1
|
Zhang J, Li Y, Huang W, Sun G, Ren H, Tang M. An ultrasensitive DNA-enhanced amplification method for detecting cfDNA drug-resistant mutations in non-small cell lung cancer with selective FEN-assisted degradation of dominant somatic fragments. Clin Chem Lab Med 2025; 63:97-109. [PMID: 39089988 DOI: 10.1515/cclm-2024-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5 %) could be easily detected by DNA-enhanced amplification. CONCLUSIONS This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.
Collapse
Affiliation(s)
- Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
2
|
Yang F, Zhang Y, Huang T, Qin Z, Xu S, Weng L, Huang H, Li S, Zhang D. G-quadruplex embedded in semi-CHA reaction combined with invasive reaction for label-free detection of single nucleotide polymorphisms. Talanta 2024; 280:126686. [PMID: 39128314 DOI: 10.1016/j.talanta.2024.126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs). The invasive reaction enabled specific recognition of single-base mutations in DNA sequences as well as preliminary signal cycle amplification. Then, magnetic separation was used to shield the false positive signals. Finally, the G4-SCHA was created for secondary amplification and label-free output of the signal. This dual-signal amplified label-free biosensor has been shown to detect mutant targets as low as 78.54 fM. What's more, this biosensor could distinguish 0.01 % of the mutant targets from a mixed sample containing a large number of wild-type targets. In addition, the detection of real and complex biological samples also verified the practical application value of this biosensor in the field of molecular design breeding. Therefore, this study improves a label-free fluorescent light-emitting element, and then proposes a simple, efficient and universal label-free SNP biosensing strategy, which also provides an important reference for the development of other G4/THT based biosensors.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tuo Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024; 10:6814-6827. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Meng J, Xu Z, Li X, Wang B, Zhang X, Xie Z, Zhang C, Wang H, Zhang Y. Synergistic powering of DNA walker movement by endogenous dual enzymes for constructing dual-mode biosensors. Biosens Bioelectron 2024; 262:116566. [PMID: 39018981 DOI: 10.1016/j.bios.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
To achieve highly sensitive and reliable detection of apurinic/apyrimidinic endonuclease 1 (APE1), a critical cancer diagnostic biomarker, we designed a DNA walker-based dual-mode biosensor, utilizing cellular endogenous dual enzymes (APE 1 and Flap endonuclease 1 (FEN 1)) to collaborate in activating and propelling DNA walker motion on DNA-functionalized Au nanoparticles. Incorporating both fluorescence and electrochemical detection modes, this system leverages signal amplification from DNA walker movement and cascade amplification through tandem hybridization chain reactions (HCR), achieving highly sensitive detection of APE 1. In the fluorescence mode, continuous DNA walker movement, initiated by APE1 and driven by FEN1, generates a robust signal response within a concentration range of 0.01-500 U mL-1, presenting a good linearity in the concentration range of 0.01-10 U mL-1, with a detection limit of 0.01 U mL-1. In the electrochemical detection module, the cascade upstream DNA walker and downstream HCR dual signal amplification strategy further enhances the sensitivity of APE1 detection, extending the linear range to 0.01-50 U mL-1 and reducing the detection limit to 0.002 U mL-1. Rigorous validation demonstrates the biosensor's specificity and anti-interference capability against multiple enzymes. Moreover, it effectively distinguishes cancer cells from normal cell lysates, exhibiting excellent stability and consistency in the dual-modes. Overall, our findings underscore the efficacy of the developed dual-mode biosensor for detecting APE1 in serum and cell lysates samples, indicating its potential for clinical applications in disease diagnosis.
Collapse
Affiliation(s)
- Jinting Meng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zihao Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinhao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Baozheng Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaowei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zikang Xie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chen Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Huang T, Lu Z, Mo P, Liu P, Liu S, Peng J, Li R, Jia N, Li M, Dai Z, Chen J, Chen J. A DNA walker based on hairpin-shaped DNA aligner and fueled by nicking endonuclease for sensitive and rapid miRNA analysis. Anal Chim Acta 2024; 1316:342873. [PMID: 38969432 DOI: 10.1016/j.aca.2024.342873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND DNA walker-based strategies have gained significant attention in nucleic acid analysis. However, they face challenges related to balancing design complexity, sequence dependence, and amplification efficiency. Furthermore, most existing DNA walkers rely on walking and lock probes, requiring optimization of various parameters like DNA probe sequence, walking-to-lock probe ratio, lock probe length, etc. to achieve optimal performance. This optimization process is time-consuming and adds complexity to experiments. To enhance the performance and reliability of DNA walker nanomachines, there is a need for a simpler, highly sensitive, and selective alternative strategy. RESULTS A sensitive and rapid miRNA analysis strategy named hairpin-shaped DNA aligner and nicking endonuclease-fueled DNA walker (HDA-NE DNA walker) was developed. The HDA-NE DNA walker was constructed by modifying hairpin-shaped DNA aligner (HDA) probe and substrate report (SR) probe on the surface of AuNPs. Under normal conditions, HDA and SR remained stable. However, in the presence of miR-373, HDA underwent a conformational transition to an activated structure to continuously cleave the SR probe on the AuNPs with the assistance of Nt.AlwI nicking endonuclease, resulting in sensitive miRNA detection with a detection limit as low as 0.23 pM. Additionally, the proposed HDA-NE DNA walker exhibited high selectivity in distinguishing miRNAs with single base differences and can effectively analyze miR-373 levels in both normal and breast cancer patient serums. SIGNIFICANCE The proposed HDA-NE DNA walker system was activated by a conformational change of HDA probe only in the presence of the target miRNA, eliminating the need for a lock probe and without sequence dependence for SR probe. This strategy demonstrated a rapid reaction rate of only 30 min, minimal background noise, and a high signal-to-noise ratio (S/B) compared to capture/lock-based DNA walker. The method is expected to become a powerful tool and play an important role in disease diagnosis and precision therapy.
Collapse
Affiliation(s)
- Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenbang Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peixian Mo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Piao Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongtian Li
- Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Nuan Jia
- Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhang Y, Xu S, Luo M, Chen J, Wang L, Yang F, Ye J, Liu J, He B, Weng L, Li S, Zhang D. Hairpin-Empowered Invasive Reaction Combined with Catalytic Hairpin Assembly Cascade Amplification for the Specific Detection of Single-Nucleotide Polymorphisms. Anal Chem 2024; 96:10283-10293. [PMID: 38864304 DOI: 10.1021/acs.analchem.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Single-nucleotide polymorphism (SNP) is widely used in the study of disease-related genes and in the genetic study of animal and plant strains. Therefore, SNP detection is crucial for biomedical diagnosis and treatment as well as for molecular design breeding of animals and plants. In this regard, this article describes a novel technique for detecting SNP using flap endonuclease 1 (FEN 1) as a specific recognition element and catalytic hairpin assembly (CHA) cascade reaction as a signal amplification strategy. The mutant target (MT) was hybridized with a biotin-modified upstream probe and hairpin-type downstream probe (DP) to form a specific three-base overlapping structure. Then, FEN 1 was employed for three-base overlapping structure-specific recognition, namely, the precise SNP site identification and the 5' flap of DP dissociation. After dissociation, the hybridized probes were magnetically separated by a streptavidin-biotin complex. Especially, the ability to establish such a hairpin-type DP provided a powerful tool that could be used to hide the cut sequence (CS) and avoid false-positive signals. The cleaved CS initiated the CHA reaction and allowed superior fluorescence signal generation. Owing to the high specificity of FEN 1 for single base recognition, only the MT could be distinguished from the wild-type target and mismatched DNA. Owing to the dual signal amplification, as low as 0.36 fM MT and 1% mutation abundance from the mixtures could be detected, respectively. Furthermore, it could accurately identify SNPs from human cancer cells, as well as soybean leaf genome extracts. This strategy paves the way for the development of more precise and sensitive tools for diagnosing early onset diseases as well as molecular design breeding tools.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ma Luo
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Lanyue Wang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Jichong Liu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Bingxiao He
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Laboratory, Hangzhou 311121, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
| |
Collapse
|
7
|
Jiang M, Zhou J, Chai Y, Yuan R. Ultrahigh-Speed 3D DNA Walker with Dual Self-Protected DNAzymes for Ultrasensitive Fluorescence Detection and Intracellular Imaging of microRNA. Anal Chem 2024; 96:9866-9875. [PMID: 38835317 DOI: 10.1021/acs.analchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.
Collapse
Affiliation(s)
- Mengshi Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
8
|
Yao S, Liu Y, Ding Y, Shi X, Li H, Zhao C, Wang J. Three-dimensional DNA nanomachine biosensor coupled with CRISPR Cas12a cascade amplification for ultrasensitive detection of carcinoembryonic antigen. J Nanobiotechnology 2024; 22:266. [PMID: 38762451 PMCID: PMC11102226 DOI: 10.1186/s12951-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
The detection of carcinoembryonic antigen (CEA) holds significant importance in the early diagnosis of cancer. However, current methods are hindered by limited accessibility and specificity. This study proposes a rapid and convenient Cas12a-based assay for the direct detection of CEA in clinical serum samples, aiming to address these limitations. The protocol involves a rolling machine operation, followed by a 5-min Cas12a-mediated cleavage process. The assay demonstrates the capability to detect human serum with high anti-interference performance and a detection limit as low as 0.2 ng/mL. The entire testing procedure can be accomplished in 75 min without centrifugation steps, and successfully reduced the limit of detection of traditional DNA walking machine by 50 folds. Overall, the testing procedure can be easily implemented in clinical settings.
Collapse
Affiliation(s)
- Shuo Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yukun Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xuening Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Ma Z, Xu J, Hou W, Lei Z, Li T, Shen W, Yu H, Liu C, Zhang J, Tang S. Detection of Single Nucleotide Polymorphisms of Circulating Tumor DNA by Strand Displacement Amplification Coupled with Liquid Chromatography. Anal Chem 2024; 96:5195-5204. [PMID: 38520334 DOI: 10.1021/acs.analchem.3c05500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The detection of multiple single nucleotide polymorphisms (SNPs) of circulating tumor DNA (ctDNA) is still a great challenge. In this study, we designed enzyme-assisted nucleic acid strand displacement amplification combined with high-performance liquid chromatography (HPLC) for the simultaneous detection of three ctDNA SNPs. First, the trace ctDNA could be hybridized to the specially designed template strand, which initiated the strand displacement nucleic acid amplification process under the synergistic action of DNA polymerase and restriction endonuclease. Then, the targets would be replaced with G-quadruplex fluorescent probes with different tail lengths. Finally, the HPLC-fluorescence assay enabled the separation and quantification of multiple signals. Notably, this method can simultaneously detect both the wild type (WT) and mutant type (MT) of multiple ctDNA SNPs. Within a linear range of 0.1 fM-0.1 nM, the detection limits of BRAF V600E-WT, EGFR T790M-WT, and KRAS 134A-WT and BRAF V600E-MT, EGFR T790M-MT, and KRAS 134A-MT were 29, 31, and 11 aM and 22, 29, and 33 aM, respectively. By using this method, the mutation rates of multiple ctDNA SNPs in blood samples from patients with lung or breast cancer can be obtained in a simple way, providing a convenient and highly sensitive analytical assay for the early screening and monitoring of lung cancer.
Collapse
Affiliation(s)
- Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Junjie Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Zi Lei
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Tingting Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hui Yu
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, No. 438, Jiefang Road, Zhenjiang 212000, Jiangsu, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Luo L, Dong F, Li D, Li X, Li X, Fan Y, Qi C, Luo J, Li L, Shen B. Enhancing 3D DNA Walker-Induced CRISPR/Cas12a Technology for Highly Sensitive Detection of ExomicroRNA Associated with Osteoporosis. ACS Sens 2024; 9:1438-1446. [PMID: 38451610 DOI: 10.1021/acssensors.3c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Exosomal microRNAs (exomiRNAs) have emerged as promising biomarkers for the early clinical diagnosis of osteoporosis. However, their limited abundance and short length in peripheral blood present significant challenges for the accurate detection of exomiRNAs. Herein, we have designed and implemented an efficacious fluorescence-based biosensor for the highly sensitive detection of exomiRNA associated with osteoporosis, leveraging the enhancing 3D DNA walker-induced CRISPR/Cas12a technology. The engineered DNA walker is capable of efficiently transforming target exomiRNA into amplifying DNA strands, thereby enhancing the sensitivity of the developed biosensor. Concurrently, the liberated DNA strands serve as activators to trigger Cas12a trans-cleavage activity, culminating in a significantly amplified fluorescent signal for the highly sensitive detection of exomiRNA-214. Under optimal conditions, the devised technology demonstrated the capacity to detect target exomiRNA-214 at concentrations as low as 20.42 fM, encompassing a wide linear range extending from 50.0 fM to 10.0 nM. Moreover, the fluorescence-based biosensor could accurately differentiate between healthy individuals and osteoporosis patients via the detection of exomiRNA-214, which was in agreement with RT-qPCR results. As such, this biosensing technology offers promise as a valuable tool for the early diagnosis of osteoporosis.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China
| | - Fang Dong
- Department of Gerontology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400072, PR China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yunpeng Fan
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Caihong Qi
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing 401147, PR China
| | - Jinyong Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing 401147, PR China
| | - Bo Shen
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| |
Collapse
|
11
|
Liu Z, Rong G, Dong H, Zhang Y, Xu M, Baoxian Ye, Zhou Y. Ratiometric electrochemical biosensor based on lateral movement of multi-pedal DNA tetrahedron machine on biomimetic interface. Talanta 2024; 269:125454. [PMID: 38029606 DOI: 10.1016/j.talanta.2023.125454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
In this work, a lateral moving multi-pedal DNA tetrahedron machine (MTM) is designed and coupled with dual-signal output system to construct a biomimetic electrochemical ratiometric strategy for ultrasensitive target DNA analysis. The tetrahedral structure provided rigid support for the pedal, ensuring efficient replacement of the rail chain modified with ferrocene. By conjugating cholesterol molecules to one vertex of MTM, it is decorated on a lipid bilayer. This molecular architecture confers lateral movement of MTM on an electrode surface while prevents its detachment from the system. The methylene blue tagged hairpin probe provides constant power to support MTM swim on lipid bilayer. Compared with the conventional motion mode, the lateral moving mechanism has the fastest reaction rate and the highest signal-to-noise ratio. Additionally, the dual-signal reporting system further improves the accuracy of target detection on the basis of ensuring motion efficiency. The work improved movement efficiency and shortened time fragment. A linear relationship between the ratio value of two reporters and target DNA concentration was observed from 0.5 fM to 50 pM with a detection limit of 28 aM. The lateral motion mode of DNA machine coalescing with ratiometric system made this sensing platform ultrasensitive and accurate, which holds new avenue of early diagnosis.
Collapse
Affiliation(s)
- Zi Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| | - Guoxiang Rong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Baoxian Ye
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| |
Collapse
|
12
|
Liu S, Wu J, Li S, Wang L. DNA Polymerase-Steered Self-Propelled and Self-Enhanced DNA Walker for Rapid and Distinctly Amplified Electrochemical Sensing. Anal Chem 2024; 96:828-838. [PMID: 38158364 DOI: 10.1021/acs.analchem.3c04340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The development of a simple, rapid, easy-to-operate, and ultrasensitive DNA walker-based sensing system is challenging but would be very intriguing for the enormous applications in biological analysis and disease monitoring. Herein, a new self-propelled and self-enhanced DNA walking strategy was developed on the basis of a simple DNA polymerase-steered conversion from a typical alternate DNA assembly process. The sensing platform was fabricated easily by immobilizing only one hairpin probe (H1) and the sensing process was based on a simple one-step mixing with another hairpin-like DNA probe (H2) and DNA polymerase. The DNA polymerization could achieve target recycling and successive DNA walking steps. Interestingly, along with each DNA walking step, the new DNA walker sequence could be autonomously accumulated for a self-enhanced DNA walking effect. This provided a multilevel signal amplification ability for the ultrasensitive detection of the target with a low detection limit of 0.18 fM. Moreover, it could greatly reduce the reaction time with the sensing process finished within 1 h. The detection selectivity and the applicative potential in a complicated biological matrix were also demonstrated. Furthermore, the flexible control of sensing modes (self-enhanced DNA walking or the alternate DNA assembly) by using DNA polymerase or not offered a powerful means for sensing performance modulation. It thus opens a new avenue toward the development of a DNA walker-based sensing platform with both rapid and ultrasensitive features and might hold a huge potential for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Jialiang Wu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| |
Collapse
|
13
|
Yang L, Guo H, Gao Q, Hou T, Zhang J, Liu X, Li F. Integrating Reliable Pt-S Bond-Mediated 3D DNA Nanomachine with Magnetic Separation in a Homogeneous Electrochemical Strategy for Exosomal MicroRNA Detection with Low Background and High Sensitivity. Anal Chem 2023; 95:17834-17842. [PMID: 37988125 DOI: 10.1021/acs.analchem.3c03914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Precise and sensitive analysis of exosomal microRNA (miRNA) is of great importance for noninvasive early disease diagnosis, but it remains a great challenge to detect exosomal miRNA in human blood samples because of their small size, high sequence homology, and low abundance. Herein, we integrated reliable Pt-S bond-mediated three-dimensional (3D) DNA nanomachine and magnetic separation in a homogeneous electrochemical strategy for the detection of exosomal miRNA with low background and high sensitivity. The 3D DNA nanomachine was easily prepared via a facile and rapid freezing method, and it was capable of resisting the influence of biothiols, thus endowing it with high stability. Notably, the as-developed magnetic 3D DNA nanomachine not only enabled the detection system to have a low background but also coupled with liposome nanocarriers to synergistically amplify the current signal. Consequently, by ingeniously combining the low background and multiple signal-amplification strategies in homogeneous electrochemical biosensing, highly sensitive detection of exosomal miRNA was successfully achieved. More significantly, with good anti-interference ability, the as-proposed method could effectively discriminate plasma samples from cancer patients and healthy subjects, thus showing a high potential for application in the nondestructive early clinical diagnosis of disease.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Heng Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
14
|
Gu M, Yi X, Shang Z, Nong X, Lin M, Xia F. A fuel-initiated DNA molecular machine for microRNA detection in serum via poly-adenine-mediated spherical nucleic acids. J Mater Chem B 2023; 11:11052-11063. [PMID: 37946538 DOI: 10.1039/d3tb02361c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
MicroRNAs (miRNAs) have been identified as promising disease diagnostic biomarkers. However, it is challenging to sensitively detect miRNAs, especially in complex biological environments, due to their low abundance and small size. Herein, we have developed a DNA-fueled molecular machine for sensitive detection of miRNA-22 (miR-22) in undiluted serum by combining poly-adenine-mediated spherical nucleic acids (polyA-SNAs) with a toehold mediated strand displacement reaction (TMSDR). The polyA-SNAs are constructed by the assembly of diblock DNA probes on a AuNP surface through the high binding affinity of polyA to AuNPs. The surface density of the diblock DNA probe can be controlled by tuning the length of the polyA block, and the orientation of the diblock DNA probe can adopt an upright conformation, which is beneficial to target hybridization and TMSDRs. TMSDR is an enzyme-free target recycling amplification approach. Taking advantage of polyA-mediated SNAs and TMSDR, the operation of the molecular machine based on two successive TMSDRs on polyA20-SNAs is rapid and efficient, which can significantly amplify the fluorescence response for detection of miR-22 in an undiluted complex matrix. The developed sensor can detect as low as 10 pM of target miRNA/DNA in undiluted fetal bovine serum within 30 min. The synergetic effect of polyA-mediated SNAs and TMSDR presents a potential alternative tool for the detection of biomarkers in real biological samples.
Collapse
Affiliation(s)
- Menghan Gu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Ma Y, Wu H, Chen S, Xie C, Hu J, Qi X, Ma X, Chu Y, Shan J, Lu Y, Cui L, Zou B, Zhou G. FEN1-aided recombinase polymerase amplification (FARPA) for one-pot and multiplex detection of nucleic acids with an ultra-high specificity and sensitivity. Biosens Bioelectron 2023; 237:115456. [PMID: 37354713 DOI: 10.1016/j.bios.2023.115456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Recombinase polymerase amplification (RPA) running at 37-42 °C is fast, efficient and less-implemented; however, the existing technologies of nucleic acid testing based on RPA have some limitations in specificity of single-base recognition and multiplexing capability. Herein, we report a highly specific and multiplex RPA-based nucleic acid detection platform by combining flap endonuclease 1 (FEN1)-catalysed invasive reactions with RPA, termed as FEN1-aided RPA (FARPA). The optimal conditions enable RPA and FEN1-based fluorescence detection to occur automatically and sequentially within a 25-min turnaround time and FARPA exhibits sensitivity to 5 target molecules. Due to the ability of invasive reactions in discriminating single-base variation, this one-pot FARPA is much more specific than the Exo probe-based or CRISPR-based RPA methods. Using a universal primer pair derived from tags in reverse transcription primers, multiplex FARPA was successfully demonstrated by the 3-plex assay for the detection of SARS-CoV-2 pathogen (the ORF1ab, the N gene, and the human RNase P gene as the internal control), the 2-plex assay for the discrimination of SARS-CoV-2 wild-type from variants (Alpha, Beta, Epsilon, Delta, or Omicrons), and the 4-plex assay for the screening of arboviruses (zika virus, tick-borne encephalitis virus, yellow fever virus, and chikungunya virus). We have validated multiplex FARPA with 103 nasopharyngeal swabs for SARS-CoV-2 detection. The results showed a 100% agreement with RT-qPCR assays. Moreover, a hand-held FARPA analyser was constructed for the visualized FARPA due to the switch-like endpoint read-out. This FARPA is very suitable for pathogen screening and discrimination of viral variants, greatly facilitating point-of-care diagnostics.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China; Department of Clinical Pharmacy, Nanjing Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shan Chen
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Chunmei Xie
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingjing Hu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xiemin Qi
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jingwen Shan
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Lu
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guohua Zhou
- Department of Clinical Pharmacy, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
16
|
Zhang Y, Li JH, Zhang XL, Wang HJ, Yuan R, Chai YQ. Aluminum(III)-Based Organic Nanofibrous Gels as an Aggregation-Induced Electrochemiluminescence Emitter Combined with a Rigid Triplex DNA Walker as a Signal Magnifier for Ultrasensitive DNA Assay. Anal Chem 2023; 95:1686-1693. [PMID: 36541619 DOI: 10.1021/acs.analchem.2c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to effective tackling of the problems of aggregation-caused quenching of traditional ECL emitters, aggregation-induced electrochemiluminescence (AIECL) has emerged as a research hotspot in aqueous detection and sensing. However, the existing AIECL emitters still encounter the bottlenecks of low ECL efficiency, poor biocompatibility, and high cost. Herein, aluminum(III)-based organic nanofibrous gels (AOGs) are used as a novel AIECL emitter to construct a rapid and ultrasensitive sensing platform for the detection of Flu A virus biomarker DNA (fDNA) with the assistance of a high-speed and hyper-efficient signal magnifier, a rigid triplex DNA walker (T-DNA walker). The proposed AOGs with three-dimensional (3D) nanofiber morphology are assembled in one step within about 15 s by the ligand 2,2':6',2″-terpyridine-4'-carboxylic acid (TPY-COOH) and cheap metal ion Al3+, which demonstrates an efficient ECL response and outstanding biocompatibility. Impressively, on the basis of loop-mediated isothermal amplification-generated hydrogen ions (LAMP-H+), the target-induced pH-responsive rigid T-DNA walker overcomes the limitations of conventional single or duplex DNA walkers in walking trajectory and efficiency due to the entanglement and lodging of leg DNA, exhibiting high stability, controllability, and walking efficiency. Therefore, AOGs with excellent AIECL performance were combined with a CG-C+ T-DNA nanomachine with high walking efficiency and stability, and the proposed "on-off" ECL biosensor displayed a low detection limit down to 23 ag·μL-1 for target fDNA. Also, the strategy provided a useful platform for rapid and sensitive monitoring of biomolecules, considerably broadening its potential applications in luminescent molecular devices, clinical diagnosis, and sensing analysis.
Collapse
Affiliation(s)
- Yue Zhang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Jia-Hang Li
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Xiao-Long Zhang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Hai-Jun Wang
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Ruo Yuan
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| | - Ya-Qin Chai
- Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Southwest University, Chongqing, Sichuan 400715, PR China
| |
Collapse
|
17
|
Yang Z, Liu B, Huang T, Sun M, Tong li, Duan WJ, Li MM, Chen JX, Dai Z, Chen J. A domino-like localized cascade toehold assembly amplification-based DNA nanowire for microRNA imaging in living cells. Chem Sci 2022; 13:14373-14381. [PMID: 36545151 PMCID: PMC9749110 DOI: 10.1039/d2sc05890a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
High sensitivity and specificity imaging of miRNA in living cells plays an important role in understanding miRNA-related regulation and pathological research. Localized DNA circuits have shown good performance in reaction rate and sensitivity and have been proposed for sensitive imaging of miRNA in living cells. However, most reported localized DNA circuits have a high risk of derailment or a limited loading rate capacity, which hinder their further application. To solve these issues, we herein developed a domino-like localized cascade toehold assembly (LCTA) amplification-based DNA nanowire to achieve highly sensitive and highly specific imaging of miRNAs in living cells by using DNA nanowires as reactant delivery vehicles and confining both reactant probes in a compact space. The LCTA is constructed by interval hybridization of DNA double-stranded probe pairs to a DNA nanowire with multiplex footholds generated by alternating chain hybridization. Due to the localized effect, the LCTA showed high reaction kinetics and sensitivity, and the method could detect miRNAs as low as 51 pM. The LCTA was proven to be able to accurately distinguish the miRNA expression difference between normal cells and cancer cells. In particular, the developed LCTA could be used to construct an OR logic gate to simultaneously image the total amount of multiple miRNAs in living cells. We believe that the developed LCTA can be an effective intracellular nucleic acid imaging tool and can promote the development of nucleic acid-related clinical disease diagnosis and DNA logical sensors.
Collapse
Affiliation(s)
- Zizhong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Birong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Mengxu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Tong li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Min-Min Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan UniversityGuangzhou 510632P.R. China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen UniversityShenzhen 518107P. R. China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
18
|
Zhang W, Mu Y, Dong K, Zhang L, Yan B, Hu H, Liao Y, Zhao R, Shu W, Ye Z, Lu Y, Wan C, Sun Q, Li L, Wang H, Xiao X. PAM-independent ultra-specific activation of CRISPR-Cas12a via sticky-end dsDNA. Nucleic Acids Res 2022; 50:12674-12688. [PMID: 36484104 PMCID: PMC9825152 DOI: 10.1093/nar/gkac1144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Although CRISPR-Cas12a [clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 12a] combining pre-amplification technology has the advantage of high sensitivity in biosensing, its generality and specificity are insufficient, which greatly restrains its application range. Here, we discovered a new targeting substrate for LbaCas12a (Lachnospiraceae bacterium Cas12a), namely double-stranded DNA (dsDNA) with a sticky-end region (PAM-SE+ dsDNA). We discovered that CRISPR-Cas12a had special enzymatic properties for this substrate DNA, including the ability to recognize and cleave it without needing a protospacer adjacent motif (PAM) sequence and a high sensitivity to single-base mismatches in that substrate. Further mechanism studies revealed that guide RNA (gRNA) formed a triple-stranded flap structure with the substrate dsDNA. We also discovered the property of low-temperature activation of CRISPR-Cas12a and, by coupling with the unique DNA hybridization kinetics at low temperature, we constructed a complete workflow for low-abundance point mutation detection in real samples, which was fast, convenient and free of single-stranded DNA (ssDNA) transformation. The detection limits were 0.005-0.01% for synthesized strands and 0.01-0.05% for plasmid genomic DNA, and the mutation abundances provided by our system for 28 clinical samples were in accordance with next-generation sequencing results. We believe that our work not only reveals novel information about the target recognition mechanism of the CRISPR-Cas12a system, but also greatly broadens its application scenarios.
Collapse
Affiliation(s)
| | | | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Lei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangwei Liao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhengxin Ye
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaping Lu
- Sinopharm Genomics Technology Co., Ltd, Wuhan 430000, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Qiangqiang Sun
- Life Health Care Clinical Laboratories, Beijing 100000, China
| | - Longjie Li
- Correspondence may also be addressed to Longjie Li.
| | - Hongbo Wang
- Correspondence may also be addressed to Hongbo Wang.
| | - Xianjin Xiao
- To whom correspondence should be addressed. Tel: +86 027 8369 2651; Fax: +86 027 8369 2651;
| |
Collapse
|
19
|
DNA walker for signal amplification in living cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Xie FT, Li YL, Yang T, Yang YH, Hu R. Metal-Organic Framework UiO-66-Mediated Dual-Signal Ratiometric Electrochemical Sensor for microRNA Detection with DNA Walker Amplification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11828-11836. [PMID: 36148509 DOI: 10.1021/acs.langmuir.2c00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical nanotags with strong signal input are necessary for a ratiometric electrochemical sensor to overcome the drawbacks of inaccurate detection results. In this paper, the metal-organic framework (MOF) UiO-66 was utilized as an electrochemical signal tag. A stable and strong current response at +0.9 V can be detected in neutral conditions. MicroRNA (miRNA) was employed as the model analyte. Herein, an enzyme-free DNA-walker-based ultrasensitive ratiometric electrochemical biosensor in combination with Zr MOF (UiO-66) signal tags to detect miRNA was demonstrated. In the presence of miRNA, the autonomous walker movement can be initiated by miRNA, leading to the release of biotin-modified fragments. Thus, streptavidin-labeled UiO-66 nanomaterials were not bound to the electrode, generating a low signal response of UiO-66 at +0.9 V. However, the current signal of electrolyte solution as reference at +0.2 V was increased due to the enhancement of electrode conductivity. This ratiometic sensor demonstrated high sensitivity, selectivity, and reproducibility. It can eliminate the disturbance of environmental factors and basic electrode characteristics, providing more accurate signals. A limit of detection (LOD) of 0.17 fM was achieved. Moreover, the method was also used to detect miRNA-21 spiked in real serum samples.
Collapse
Affiliation(s)
- Fa-Ting Xie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yu-Long Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
21
|
Li X, Liao L, Jiang B, Yuan R, Xiang Y. Invader assay-induced catalytic assembly of multi-DNAzyme junctions for sensitive detection of single nucleotide polymorphisms. Anal Chim Acta 2022; 1224:340225. [DOI: 10.1016/j.aca.2022.340225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 01/07/2023]
|
22
|
Jiang H, Wang LB, Zhang YT, Dong M, Li J, Wang JD. An entropy-driven three-dimensional multipedal-DNA walker for ultrasensitive detection of cancer cells. Anal Chim Acta 2022; 1228:340299. [DOI: 10.1016/j.aca.2022.340299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
23
|
Hou TL, Zhu L, Zhang XL, Chai YQ, Yuan R. Multiregion Linear DNA Walker-Mediated Ultrasensitive Electrochemical Biosensor for miRNA Detection. Anal Chem 2022; 94:10524-10530. [PMID: 35822933 DOI: 10.1021/acs.analchem.2c02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, an intelligent multiregion linear DNA walker (MLDW) with a high walking rate and a high amplification efficiency was explored for ultrasensitive detection of miRNA. Significantly, amounts of functional domain could be concentrated in a long linear DNA obtained by the target miRNA-mediated rolling-circle amplification to simultaneously increase the local concentration and collision probability, resulting in an obviously improved reaction rate. Impressively, the MLDW can accomplish the reaction within 30 min, which is at least 4 times beyond that of traditional single-leg and multiple-leg DNA walkers. As a proof of concept, the high-efficiency MLDW was used to develop an electrochemical biosensing platform for ultrasensitive detection of target miRNA-21 with a low detection limit down to 36 aM. Therefore, the MLDW we designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.
Collapse
Affiliation(s)
- Tong-Lin Hou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Liang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
24
|
Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA Walkers for Biosensing Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200327. [PMID: 35460209 PMCID: PMC9366574 DOI: 10.1002/advs.202200327] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer-associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection- of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker-based biosensors are discussed.
Collapse
Affiliation(s)
- Lu Song
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Zhuge
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| | - Xiaolei Zuo
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Min Li
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fang Wang
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| |
Collapse
|
25
|
Wang D, Zhou H, Shi Y, Sun W. A FEN 1-assisted swing arm DNA walker for electrochemical detection of ctDNA by target recycling cascade amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1922-1927. [PMID: 35527509 DOI: 10.1039/d2ay00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flap endonuclease 1 (FEN 1)-assisted swing arm DNA walker was constructed to achieve the signal amplification detection of ctDNA. The MB-labeled hairpin DNA was designed as the track and a long swing-arm DNA strand as the capture probe. The introduction of ctDNA unlocked a helper hairpin DNA, which could be captured to form the DNA duplex walker with the capture probe, and also activated the catalyst hairpin assembly. The DNA duplex walker opened the hairpin track and formed a three-base overlapping DNA structure, which was recognized and cleaved by FEN 1. Driven by the FEN 1 and the high reaction temperature, the DNA walker was initiated to hybridize with the track DNA and release multiple MB-labeled flaps for signal amplification. Owing to the excellent amplification capacity of the target recycling-induced DNA walker and programmed catalysis hairpin assembly, the one-step biosensor showed a linear detection range from 1 fM to 100 pM with a detection limit of 0.33 fM. Moreover, the sensitive detection of ctDNA in serum samples was verified, suggesting its potential application in liquid biopsy for clinical diagnosis.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Huan Zhou
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Yundong Shi
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Wanjun Sun
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| |
Collapse
|
26
|
Miao P, Chai H, Tang Y. DNA Hairpins and Dumbbell-Wheel Transitions Amplified Walking Nanomachine for Ultrasensitive Nucleic Acid Detection. ACS NANO 2022; 16:4726-4733. [PMID: 35188755 DOI: 10.1021/acsnano.1c11582] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleic acids, including circulating tumor DNA (ctDNA), microRNA, and virus DNA/RNA, have been widely applied as potential disease biomarkers for early clinical diagnosis. In this study, we present a concept of DNA nanostructures transitions for the construction of DNA bipedal walking nanomachine, which integrates dual signal amplification for direct nucleic acid assay. DNA hairpins transition is developed to facilitate the generation of multiple target sequences; meanwhile, the subsequent DNA dumbbell-wheel transition is controlled to achieve the bipedal walker, which cleaves multiple tracks around electrode surface. Through combination of strand displacement reaction and digestion cycles, DNA monolayer at the electrode interface could be engineered and target-induced signal variation is realized. In addition, pH-assisted detachable intermolecular DNA triplex design is utilized for the regeneration of electrochemical biosensor. The high consistency between this work and standard quantitative polymerase chain reaction is validated. Moreover, the feasibilities of this biosensor to detect ctDNA and SARS-CoV-2 RNA in clinical samples are demonstrated with satisfactory accuracy and reliability. Therefore, the proposed approach has great potential applications for nucleic acid based clinical diagnostics.
Collapse
Affiliation(s)
- Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Hua Chai
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Chai H, Ma X, Sun H, Miao P. DNA-MnO 2 Nanoconjugates Investigation and Application for Electrochemical Polymerase Chain Reaction. Anal Chem 2022; 94:4565-4569. [PMID: 35266700 DOI: 10.1021/acs.analchem.1c04844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese dioxide (MnO2) nanosheets are emerging for biomedical applications with excellent physical and chemical properties. Adsorption of DNA on MnO2 is important for biosensing, bioimaging, and therapy. Nevertheless, current fundamental understanding about the interaction is preliminary. Herein, UV-vis absorption spectra are applied to systematically explore the biointerfacial interaction between DNA and MnO2 with the factors of salt concentration, pH value, temperature, DNA concentration, and length. The results offer important fundamental insights into the investigation of DNA-MnO2 nanocomposites. Meanwhile, the optimal parameters are applied to construct a screen-printed electrode (SPE) modified with polymerase chain reaction (PCR) primer-decorated MnO2 nanosheets. An electrochemical PCR system is then developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The limit of detection is determined to be 0.1 fM, and high selectivity is demonstrated. Combining the merits of SPE, DNA-MnO2 nanosheets, and an amplified reaction, this developed strategy shows great promise in bioanalysis, clinical disease diagnosis, and biomedicine applications.
Collapse
Affiliation(s)
- Hua Chai
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xiaoyi Ma
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Haixuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan 250103, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan 250103, China
| |
Collapse
|
28
|
Yang F, Yao JS, Bu SC, Meng HY, Zhuo Y, Zhong X, Yuan R. Quadrilateral Nucleic Acid Frame-Accelerating DNAzyme Walker Kinetics for Biosensing Based on Host-Guest Recognition-Enhanced Electrochemiluminescence. Anal Chem 2021; 93:15493-15500. [PMID: 34752060 DOI: 10.1021/acs.analchem.1c03525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Depending on the reaction between walkers and tracks, DNA walker is able to output signals continuously, which has attracted great attention from the bioanalytical community. Therefore, how to improve its reaction kinetics for efficient signal readout is of great significance. Herein, a quadrilateral DNAzyme walker was fabricated by colocalizing one walker and three DNA tracks in the quadrilateral nucleic acid frame to form a reaction unit (abbreviated as qDNA walker). Impressively, in contrast to the common free DNAzyme walker, the reaction kinetics of the qDNA walker was 2.3 times faster, which could achieve microRNA detection within 30 min. Meanwhile, an electrochemiluminescence (ECL) emitter of anthracene-cucurbituril supramolecular nanocrystals (Ant-CB SNCs) was obtained based on the self-assembly of cucurbituril (CB, host molecule) and anthracene (Ant, guest molecule). Benefiting from the host-guest recognition effect, the prepared Ant-CB SNCs exhibited enhanced ECL efficiency due to the supramolecular interaction between CB and Ant, which could inhibit vibration and rotation of the Ant molecules. We defined this new enhanced ECL phenomenon as "host-guest recognition-enhanced ECL." As a proof of concept, an ECL biosensor for microRNA-21 (miRNA-21) was constructed by combining the high-efficiency DNAzyme walker and the advanced ECL emitter of Ant-CB SNCs, which showed a linear range from 50 aM to 50 pM with a low limit of detection (11 aM), highlighting the great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Shuang Yao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu-Chun Bu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hua-Ying Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|