1
|
Yu Z, Douvalis AP, de Oliveira-Silva R, Wang Y, Pontikes Y, Sakellariou D. Determination of the Redox Ratio of Iron in a Diamagnetic Matrix Using Low-Field NMR Relaxometry. Anal Chem 2024; 96:16469-16474. [PMID: 39365955 DOI: 10.1021/acs.analchem.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Proton nuclear magnetic resonance (NMR) relaxometry is proposed to determine the iron redox ratio of slag samples. It depends on the paramagnetic effect on bulk water relaxation times. Experiments have been carried out to calibrate the relationship between the concentration of Fe3+ and Fe2+ ions and the measured relaxation times on prepared standard samples. It is shown that Fe2+ ions have very different effects on the relaxation times than Fe3+ ions. For the solid slag samples, digestion in an acid was used to produce solutions with a pH of 1.0. Hydrogen peroxide (H2O2) was then added to the digested samples to oxidize Fe2+ ions to Fe3+ ions. The concentration of Fe2+ and Fe3+ ions in solution can be calculated by measuring the relaxation times before and after oxidation. The Fe3+/∑Fe ratio of slag samples was also investigated by wet chemistry and 57Fe Mössbauer spectroscopy and calculated by FactSage at the equilibrium state. The results obtained from different methods are consistent, indicating that this NMR relaxometry method is reliable.
Collapse
Affiliation(s)
- Ziyou Yu
- M2S, cMACS, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | | | | | - Yannan Wang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Yiannis Pontikes
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | | |
Collapse
|
2
|
Guo Z, Wang X, Sun HL. A sensitive Ag +-mediated magnetic relaxation and colorimetry dual-mode sensing platform. Talanta 2024; 276:126188. [PMID: 38739955 DOI: 10.1016/j.talanta.2024.126188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
To address the relatively low sensitivity of current redox reagent-mediated magnetic relaxation sensing methods, we present a novel Ag+-mediated magnetic sensing platform that enhances the sensitivity by three orders of magnitude. The new sensing platform is based on Ag+-catalyzed oxidation of Mn2+ to KMnO4, accompanied by a distinct color change, which facilitates colorimetric detection. In the case of insufficient Ag+ ions, MnO2 is an additional oxidation product and the KMnO4/MnO2 ratio is dependent on the concentration of Ag+. When combined with a specific quantity of reducing agent, both KMnO4 and MnO2 are reduced to Mn2+ with a large relaxivity, and the concentration of Mn2+ in the resultant solution inversely correlates with the amount of KMnO4 since KMnO4 consumes more reductant during reduction. Consequently, the transverse relaxation rate of the solution exhibits a negative correlation with the Ag+ concentration. Thus, by coupling this Ag+-mediated Mn2+ to KMnO4 transformation with reactions that modulate Ag+ concentration, a dual-mode sensing platform for magnetic relaxation and colorimetry can be realized. Herein, we take H2O2 as an example to verify the detection performance of this sensing platform since H2O2 can oxidize Ag0 in Ag@Fe3O4 nanoparticles to Ag+. Experimental findings demonstrate detection limits of 10 nM and 20 nM for the magnetic relaxation and colorimetry modes, respectively, affirming the excellent sensitivity and the potential practical application of this strategy.
Collapse
Affiliation(s)
- Zhuangzhuang Guo
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China
| | - Xin Wang
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
3
|
Topor A, Voda MA, Vasos PR. Earth's field NMR relaxation of pre-polarised water protons for real-time detection of free-radical formation. Chem Commun (Camb) 2023; 59:11672-11675. [PMID: 37695610 DOI: 10.1039/d3cc02502k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Real-time imaging of free-radical formation is important in physical chemistry, biochemistry, and radiobiology, especially for the study of radiation dose-rate effects. Herein, we show for the first time that the formation of free radicals during the time course of a chemical reaction can be imaged through NMR relaxation measurements of water protons in the Earth's magnetic field, in an open-coil spectrometer. The relaxation rate constants of water magnetisation are enhanced as reactions leading to the formation of hydroxyl radicals and oxygen proceed on the timescale of tens of minutes. The reaction rate of iodide-catalysed H2O2 decay was followed by Earth-field 1H NMR relaxation in real time. The relaxivities of the reaction product and several other paramagnetic compounds were determined. Spin-trap molecules were then used to capture ˙OH radical species, thus altering the reaction rate in proportion to the formation of new paramagnetic compounds. Thereby, a new experimental method for magnetic resonance imaging of the formation of intermediate and stable radical species in water is proposed.
Collapse
Affiliation(s)
- Alexandru Topor
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
- University of Bucharest, Doctoral School of Chemistry, 4-12 Regina Elisabeta Bd, 030018 Bucharest, Romania
- C. D. Nenitzescu Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independenţei Bucharest, Romania
| | - Mihai A Voda
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
| | - Paul R Vasos
- Biophysics and Biomedical Applications Group and Laboratory, Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Laser Gamma Experiments Department (LGED), "Horia Hulubei" National Institute for Physics and Nuclear Engineering (IFIN-HH), Reactorului Str. 30, Bucharest-Magurele 077125, Romania
- University of Bucharest, Interdisciplinary School of Doctoral Studies, ISDS, 4-12 Regina Elisabeta Bd, 030018 Bucharest, Romania.
| |
Collapse
|
4
|
Guo Z, Sun HL. A facile and sensitive magnetic relaxation sensing strategy based on the conversion of Fe 3+ ions to Prussian blue precipitates for the detection of alkaline phosphatase and ascorbic acid oxidase. Talanta 2023; 260:124579. [PMID: 37116357 DOI: 10.1016/j.talanta.2023.124579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Herein, a novel magnetic relaxation sensing strategy based on the change in Fe3+ content has been proposed by utilizing the conversion of Fe3+ ions to Prussian blue (PB) precipitates. Compared with the common detection approach based on the valence state change of Fe3+ ions, our strategy can cause a larger change in the relaxation time of water protons and higher detection sensitivity since PB precipitate can induce a larger change in the Fe3+ ion concentration and has a weaker effect on the relaxation process of water protons relative to Fe2+ ions. Then, we employ alkaline phosphatase (ALP) as a model target to verify the feasibility and detection performance of the as-proposed strategy. Actually, ascorbic acid (AA) generated from the ALP-catalyzed L-ascorbyl-2-phosphate hydrolysis reaction can reduce potassium ferricyanide into potassium ferrocyanide, and potassium ferrocyanide reacts with Fe3+ to form PB precipitates, leading to a higher relaxation time. Under optimum conditions, the method for ALP detection has a wide linear range from 5 to 230 mU/mL, and the detection limit is 0.28 mU/mL, sufficiently demonstrating the feasibility and satisfactory analysis performance of this strategy, which opens up a new path for the construction of magnetic relaxation sensors. Furthermore, this strategy has also been successfully applied to ascorbic acid oxidase detection, suggesting its expansibility in magnetic relaxation detection.
Collapse
Affiliation(s)
- Zhuangzhuang Guo
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China
| | - Hao-Ling Sun
- Department of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
5
|
Zhang X, Sun B, Zhang Y, Zhang Q, Akhtar MH, Li M, Gu Y, Yu C. Portable smartphone-assisted ratiometric fluorescence sensor for visual detection of glucose. Anal Chim Acta 2023; 1260:341173. [PMID: 37121649 DOI: 10.1016/j.aca.2023.341173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Fluorescence-based visual assays have sparked tremendous attention in on-site detection due to their obvious color gradient changes and high sensitivity. In this study, a novel emission wavelength shift-based visual sensing platform is constructed to detect glucose based on the oxidation of Rhodamine B (RhB). MnO2 nanosheets (MnO2 NS) with strong oxidizing properties were introduced to oxidize RhB, which resulted in a blue shift in the emission wavelength, and a visual color changed of the fluorescence from orange-red to green. The oxidation reaction could be inhibited via reducing and destroying MnO2 NS by H2O2, which was produced by the oxidizing procedure of glucose in the presence of glucose oxidase (GOx). A series of wavelength shifts and fluorescence color variations appeared with the addition of various amounts of glucose. A ratiometric fluorescence glucose sensor with a lowest recorded concentration of 0.25 μM was developed. Meanwhile, test paper-based assays integrated with the smartphone platform were established for the sensing of glucose by means of the significant fluorescence color changes, offering a reliable, sensitive, and portable on-site assay of glucose.
Collapse
|
6
|
Wu Y, Jiang X, Chen Y, Liu T, Ni Z, Yi H, Lu R. Rapid estimation approach for glycosylated serum protein of human serum based on the combination of deep learning and TD-NMR technology. ANAL SCI 2023; 39:957-968. [PMID: 36897540 DOI: 10.1007/s44211-023-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Rapid and precise estimation of glycosylated serum protein (GSP) of human serum is of great importance for the treatment and diagnosis of diabetes mellitus. In this study, we propose a novel method for estimation of GSP level based on the combination of deep learning and time domain nuclear magnetic resonance (TD-NMR) transverse relaxation signal of human serum. Specifically, a principal component analysis (PCA)-enhanced one-dimensional convolutional neural network (1D-CNN) is proposed to analyze the TD-NMR transverse relaxation signal of human serum. The proposed algorithm is proved by accurate estimation of GSP level for the collected serum samples. Furthermore, the proposed algorithm is compared with 1D-CNN without PCA, long short-term memory network (LSTM) and some conventional machine learning algorithms. The results indicate that PCA-enhanced 1D-CNN (PC-1D-CNN) has the minimum error. This study proves that proposed method is feasible and superior to estimate GSP level of human serum using TD-NMR transverse relaxation signals.
Collapse
Affiliation(s)
- Yuchen Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xiaowen Jiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Tingyu Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Rongsheng Lu
- Jiangsu Key Laboratory for Design and Manufacture of Micro Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Yang Q, Zhao J, Dreyer F, Krüger D, Anders J. A portable NMR platform with arbitrary phase control and temperature compensation. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:77-90. [PMID: 37905179 PMCID: PMC10539832 DOI: 10.5194/mr-3-77-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2023]
Abstract
In this paper, we present a custom-designed nuclear magnetic resonance (NMR) platform based on a broadband complementary metal-oxide-semiconductor (CMOS) NMR-on-a-chip transceiver and a synchronous reference signal generator, which features arbitrary phase control of the excitation pulse in combination with phase-coherent detection at a non-zero intermediate frequency (IF). Moreover, the presented direct digital synthesis (DDS)-based frequency generator enables a digital temperature compensation scheme similar to classical field locking without the need for additional hardware. NMR spectroscopy and relaxometry measurements verify the functionality of the proposed frequency reference and temperature compensation scheme as well as the overall state-of-the-art performance of the presented system.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Jianyu Zhao
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Frederik Dreyer
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Daniel Krüger
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- John A. Paulson School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, United States
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQ), Stuttgart, Germany
| |
Collapse
|