/j.bios.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Trans-kingdom interactions between cells play pivotal roles in shaping intricate ecological and biological networks. However, our grasp of these interactions remains incomplete. Specifically, the vast phylogenetic spectrum of microorganisms capable of interacting with a given host cell type remains obscure, primarily due to the absence of efficient, high-throughput, single-cell resolution systems that can rapidly decipher these interactions. Here, we introduce μREACT (Microfluidic system for Rapid Evaluation of bacterial Adherence and Communication in Trans-kingdom interactions), a microfluidic system designed to analyze interkingdom interactions. μREACT not only unveiled both recognized and previously unknown interactions but also enabled their detailed characterization. The system features the use of microfluidic dielectrophoretic separation of bacteria that adhere to host cells at single-cell (digital) resolution, and enabled the sorting of 107 adherent microorganisms per hour, representing a comparable throughput to conventional flow cytometry systems, but without requiring any labeling. The analysis of soil microbial samples using μREACT revealed several bacterial species previously known to have high adherence to mammalian host cells, as well as new interactions involving strains that displayed hallmarks of emerging endosymbiosis. Taken together, μREACT serves as a formidable tool for identifying and characterizing webs of interkingdom interactions. Its implications extend beyond discovery of such interactions, where it has the potential to provide new insights into fundamental mechanisms driving ecosystem dynamics and biological processes.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Shaorong Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Erin Van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Paul de Figueiredo
- Department of Molecular Microbiology and Immunology, The University of Missouri School of Medicine, Columbia, MO, 65211, USA; Christopher S Bond Life Sciences Center, The University of Missouri, Columbia, MO, 65211, USA; Department of Veterinary Pathobiology, The University of Missouri, Columbia, MO, 65211, USA; Department of Chemical and Biomedical Engineering, The University of Missouri, Columbia, MO, 65211, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Chen H, Dong T, Duan X, Song C. On-Demand Coalescence of Ferromagnetic Droplets in Microchannels Using an Oscillating Magnetic Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21898-21905. [PMID: 39361332 DOI: 10.1021/acs.langmuir.4c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Droplet-based microfluidics exhibit remarkable potential in achieving high-throughput chemical reactions with minimal reagent consumption. However, a pivotal challenge lies in the selective coalescence of droplets for precise process control, particularly when dealing with droplets of varying amounts and volumes, which are difficult to trap and coalesce due to their tiny dimensions and incessant movement. Hence, we proposed a method for on-demand coalescence of ferromagnetic droplets using an oscillating magnetic field. Experimental results show that the ferromagnetic droplets can be trapped in different positions in the microchannels according to the applied magnetic field intensity. A high-intensity pulsed amplitude of the magnetic field enables the migration of trapped droplets toward the same position, facilitating their mutual contact and interaction. By programmable modulation of the oscillating magnetic field, a controllable reciprocation of droplets in microchannels was successfully realized, which enabled us to dynamically capture, coalesce, and release two or more (≥3) droplets on demand. The integrated ferromagnetic droplet-based microfluidic platform allows contact-free, easily monitored, and on-demand coalescence of ferromagnetic droplets in microchannels, which holds promise for a wide range of applications, such as microfluidic-based drug synthesis, biosensing, reaction kinetics, and paracrine signaling, particularly.
Collapse
Affiliation(s)
- Hao Chen
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Tianshu Dong
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Xiudong Duan
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Shen X, Ke X, Li T, Sun C, Duan X. Generation, control, and application of stable bubbles in a hypersonic acoustic system. LAB ON A CHIP 2024; 24:4450-4460. [PMID: 39206785 DOI: 10.1039/d4lc00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bubble-based microfluidics has been applied in many fields. However, there remains a need for a facile and flexible method for stable bubble generation and control in a microchannel. This paper reports a hypersonic acoustic system that can generate and release functional stable bubbles in a microchannel in an on-demand manner. It was found that the hypersonic frequency in this system played a vital role in the generation and control of bubbles. Specifically, a nanostructurally enhanced acoustic resonator was used to generate highly localized ultrahigh-frequency acoustic waves that ensured the feasibility and rapidity of bubble generation. Simultaneously, the acoustothermal effect of hypersound was harnessed to effectuate precise control over the bubble size. In addition, high-throughput droplet splitting was performed to confirm the stability of bubbles and their functionality in micromanipulation. The results showed that a mother droplet could be split controllably into a desired number of daughter droplets with specific volume ratios. In summary, the hypersonic acoustic system was demonstrated to be capable of on-demand-generation of stable bubbles in a microfluidic context and thus may extend the bubble-based applications.
Collapse
Affiliation(s)
- Xiaotian Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xianwu Ke
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Zhao L, Jiang Z, Wang J, Wang X, Zhang Z, Hu H, Qi X, Zeng H, Song Y. Micro-flow cell washing technique combined with single-cell Raman spectroscopy for rapid and automatic antimicrobial susceptibility test of pathogen in urine. Talanta 2024; 277:126354. [PMID: 38850804 DOI: 10.1016/j.talanta.2024.126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Facing the rapid spread of antimicrobial resistance, methods based on single-cell Raman spectroscopy have proven their advances in reducing the turn-around time (TAT) of antimicrobial susceptibility tests (AST). However, the Raman-based methods are still hindered by the prolonged centrifugal cell washing procedure, which may require complex labor operation and induce high mechanical stress, resulting in a pretreatment time of over 1 h as well as a high cell-loss probability. In this study, we developed a micro-flow cell washing device and corresponding Raman-compatible washing chips, which were able to automatically remove the impurities in the samples, retain the bacterial cell and perform Raman spectra acquisition in situ. Results of washing the 5- and 10-μm polymethyl methacrylate (PMMA) microspheres showed that the novel technique achieved a successful removal of 99 % impurity and an 80 % particle retention rate after 6 to 10 cycles of washing. The micro-flow cell washing technique could complete the pretreatment for urine samples in a 96-well plate within 10 min, only taking 15 % of the handling time required by centrifugation. The AST profiles of urine sample spiked with E. coli 25922, E. faecalis 29212, and S. aureus 29213 obtained by the proposed Raman-based approach were found to be 100 % consistent with the results from broth micro-dilution while reducing the TAT to 3 h from several days which is required by the latter. Our study has demonstrated the micro-flow cell washing technique is a reliable, fast and compatible approach to replace centrifuge washing for sample pretreatment of Raman-AST and could be readily applied in clinical scenarios.
Collapse
Affiliation(s)
- Luoqi Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Zheng Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Xinyue Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Zhiqiang Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Huijie Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Xiangdong Qi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Huan Zeng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Yizhi Song
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China.
| |
Collapse
|
5
|
Ahmadi F, Tran H, Letourneau N, Little SR, Fortin A, Moraitis AN, Shih SCC. An Automated Single-Cell Droplet-Digital Microfluidic Platform for Monoclonal Antibody Discovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308950. [PMID: 38441226 DOI: 10.1002/smll.202308950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Indexed: 06/27/2024]
Abstract
Monoclonal antibody (mAb) discovery plays a prominent role in diagnostic and therapeutic applications. Droplet microfluidics has become a standard technology for high-throughput screening of antibody-producing cells due to high droplet single-cell confinement frequency and rapid analysis and sorting of the cells of interest with their secreted mAbs. In this work, a new method is described for on-demand co-encapsulation of cells that eliminates the difficulties associated with washing in between consecutive steps inside the droplets and enables the washing and addition of fresh media. The new platform identifies hybridoma cells that are expressing antibodies of interest using antibody-characterization assays to find the best-performing or rare-cell antibody candidates.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Hao Tran
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
| | - Natasha Letourneau
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Samuel R Little
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Annie Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Anna N Moraitis
- Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
6
|
Bae SJ, Lee SJ, Im DJ. Simultaneous Separating, Splitting, Collecting, and Dispensing by Droplet Pinch-Off for Droplet Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309062. [PMID: 38009759 DOI: 10.1002/smll.202309062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Simultaneous separating, splitting, collecting, and dispensing a cell suspension droplet has been demonstrated by aspiration and subsequent droplet pinch-off for use in microfluidic droplet cell culture systems. This method is applied to cell manipulations including aliquots and concentrations of microalgal and mammalian cell suspensions. Especially, medium exchange of spheroid droplets is successfully demonstrated by collecting more than 99% of all culture medium without damaging the spheroids, demonstrating its potential for a 3D cell culture system. Through dimensional analysis and systematic parametric studies, it is found that initial mother droplet size together with aspiration flow rate determines three droplet pinch-off regimes. By observing contact angle changes during aspiration, the difference in the large and the small droplet pinch-off can be quantitatively explained using force balance. It is found that the capillary number plays a significant role in droplet pinch-off, but the Bond number and the Ohnesorge number have minor effects. Since the dispensed droplet size is mainly determined by the capillary number, the dispensed droplet size can be controlled simply by adjusting the aspiration flow rate. It is hoped that this method can contribute to various fields using droplets, such as droplet cell culture and digital microfluidics, beyond the generation of small droplets.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Seon Jun Lee
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, Yongso-ro, Nam-Gu, Busan, (48513) 45, Korea
| |
Collapse
|
7
|
Hoshino M, Ota Y, Suyama T, Morishita Y, Tsuneda S, Noda N. Water-in-oil droplet-mediated method for detecting and isolating infectious bacteriophage particles via fluorescent staining. Front Microbiol 2023; 14:1282372. [PMID: 38125569 PMCID: PMC10731258 DOI: 10.3389/fmicb.2023.1282372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Bacteriophages are the most abundant entities on Earth. In contrast with the number of phages considered to be in existence, current phage isolation and screening methods lack throughput. Droplet microfluidic technology has been established as a platform for high-throughput screening of biological and biochemical components. In this study, we developed a proof-of-concept method for isolating phages using water-in-oil droplets (droplets) as individual chambers for phage propagation and co-cultivating T2 phage and their host cell Escherichia coli within droplets. Liquid cultivation of microbes will facilitate the use of microbes that cannot grow on or degrade agar as host cells, ultimately resulting in the acquisition of phages that infect less known bacterial cells. The compartmentalizing characteristic of droplets and the use of a fluorescent dye to stain phages simultaneously enabled the enumeration and isolation of viable phage particles. We successfully recultivated the phages after simultaneously segregating single phage particles into droplets and inoculating them with their host cells within droplets. By recovering individual droplets into 96-well plates, we were able to isolate phage clones derived from single phage particles. The success rate for phage recovery was 35.7%. This study lays the building foundations for techniques yet to be developed that will involve the isolation and rupturing of droplets and provides a robust method for phage enumeration and isolation.
Collapse
Affiliation(s)
- Miu Hoshino
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuri Ota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- On-chip Biotechnologies Co., Ltd., Tokyo, Japan
| | - Tetsushi Suyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | | | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Naohiro Noda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
8
|
Huang C, Han SI, Zhang H, Han A. Tutorial on Lateral Dielectrophoretic Manipulations in Microfluidic Systems. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:21-32. [PMID: 37015136 PMCID: PMC10091972 DOI: 10.1109/tbcas.2022.3226675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microfluidic lab-on-a-chip systems can offer cost- and time-efficient biological assays by providing high-throughput analysis at very small volume scale. Among these extremely broad ranges of assays, accurate and specific cell and reagent control is considered one of the most important functions. Dielectrophoretic (DEP)-based manipulation technologies have been extensively developed for these purposes due to their label-free and high selectivity natures as well as due to their simple microstructures. Here, we provide a tutorial on how to develop DEP-based microfluidic systems, including a detailed walkthrough of dielectrophoresis theory, instruction on how to conduct simulation and calculation of electric field and generated DEP force, followed with guidance on microfabricating two forms of DEP microfluidic systems, namely lateral DEP and droplet DEP, and how best to conduct experiments in such systems. Finally, we summarize most recent DEP-based microfluidic technologies and applications, including systems for blood diagnoses, pathogenicity studies, in-droplet content manipulations, droplet manipulations and merging, to name a few. We conclude by suggesting possible future directions on how DEP-based technologies can be utilized to overcome current challenges and improve the current status in microfluidic lab-on-a-chip systems.
Collapse
|
9
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Zhou J, Tao Y, Xue R, Ren Y. A Self-Powered Dielectrophoretic Microparticle Manipulation Platform Based on a Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207093. [PMID: 36222389 DOI: 10.1002/adma.202207093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Lab-on-a-chip systems aim to integrate laboratory operations on a miniaturized device with broad application prospects in the field of point-of-care testing. However, bulky peripheral power resources, such as high-voltage supplies, function generators, and amplifiers, hamper the commercialization of the system. In this work, a portable, self-powered microparticle manipulation platform based on triboelectrically driven dielectrophoresis (DEP) is reported. A rotary freestanding triboelectric nanogenerator (RF-TENG) and rectifier/filter circuit supply a high-voltage direct-current signal to form a non-uniform electric field within the microchannel, realizing controllable actuation of the microparticles through DEP. The operating mechanism of this platform and the control performance of the moving particles are systematically studied and analyzed. Randomly distributed particles converge in a row after passing through the serpentine channel and various particles are separated owing to the different DEP forces. Ultimately, the high-efficiency separation of live and dead yeast cells is achieved using this platform. RF-TENG as the power source for lab-on-a-chip exhibits better safety and portability than traditional high-voltage power sources. This study presents a promising solution for the commercialization of lab-on-a-chip.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
11
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
12
|
Fang Y, Zhu S, Cheng W, Ni Z, Xiang N. Efficient bioparticle extraction using a miniaturized inertial microfluidic centrifuge. LAB ON A CHIP 2022; 22:3545-3554. [PMID: 35989675 DOI: 10.1039/d2lc00496h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional bioparticle extraction requires labor-intensive operation, and expensive and bulky centrifuges. Herein, we report a miniaturized centrifuge by cascading four paralleled inertial spiral channels with a two-stage serpentine channel, allowing for the efficient washing and acquisition of concentrated bioparticles from background fluids. First, the effects of channel size and flow rate on particle focusing dynamics and solution exchange performances are explored to enable the optimization and wide application of our device. Then, the integrated device is fabricated and tested experimentally. The results indicate that 10-20 μm particles can be washed from the original samples with increased concentrations and with recovery efficiencies of >93%. Finally, to verify its versatility, we use our miniaturized centrifuge to successfully change the culture medium for cultured MCF-7 breast cancer cells, extract A549 lung cancer cells from a calcein-AM staining solution, purify white blood cells (WBCs) from lysed whole blood, and extract target cells from an unbonded magnetic microbead background. Compared with conventional centrifuges, our device has the advantages of simple fabrication, easy operation, and small footprint. More importantly, it offers outstanding capability for extracting bioparticles from various background fluids, and avoids bioparticle damage that may be caused by high-speed centrifugation. Therefore, we envision that our miniaturized centrifuge could be a promising alternative to traditional centrifuges in many applications.
Collapse
Affiliation(s)
- Yaohui Fang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
13
|
Zhang H, Huang C, Li Y, Gupte R, Samuel R, Dai J, Guzman A, Sabnis R, de Figueiredo P, Han A. FIDELITY: A quality control system for droplet microfluidics. SCIENCE ADVANCES 2022; 8:eabc9108. [PMID: 35857442 PMCID: PMC9269891 DOI: 10.1126/sciadv.abc9108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Droplet microfluidic systems have been widely deployed to interrogate biological and chemical systems. The major limitations of these systems are the relatively high error rates from critical droplet manipulation functions. To address these limitations, we describe the development of FIDELITY (Flotation and Interdigitated electrode forces on Droplets to Enable Lasting system IntegriTY), a highly sensitive and accurate size-based droplet bandpass filter that leverages the natural buoyancy of aqueous droplets and highly localized dielectrophoretic force generated by interdigitated electrode arrays. Droplet manipulation accuracies greater than 99% were achieved at a throughput of up to 100 droplets/s and separation of droplets that differed in diameter by only 6 μm was demonstrated. Last, the utility of FIDELITY was demonstrated in a droplet size quality control application and also in a droplet-based in vitro transcription/translation workflow. We anticipate FIDELITY to be integrated into a broad range of droplet microfluidic configurations to achieve exceptional operational accuracy.
Collapse
Affiliation(s)
- Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rohit Gupte
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ryan Samuel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Adrian Guzman
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rushant Sabnis
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Corresponding author.
| |
Collapse
|
14
|
Li Y, Huang C, Han SI, Han A. Measurement of dielectric properties of cells at single-cell resolution using electrorotation. Biomed Microdevices 2022; 24:23. [PMID: 35771277 DOI: 10.1007/s10544-022-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Dielectric properties of a cell are biophysical properties of high interest for various applications. However, measuring these properties accurately is not easy, which can be exemplified by the large variations in reported dielectric properties of the same cell types. This paper presents a method for measuring the dielectric properties of cells at high frequency, especially lipid-producing microalgae, at single-cell resolution, by integrating an electrorotation-based dielectric property measurement method with a negative dielectrophoretic (nDEP) force-based single-cell trapping method into a single device. In this method, a four-electrode nDEP structure was used to trap a single cell in an elevated position in the center of another four-electrode structure that can apply electrorotational force. By measuring the speed of cell rotation under different applied electrorotation frequencies and fitting the results into a theoretical core-shell cell model, the dielectric properties of cells, including membrane capacitance and cytoplasm conductivity, could be obtained. This system was applied to measure the dielectric properties of lipid-accumulating microalga Chlamydomonas reinhardtii strain Sta6 by applying an electrorotation signal of up to 100 MHz. By utilizing a broad frequency range and expanding the measurement spectra to a high frequency region, increased accuracy in fitting the dielectric parameters to a theoretical model was possible, especially the cytoplasm conductivity. The developed method can be used in various applications, such as screening microalgae based on their lipid production capabilities, separating cells of different dielectric properties, identifying different cell types, as well as conducting basic biophysical analyses of cellular properties.
Collapse
Affiliation(s)
- Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Lu X, Ai Y. Automatic Microfluidic Cell Wash Platform for Purifying Cells in Suspension: Puriogen. Anal Chem 2022; 94:9424-9433. [PMID: 35658406 DOI: 10.1021/acs.analchem.2c01616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell wash is an essential cell sample preparation procedure to eliminate or minimize interfering substances for various subsequent cell analyses. The commonly used cell wash method is centrifugation which separates cells from other biomolecules in a solution with manual pipetting and has many drawbacks such as being labor-intensive and time-consuming with substantial cell loss and cell clumping. To overcome these issues, a centrifuge-free and automatic cell wash platform for cell purity generation, termed Puriogen, has been developed in this work. Compared with other developed products such as AcouWash, Puriogen can process samples with a high throughput of above 500 μL/min. Puriogen utilizes a uniquely designed inertial microfluidic device to complete the automatic cell wash procedure. One single-cell wash procedure with the Puriogen platform can remove more than 90% ambient proteins and nucleic acids from the cell sample. It can also remove most of the residual fluorescent dye after cell staining to significantly reduce the background signals for subsequent cell analysis. By removing the dead cell debris, it can increase the live cell percentage in the sample by 2-fold. Moreover, the percentage of single-cell population is also increased by 20% because of further disassociation of small-cell aggregates (e.g., doublets and triplets) into singlets. To freely adjust cell concentrations, the Puriogen platform can concentrate cells 5 times in a single flow-through process. The presented Puriogen cell wash solution has broad applications in cell preparation with its excellent simplicity in operation and wash efficiency, especially in single-cell sequencing.
Collapse
Affiliation(s)
- Xiaoguang Lu
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
16
|
Siedlik MJ, Issadore D. Pico-washing: simultaneous liquid addition and removal for continuous-flow washing of microdroplets. MICROSYSTEMS & NANOENGINEERING 2022; 8:46. [PMID: 35498338 PMCID: PMC9050730 DOI: 10.1038/s41378-022-00381-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 05/19/2023]
Abstract
Droplet microfluidics is based on a toolbox of several established unit operations, including droplet generation, incubation, mixing, pico-injection, and sorting. In the last two decades, the development of droplet microfluidic systems, which incorporate these multiple unit operations into a workflow, has demonstrated unique capabilities in fields ranging from single-cell transcriptomic analyses to materials optimization. One unit operation that is sorely underdeveloped in droplet microfluidics is washing, exchange of the fluid in a droplet with a different fluid. Here, we demonstrate what we name the "pico-washer," a unit operation capable of simultaneously adding fluid to and removing fluid from droplets in flow while requiring only a small footprint on a microfluidic chip. We describe the fabrication strategy, device architecture, and process parameters required for stable operation of this technology, which is capable of operating with kHz droplet throughput. Furthermore, we provide an image processing workflow to characterize the washing process with microsecond and micrometer resolution. Finally, we demonstrate the potential for integrated droplet workflows by arranging two of these unit operations in series with a droplet generator, describe a design rule for stable operation of the pico-washer when integrated into a system, and validate this design rule experimentally. We anticipate that this technology will contribute to continued development of the droplet microfluidics toolbox and the realization of novel droplet-based, multistep biological and chemical assays.
Collapse
Affiliation(s)
- Michael J. Siedlik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| |
Collapse
|
17
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
18
|
Hare PJ, LaGree TJ, Byrd BA, DeMarco AM, Mok WWK. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters. Microorganisms 2021; 9:2277. [PMID: 34835403 PMCID: PMC8620850 DOI: 10.3390/microorganisms9112277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes.
Collapse
Affiliation(s)
- Patricia J. Hare
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Dental Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Angela M. DeMarco
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| |
Collapse
|
19
|
Van Lent J, Breukers J, Ven K, Ampofo L, Horta S, Pollet F, Imbrechts M, Geukens N, Vanhoorelbeke K, Declerck P, Lammertyn J. Miniaturized single-cell technologies for monoclonal antibody discovery. LAB ON A CHIP 2021; 21:3627-3654. [PMID: 34505611 DOI: 10.1039/d1lc00243k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibodies (Abs) are among the most important class of biologicals, showcasing a high therapeutic and diagnostic value. In the global therapeutic Ab market, fully-human monoclonal Abs (FH-mAbs) are flourishing thanks to their low immunogenicity and high specificity. The rapidly emerging field of single-cell technologies has paved the way to efficiently discover mAbs by facilitating a fast screening of the antigen (Ag)-specificity and functionality of Abs expressed by B cells. This review summarizes the principles and challenges of the four key concepts to discover mAbs using these technologies, being confinement of single cells using either droplet microfluidics or microstructure arrays, identification of the cells of interest, retrieval of those cells and single-cell sequence determination required for mAb production. This review reveals the enormous potential for mix-and-matching of the above-mentioned strategies, which is illustrated by the plethora of established, highly integrated devices. Lastly, an outlook is given on the many opportunities and challenges that still lie ahead to fully exploit miniaturized single-cell technologies for mAb discovery.
Collapse
Affiliation(s)
- Julie Van Lent
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Karen Ven
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Louanne Ampofo
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Maya Imbrechts
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk 8500, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Paul Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|