1
|
Xuan C, Cao Y, Wu H, Wang Y, Xi J, Ma K, Feng Q, Sun B, Yan H, Wang L. Bioinspired Core-shell nanospheres integrated in multi-signal immunochromatographic sensor for high throughput sensitive detection of Bongkrekic acid in food. Food Chem 2024; 460:140565. [PMID: 39068800 DOI: 10.1016/j.foodchem.2024.140565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Nowadays, notable progress has been achieved in detecting foodborne toxins by employing nanoenzyme-based lateral flow immunoassay (NLFIA) sensors in point-of-care testing (POCT). It continues to be a major challenge to maximize the enzyme-like performance of nanozymes for educe any potential uncertainties in catalytic process. In this study, we employed a facile and efficient self-assembly approach to fabricate nucleoid-shell structured biomimetic nanospheres CuS@Au-Pt (CAP), which demonstrates enhanced brightness of the colorimetric signal, excellent affinity, and excellent peroxidase activity. The integration of CAP with a competitive-assay NLFIA platform enabled sensitive immunochromatographic detection of bongkrekic acid (BA), with LOD as low as 0.66 ng/mL. After signal amplification through enzyme-like reaction, the detection range was extended around 1-fold. Additionally, CAP-NLFIA effectively detected BA with a recovery rate of 80.96-119.36% for real samples. The study proposes using CAP as a signal reporter in a dual-readout LFIA, which can establish a high throughput sensitive detection platform.
Collapse
Affiliation(s)
- Chenyu Xuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyu Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinlin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, China.
| |
Collapse
|
2
|
Li X, Jiao L, Li R, Jia X, Chen C, Hu L, Yan D, Zhai Y, Lu X. Biomimetic Electronic Communication of Iodine Doped Single-Atom Fe Site for Highly Active and Stable Dopamine Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405532. [PMID: 39225350 DOI: 10.1002/smll.202405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Rational design of highly active and stable catalysts for dopamine oxidation is still a great challenge. Herein, inspired by the catalytic pocket of natural enzymes, an iodine (I)-doped single Fe-site catalyst (I/FeSANC) is synthesized to mimic the catalytic center of heme enzymes in both geometrical and electronic structures, aiming to enhance dopamine (DA) oxidation. Experimental studies and theoretical calculations show that electronic communication between I and FeN5 effectively modulates the electronic structure of the active site, greatly optimizing the overlap of Fe 3d and O 2p orbitals, thereby enhancing OH adsorption. In addition, the electronic communication induced by iodine doping attenuates the attack of proton hydrogen on the active center, thereby enhancing the stability of I/FeSANC. This work provides new insights into the design of highly active and stable single-atom catalysts and enhances the understanding of catalytic mechanisms for DA oxidation at the atomic scale.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
3
|
Yu L, He Y, Zhou G, Hu L, Wang M. Few-layered boron nitride nanosheet as a non-metallic phosphatase nanozyme and its application in human urine phosphorus detection. Anal Bioanal Chem 2024; 416:5993-5999. [PMID: 37962608 DOI: 10.1007/s00216-023-05030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Human urine phosphorus (existing in the form of phosphate) is a biomarker for the diagnosis of several diseases such as kidney disease, hyperthyroidism, and rickets. Therefore, the selective detection of phosphate in urine samples is crucial in the field of clinical diagnosis. Herein, we reported the phosphatase-like catalytic activity of few-layered h-BNNS for the first time. As the phosphatase-like activity of few-layered h-BNNS could be effectively inhibited by phosphate, a selective fluorescent method for the detection of phosphate was proposed. The linear range for phosphate detection is 0.5-10 µM with a detection limit of 0.33 µM. The fluorescent method was then explored for the detection of human urine phosphorus in real samples. The results obtained by the proposed method were consistent with those of the traditional method, indicating that the present method has potential application for urine phosphorus detection in clinical disease diagnosis.
Collapse
Affiliation(s)
- Linlin Yu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Yuting He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Guofen Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
5
|
Hao J, Shang R, Shi M, Yuan J, Tan Y, Liu J, Cai K. A low iridium content greatly improves the peroxidase-like activity of noble metal nanozymes for sensitive colorimetric detection. Dalton Trans 2024; 53:17324-17332. [PMID: 39385611 DOI: 10.1039/d4dt02065k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The enzyme-like activity of noble metal nanomaterials has been widely demonstrated. However, as an important noble metal, iridium (Ir) and its alloy nanomaterials have been less studied, particularly regarding the effect of Ir content on enzyme-like activity. Here, we demonstrated for the first time that a low Ir content can greatly improve the peroxidase-like activity of Pt-based nanozymes. When the weight percentage of Ir was 3.45% in trimetallic PtAuIr hollow nanorods (HNRs) and 2.86% in bimetallic PtIr HNRs, their specific activity increased by approximately 70% compared to their PtAu and Pt counterparts, respectively. However, a slightly higher percentage of Ir significantly diminished the enhancement effect on their specific activity. Density functional theory (DFT) calculations show that the rate-determining step (RDS) energy barrier of the nanozyme with low Ir content is lower than that of the nanozyme with slightly higher Ir content. Furthermore, we studied the kinetic properties of the PtAuIr nanozyme using TMB as the substrate. Its Michaelis-Menten constant (Km) and Vmax were 1.756 mM and 2.152 × 10-6 M s-1, respectively. Additionally, a colorimetric detection platform based on the PtAuIr nanozyme was established and applied to detect o-phenylenediamine (OPD), with a detection limit as low as 0.076 μM. This study highlights the important role of the Ir content in Pt-based nanozymes and demonstrates that PtAuIr nanozymes have potential applications in environmental detection.
Collapse
Affiliation(s)
- Jian Hao
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Rui Shang
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Miaotian Shi
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jincheng Yuan
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Yi Tan
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China.
| | - Kai Cai
- Life Science Instrumentation Center, College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| |
Collapse
|
6
|
Jia X, Jiao L, Li R, Yan D, Hu L, Chen C, Li X, Zhai Y, Lu X. Inhibition effect of p-d orbital hybridized PtSn nanozymes for colorimetric sensor array of antioxidants. Biosens Bioelectron 2024; 261:116468. [PMID: 38852326 DOI: 10.1016/j.bios.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Rational design of peroxidase (POD)-like nanozymes with high activity and specificity still faces a great challenge. Besides, the investigations of nanozymes inhibitors commonly focus on inhibition efficiency, the interaction between nanozymes-involved catalytic reactions and inhibitors is rarely reported. In this work, we design a p-block metal Sn-doped Pt (p-d/PtSn) nanozymes with the selective enhancement of POD-like activity. The p-d orbital hybridization interaction between Pt and Sn can effectively optimize the electronic structure of PtSn nanozymes and thus selectively enhance POD-like activity. In addition, the antioxidants as nanozymes inhibitors can effectively inhibit the POD-like activity of p-d/PtSn nanozymes, which results in the fact that antioxidants absorbed on the p-d/PtSn surface can hinder the adsorption of hydrogen peroxide. The inhibition type (glutathione as a model molecule) is reversible mixed-inhibition with inhibition constants (Ki' and Ki) of 0.21 mM and 0.03 mM. Finally, based on the varying inhibition levels of antioxidant molecules, a colorimetric sensor array is constructed to distinguish and simultaneously detect five antioxidants. This work is expected to design highly active and specific nanozymes through p-d orbital hybrid engineering, and also provides insights into the interaction between nanozymes and inhibitors.
Collapse
Affiliation(s)
- Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
7
|
Chen Y, Wu Y, Xu W, Tang Y, Cai Y, Yu X, Li J, Qiu Y, Hu L, Gu W, Zhu C. Nanozyme-Based Microfluidic Chip System for pH-Regulated Pretreatment and Sensitive Sensing. Anal Chem 2024. [PMID: 39270057 DOI: 10.1021/acs.analchem.4c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Nanozymes, possessing nanomaterial properties and catalytic activities, offer great opportunities to design sensitive analytical detection systems. However, the low interference resistance of nanozymes poses a significant limitation on the precise detection of target substances. Herein, a nanozyme-based microfluidic chip system for pH-regulated pretreatment and sensitive sensing of cysteine (Cys) is reported. The copper metal-organic framework (Cu MOF) exhibits good cysteine oxidase-like activity at pH 7.0, while demonstrating excellent laccase-like activity at pH 8.0. Taking advantage of the pH-regulated enzyme-like activity, the integrated microfluidic device involving the immobilization of Cu MOF eliminates the interference of dopamine (DA) and accurately detects the target Cys. Compared with the untreated reaction system, the developed nanozyme system shows a significantly improved accuracy in detecting Cys, with an R2 value of 0.9914. This work provides an efficient method to enhance the interference resistance of nanozymes and broadens the application in sample pretreatment.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xin Yu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jian Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
8
|
Wen Y, Xu W, Wu Y, Tang Y, Liu M, Sha M, Li J, Xiao R, Hu L, Lin Y, Zhu C, Gu W. Bifunctional enzyme-mimicking metal-organic frameworks for sensitive acetylcholine analysis. Talanta 2024; 275:126112. [PMID: 38677169 DOI: 10.1016/j.talanta.2024.126112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The development of nanomaterials with multi-enzyme-like activity is crucial for addressing challenges in multi-enzyme-based biosensing systems, including cross-talk between different enzymes and the complexities and costs associated with detection. In this study, Pt nanoparticles (Pt NPs) were successfully supported on a Zr-based metal-organic framework (MOF-808) to create a composite catalyst named MOF-808/Pt NPs. This composite catalyst effectively mimics the functions of acetylcholinesterase (AChE) and peroxidase (POD). Leveraging this capability, we replaced AChE and POD with MOF-808/Pt NPs and constructed a biosensor for sensitive detection of acetylcholine (ACh). The MOF-808/Pt NPs catalyze the hydrolysis of ACh, resulting in the production of acetic acid. The subsequent reduction in pH value further enhances the POD-like activity of the MOFs, enabling signal amplification through the oxidation of a colorimetric substrate. This biosensor capitalizes on pH variations during the reaction to modulate the different enzyme-like activities of the MOFs, simplifying the detection process and eliminating cross-talk between different enzymes. The developed biosensor holds great promise for clinical diagnostic analysis and offers significant application value in the field.
Collapse
Affiliation(s)
- Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Mingwang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Jinli Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Runshi Xiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yongxin Lin
- Department of Thyroid Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, PR China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao, 266042, PR China.
| |
Collapse
|
9
|
Hao J, Tan Y, Yuan J, Shang R, Xiang D, Cai K. Structural engineering of Pt-on-Rh hollow nanorods with high-performance peroxidase-like specific activity for colorimetric detection. Dalton Trans 2024; 53:11578-11584. [PMID: 38922335 DOI: 10.1039/d4dt01043d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The preparation of nanozymes with high specific activity is highly important for various applications. However, only a few nanozymes have specific activities comparable to natural enzymes. Herein, novel Pt-on-Rh hollow nanorods (PtRh HNRs) were developed, in which surface Pt exhibited adjustable dispersity and interior Rh served as the support. The optimized PtRh HNRs demonstrated high-performance peroxidase (POD)-like activity, with a specific activity as high as 1352 U mg-1, which was 3.86 times that of their monometallic Pt counterparts. Density functional theory (DFT) calculations illustrated that the presence of Rh decreased the energy barrier of the rate-determining step. When PtRh HNRs were used as nanozymes in the colorimetric detection of hydrogen peroxide (H2O2) and ascorbic acid (AA), the limits of detection (LODs) were as low as 9.97 μM and 0.039 μM, respectively. The current work highlights a facile and powerful strategy for manufacturing nanozymes with high specific activity and demonstrates that the prepared PtRh HNRs have the potential for analysis and determination.
Collapse
Affiliation(s)
- Jian Hao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Yi Tan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Jincheng Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Rui Shang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Dong Xiang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| | - Kai Cai
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434100, China.
| |
Collapse
|
10
|
Hua S, Dong X, Peng Q, Zhang K, Zhang X, Yang J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnology 2024; 22:286. [PMID: 38796465 PMCID: PMC11127409 DOI: 10.1186/s12951-024-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.
Collapse
Affiliation(s)
- Sijia Hua
- Zhejiang University of Chinese Medicine, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiulin Dong
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Qiuxia Peng
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Xiaofeng Zhang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Jianfeng Yang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
11
|
Shen J, Chen J, Qian Y, Wang X, Wang D, Pan H, Wang Y. Atomic Engineering of Single-Atom Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313406. [PMID: 38319004 DOI: 10.1002/adma.202313406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Single-atom nanozymes (SAzymes) showcase not only uniformly dispersed active sites but also meticulously engineered coordination structures. These intricate architectures bestow upon them an exceptional catalytic prowess, thereby captivating numerous minds and heralding a new era of possibilities in the biomedical landscape. Tuning the microstructure of SAzymes on the atomic scale is a key factor in designing targeted SAzymes with desirable functions. This review first discusses and summarizes three strategies for designing SAzymes and their impact on reactivity in biocatalysis. The effects of choices of carrier, different synthesis methods, coordination modulation of first/second shell, and the type and number of metal active centers on the enzyme-like catalytic activity are unraveled. Next, a first attempt is made to summarize the biological applications of SAzymes in tumor therapy, biosensing, antimicrobial, anti-inflammatory, and other biological applications from different mechanisms. Finally, how SAzymes are designed and regulated for further realization of diverse biological applications is reviewed and prospected. It is envisaged that the comprehensive review presented within this exegesis will furnish novel perspectives and profound revelations regarding the biomedical applications of SAzymes.
Collapse
Affiliation(s)
- Ji Shen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuping Qian
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
12
|
Xu Y, Pang Y, Luo L, Sharma A, Yang J, Li C, Liu S, Zhan J, Sun Y. De Novo Designed Ru(II) Metallacycle as a Microenvironment-Adaptive Sonosensitizer and Sonocatalyst for Multidrug-Resistant Biofilms Eradication. Angew Chem Int Ed Engl 2024; 63:e202319966. [PMID: 38327168 DOI: 10.1002/anie.202319966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Albeit sonodynamic therapy (SDT) has achieved encouraging progress in microbial sterilization, the scarcity of guidelines for designing highly effective sonosensitizers and the intricate biofilm microenvironment (BME), substantially hamper the therapeutic efficacy against biofilm infections. To address the bottlenecks, we innovatively design a Ru(II) metallacycle-based sonosensitizer/sonocatalyst (named Ru-A3-TTD) to enhance the potency of sonotherapy by employing molecular engineering strategies tailored to BME. Our approach involves augmenting Ru-A3-TTD's production of ultrasonic-triggered reactive oxygen species (ROS), surpassing the performance of commercial sonosensitizers, through a straightforward but potent π-expansion approach. Within the BME, Ru-A3-TTD synergistically amplifies sonotherapeutic efficacy via triple-modulated approaches: (i) effective alleviation of hypoxia, leading to increased ROS generation, (ii) disruption of the antioxidant defense system, which shields ROS from glutathione consumption, and (iii) enhanced biofilm penetration, enabling ROS production in deep sites. Notably, Ru-A3-TTD sono-catalytically oxidizes NADPH, a critical coenzyme involved in antioxidant defenses. Consequently, Ru-A3-TTD demonstrates superior biofilm eradication potency against multidrug-resistant Escherichia coli compared to conventional clinical antibiotics, both in vitro and in vivo. To our knowledge, this study represents the pioneering instance of a supramolecular sonosensitizer/sonocatalyst. It provides valuable insights into the structure-activity relationship of sonosensitizers and paves a promising pathway for the treatment of biofilm infections.
Collapse
Affiliation(s)
- Yuling Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yida Pang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lishi Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, 140 306, India
| | - Jingfang Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
13
|
Yan D, Jiao L, Chen C, Jia X, Li R, Hu L, Li X, Zhai Y, Strizhak PE, Zhu Z, Tang J, Lu X. p-d Orbital Hybridization-Engineered PdSn Nanozymes for a Sensitive Immunoassay. NANO LETTERS 2024; 24:2912-2920. [PMID: 38391386 DOI: 10.1021/acs.nanolett.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.
Collapse
Affiliation(s)
- Dongbo Yan
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Jiao
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chengjie Chen
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiangkun Jia
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ruimin Li
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijun Hu
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaotong Li
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanling Zhai
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peter E Strizhak
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhijun Zhu
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianguo Tang
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Hybrid Materials, College of Materials Science and Engineering, and Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
14
|
Peng C, Pang R, Li J, Wang E. Current Advances on the Single-Atom Nanozyme and Its Bioapplications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211724. [PMID: 36773312 DOI: 10.1002/adma.202211724] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanozymes, a class of nanomaterials mimicking the function of enzymes, have aroused much attention as the candidate in diverse fields with the arbitrarily tunable features owing to the diversity of crystalline nanostructures, composition, and surface configurations. However, the uncertainty of their active sites and the lower intrinsic deficiencies of nanomaterial-initiated catalysis compared with the natural enzymes promote the pursuing of alternatives by imitating the biological active centers. Single-atom nanozymes (SAzymes) maximize the atom utilization with the well-defined structure, providing an important bridge to investigate mechanism and the relationship between structure and catalytic activity. They have risen as the new burgeoning alternative to the natural enzyme from in vitro bioanalytical tool to in vivo therapy owing to the flexible atomic engineering structure. Here, focus is mainly on the three parts. First, a detailed overview of single-atom catalyst synthesis strategies including bottom-up and top-down approaches is given. Then, according to the structural feature of single-atom nanocatalysts, the influence factors such as central metal atom, coordination number, heteroatom doping, and the metal-support interaction are discussed and the representative biological applications (including antibacterial/antiviral performance, cancer therapy, and biosensing) are highlighted. In the end, the future perspective and challenge facing are demonstrated.
Collapse
Affiliation(s)
- Chao Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ruoyu Pang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Li R, Jiao L, Jia X, Yan L, Li X, Yan D, Zhai Y, Zhu C, Lu X. Bioinspired FeN 5 Sites with Enhanced Peroxidase-like Activity Enable Colorimetric Sensing of Uranyl Ions in Seawater. Anal Chem 2024. [PMID: 38324915 DOI: 10.1021/acs.analchem.3c05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Nanozymes with peroxidase (POD)-like activity have garnered significant attention due to their exceptional performance in colorimetric assays. However, nanozymes often possess oxidase (OD) and POD-like activity simultaneously, which affects the accuracy and sensitivity of the detection results. To address this issue, inspired by the catalytic pocket of natural POD, a single-atom nanozyme with FeN5 configuration is designed, exhibiting enhanced POD-like activity in comparison with a single-atom nanozyme with FeN4 configuration. The axial N atom in FeN5 highly mimics the amino acid residues in natural POD to optimize the electronic structure of the metal active center Fe, realizing the efficient activation of H2O2. In addition, in the presence of both H2O2 and O2, FeN5 enhances the activation of H2O2, effectively avoiding the interference of dissolved oxygen in colorimetric sensing. As a proof-of-concept application, a colorimetric detection platform for uranyl ions (UO22+) in seawater is successfully constructed, demonstrating satisfactory sensitivity and specificity.
Collapse
Affiliation(s)
- Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijuan Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
16
|
Xu B, Li S, Han A, Zhou Y, Sun M, Yang H, Zheng L, Shi R, Liu H. Engineering Atomically Dispersed Cu-N 1 S 2 Sites via Chemical Vapor Deposition to Boost Enzyme-Like Activity for Efficient Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2312024. [PMID: 38101802 DOI: 10.1002/adma.202312024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 12/17/2023]
Abstract
Single-atom nanozymes (SAzymes), with well-defined and uniform atomic structures, are an emerging type of natural enzyme mimics. Currently, it is important but challenging to rationally design high-performance SAzymes and deeply reveal the interaction mechanism between SAzymes and substrate molecules. Herein, this work reports the controllable fabrication of a unique Cu-N1 S2 -centred SAzyme (Cu-N/S-C) via a chemical vapor deposition-based sulfur-engineering strategy. Benefiting from the optimized geometric and electronic structures of single-atom sites, Cu-N/S-C SAzyme shows boosted enzyme-like activity, especially in catalase-like activity, with a 13.8-fold increase in the affinity to hydrogen peroxide (H2 O2 ) substrate and a 65.2-fold increase in the catalytic efficiency when compared to Cu-N-C SAzyme with Cu-N3 sites. Further theoretical studies reveal that the increased electron density around single-atom Cu is achieved through electron redistribution, and the efficient charge transfer between Cu-N/S-C and H2 O2 is demonstrated to be more beneficial for the adsorption and activation of H2 O2 . The as-designed Cu-N/S-C SAzyme possesses an excellent antitumor effect through the synergy of catalytic therapy and oxygen-dependent phototherapy. This study provides a strategy for the rational design of SAzymes, and the proposed electron redistribution and charge transfer mechanism will help to understand the coordination environment effect of single-atom metal sites on H2 O2 -mediated enzyme-like catalytic processes.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Along Han
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - You Zhou
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Mengxue Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haokun Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Ou H, Qian Y, Yuan L, Li H, Zhang L, Chen S, Zhou M, Yang G, Wang D, Wang Y. Spatial Position Regulation of Cu Single Atom Site Realizes Efficient Nanozyme Photocatalytic Bactericidal Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305077. [PMID: 37497609 DOI: 10.1002/adma.202305077] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Recently, single-atom nanozymes have made significant progress in the fields of sterilization and treatment, but their catalytic performance as substitutes for natural enzymes and drugs is far from satisfactory. Here, a method is reported to improve enzyme activity by adjusting the spatial position of a single-atom site on the nanoplatforms. Two types of Cu single-atom site nanozymes are synthesized in the interlayer (CuL /PHI) and in-plane (CuP /PHI) of poly (heptazine imide) (PHI) through different synthesis pathways. Experimental and theoretical analysis indicates that the interlayer position of PHI can effectively adjust the coordination number, coordination bond length, and electronic structure of Cu single atoms compared to the in-plane position, thereby promoting photoinduced electron migration and O2 activation, enabling effective generate reactive oxygen species (ROS). Under visible light irradiation, the photocatalytic bactericidal activity of CuL /PHI against aureus is ≈100%, achieving the same antibacterial effect as antibiotics, after 10 min of low-dose light exposure and 2 h of incubation.
Collapse
Affiliation(s)
- Honghui Ou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuping Qian
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - He Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ludan Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Guidong Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Shi T, Cui Y, Yuan H, Qi R, Yu Y. Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2760. [PMID: 37887911 PMCID: PMC10609188 DOI: 10.3390/nano13202760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
To fight against antibacterial-resistant bacteria-induced infections, the development of highly efficient antibacterial agents with a low risk of inducing resistance is exceedingly urgent. Nanozymes can rapidly kill bacteria with high efficiency by generating reactive oxygen species via enzyme-mimetic catalytic reactions, making them promising alternatives to antibiotics for antibacterial applications. However, insufficient catalytic activity greatly limits the development of nanozymes to eliminate bacterial infection. By increasing atom utilization to the maximum, single-atom nanozymes (SAzymes) with an atomical dispersion of active metal sites manifest superior enzyme-like activities and have achieved great results in antibacterial applications in recent years. In this review, the latest advances in antibacterial SAzymes are summarized, with specific attention to the action mechanism involved in antibacterial applications covering wound disinfection, osteomyelitis treatment, and marine antibiofouling. The remaining challenges and further perspectives of SAzymes for practical antibacterial applications are also discussed.
Collapse
Affiliation(s)
- Tongyu Shi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Yuanyuan Cui
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (T.S.); (Y.C.); (H.Y.)
| | - Yu Yu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
19
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
20
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Luo Z, Xu W, Wu Z, Jiao L, Luo X, Xi M, Su R, Hu L, Gu W, Zhu C. Iron Single-Atom Catalyst-Enabled Peroxydisulfate Activation Enhances Cathodic Electrochemiluminescence of Tris(bipyridine)ruthenium(II). Anal Chem 2023. [PMID: 37421333 DOI: 10.1021/acs.analchem.3c01822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The tris(bipyridine)ruthenium(II) (Ru(bpy)32+)-tripropylamine anodic electrochemiluminescence (ECL) system has been widely applied in commercial bioanalysis. However, the presence of amine compounds in the biological environment results in unavoidable anodic interference signals, which hinder further extensive use of the system. In contrast, the cathodic Ru(bpy)32+ ECL system can overcome these limitations. The Ru(bpy)32+/peroxydisulfate (S2O82-, PDS) ECL system has been extensively employed due to its ability to produce a sulfate radical anion (SO4•-) with strong oxidation ability, which enhances the ECL signal. However, the symmetrical molecular structure of PDS makes it challenging to be activated and causes low luminescence efficiency. To address this issue, we propose an efficient Ru(bpy)32+-based ternary ECL system that uses the iron-nitrogen-carbon single-atom catalyst (Fe-N-C SAC) as an advanced accelerator. Fe-N-C SAC can efficiently activate PDS into reactive oxygen species at a lower voltage, which significantly boosts the cathodic ECL emission of Ru(bpy)32+. Benefiting from the outstanding catalytic activity of Fe-N-C SAC, we successfully established an ECL biosensor that detects alkaline phosphatase activity with high sensitivity, demonstrating the feasibility of practical application.
Collapse
Affiliation(s)
- Zhen Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhichao Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xin Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
22
|
He Y, Dai L, Hu L, Lei Y, Wang M. Ratiometric fluorescent detection of total phosphates in frozen shrimp samples using catalytic active Zr(IV) modified gold nanoclusters. Food Chem 2023; 426:136564. [PMID: 37327763 DOI: 10.1016/j.foodchem.2023.136564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Phosphate salts are important food additives in a variety of foods. In this study, the Zr(IV) modified gold nanoclusters (Au NCs) were prepared for ratiometric fluorescent sensing of phosphate additives in seafood samples. Compared with bare Au NCs, the synthesized Zr(IV)/Au NCs showed stronger orange fluorescence at 610 nm. On the other hand, the Zr(IV)/Au NCs retained the phosphatase-like activity of Zr(IV) ions and could catalyze the hydrolysis of fluorescent substrate 4-methylumbelliferyl phosphate to produce blue emission at 450 nm. The addition of phosphate salts could effectively inhibit the catalytic activity of Zr(IV)/Au NCs, resulting the fluorescence decrease at 450 nm. However, the fluorescence at 610 nm almost unchanged upon the addition of phosphates. Based on this finding, the ratiometric detection of phosphates using the fluorescence intensity ratio (I450/I610) was demonstrated. The method has been further applied for sensing total phosphates in frozen shrimp samples with satisfactory results.
Collapse
Affiliation(s)
- Yuting He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Ling Dai
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yao Lei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
23
|
Single-atom nanozymes with axial ligand-induced self-adaptive conformation in alkaline medium boost chemiluminescence. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
24
|
Luo X, Huang G, Bai C, Wang C, Yu Y, Tan Y, Tang C, Kong J, Huang J, Li Z. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130277. [PMID: 36334570 DOI: 10.1016/j.jhazmat.2022.130277] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Concerns regarding pesticide residues have driven attempts to exploit accurate, prompt and straightforward approaches for food safety pre-warning. Herein, a nanozyme-mediated versatile platform with multiplex signal response (colorimetric, fluorescence and temperature) was proposed for visual, sensitive and portable detection of glyphosate (GLP). The platform was constructed based on a N-CDs/FMOF-Zr nanosensor that prepared by in situ anchoring nitrogen-doped carbon dots onto zirconium-based ferrocene metal-organic framework nanosheets. The N-CDs/FMOF-Zr possessed excellent peroxidase (POD)-like activity and thus could oxide colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue oxidized TMB (oxTMB) in presence of H2O2. Intriguingly, owing to the blocking effect triggered by multiple interaction between GLP and N-CDs/FMOF-Zr, its POD-like activity of the latter was remarkably suppressed, which can modulate the transformation of TMB into oxTMB, generating tri-signal responses of fluorescence enhancement, absorbance and temperature decrease. More significantly, the temperature mode can be facilely realized by a portable home-made mini-photothermal device and handheld thermometers. The proposed multimodal sensing was capable of providing sensitive results by fluorescence mode and simultaneously realized visual/portable testing by colorimetric and photothermal channels. Consequently, it exhibited more adaptability for practical applications, which can satisfy different testing requirements according to sensitivity and available instruments/meters, presenting a new horizon for exploiting multifunctional sensors.
Collapse
Affiliation(s)
- Xueli Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gengli Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenxu Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chunyan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ying Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Youwen Tan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chenyu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Henan 461000, PR China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
25
|
Meng Y, Zhang D, Song Y, Yang X, Gao Y, Ma J, Hu Z, Zheng X. Precisely designed Fe x ( x = 1-2) cluster nanocatalysts for effective nanocatalytic tumor therapy. NANOSCALE 2023; 15:2305-2315. [PMID: 36636960 DOI: 10.1039/d2nr05869c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomically dispersed metal clusters are considered as promising nanocatalysts due to their excellent physicochemical properties. Here, we report a novel strategy for precisely designing Fex (x = 1-2) cluster nanocatalysts (Fe1-N-C and Fe2-N-C) with dual catalytic activity, which can catalyze H2O2 into reactive oxygen species (ROS) and oxidize glutathione (GSH) into glutathione disulfide simultaneously. The adsorption energies of Fe-N sites in Fe2-N-C for GSH and H2O2 intermediates were well controlled due to the orbital modulation of adjacent Fe sites, contributing to the higher dual catalytic activity compared to Fe1-N-C. Additionally, tamoxifen (TAM) was loaded into Fe2-N-C (Fe2@TDF NEs) to down-regulate the intracellular pH for higher Fenton-like catalytic efficiency and ROS production. The generated ROS could induce apoptosis and lipid peroxidation, triggering ferroptosis. Meanwhile, upregulation of ROS and lipid peroxidation, along with GSH depletion and GPX4 downregulation could promote the apoptosis and ferroptosis of tumor cells. In addition, the lactic acid accumulation effect of TAM and the high photothermal conversion ability of Fe2@TDF NEs could further enhance the catalytic activity to achieve synergistic antitumor effects. As a result, this work highlights the critical role of adjacent metal sites at the atomic-level and provides a rational guidance for the design and application of nanocatalytic antitumor systems.
Collapse
Affiliation(s)
- Yanfei Meng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Dongsheng Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Yingzi Song
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Xinyi Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
| | - Yongli Gao
- Linyi People's Hospital, Linyi 276000, P. R. China
| | - Jun Ma
- Medical College of Linyi University, Linyi 276000, P.R. China
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, P.R. China.
- Medical College of Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
26
|
Cai X, Ma F, Jiang J, Yang X, Zhang Z, Jian Z, Liang M, Li P, Yu L. Fe-N-C single-atom nanozyme for ultrasensitive, on-site and multiplex detection of mycotoxins using lateral flow immunoassay. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129853. [PMID: 36084459 DOI: 10.1016/j.jhazmat.2022.129853] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Sensitive, on-site and multiple detection of mycotoxins is a vital early-warning tool to minimize food losses and protect human health and the environment. Although paper-based lateral flow immunoassay (LFIA) has been extensively applied in mycotoxins monitoring, low-cost, portable, ultrasensitive and quantitative detection is still a formidable challenge. Herein, a series of Fe-N-C single-atom nanozymes (SAzymes) were synthesized and systematic characterized. The optimal Fe-N-C SAzyme with highly efficient catalytic performance was successfully used as both label and catalyst in lateral flow immunoassays for mycotoxin detection. By taking advantage of the catalytic amplified system, the qualitative and quantitative detection can be easily and flexibly done via observing the test lines by naked eyes or a smartphone, with the limit of detections (LODs) of 2.8 and 13.9 pg mL-1 for AFB1 and FB1, which were respectively over 700- and 71,000-fold lower than the maximum limit set by the European Union. Besides, underlying catalytic mechanisms and the active sites of the Fe-N-C SAzyme are also investigated by DFT simulation. This work not only provides a promising detection strategy for the application of advanced SAzymes but also offers experimental and theoretical guidelines to understand the active centers of Fe-N-C SAzymes and the catalytic process.
Collapse
Affiliation(s)
- Xinfa Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xianglong Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Zelang Jian
- Wuhan University of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Material Science and Engineering, Wuhan 430070, PR China
| | - Meijuan Liang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| |
Collapse
|
27
|
Jin C, Fan S, Zhuang Z, Zhou Y. Single-atom nanozymes: From bench to bedside. NANO RESEARCH 2023; 16:1992-2002. [PMID: 36405985 PMCID: PMC9643943 DOI: 10.1007/s12274-022-5060-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 05/06/2023]
Abstract
Single-atom nanozymes (SANs) are the new emerging catalytic nanomaterials with enzyme-mimetic activities, which have many extraordinary merits, such as low-cost preparation, maximum atom utilization, ideal catalytic activity, and optimized selectivity. With these advantages, SANs have received extensive research attention in the fields of chemistry, energy conversion, and environmental purification. Recently, a growing number of studies have shown the great promise of SANs in biological applications. In this article, we present the most recent developments of SANs in anti-infective treatment, cancer diagnosis and therapy, biosensing, and antioxidative therapy. This text is expected to better guide the readers to understand the current state and future clinical possibilities of SANs in medical applications.
Collapse
Affiliation(s)
- Chanyuan Jin
- Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101 China
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081 China
| |
Collapse
|
28
|
Zhou L, Liu Y, Lu Y, Zhou P, Lu L, Lv H, Hai X. Recent Advances in the Immunoassays Based on Nanozymes. BIOSENSORS 2022; 12:1119. [PMID: 36551085 PMCID: PMC9776222 DOI: 10.3390/bios12121119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
As a rapid and simple method for the detection of multiple targets, immunoassay has attracted extensive attention due to the merits of high specificity and sensitivity. Notably, enzyme-linked immunosorbent assay (ELISA) is a widely used immunoassay, which can provide high detection sensitivity since the enzyme labels can promote the generation of catalytically amplified readouts. However, the natural enzyme labels usually suffer from low stability, high cost, and difficult storage. Inspired by the advantages of superior and tunable catalytic activities, easy preparation, low cost, and high stability, nanozymes have arisen to replace the natural enzymes in immunoassay; they also possess equivalent sensitivity and selectivity, as well as robustness. Up to now, various kinds of nanozymes, including mimic peroxidase, oxidase, and phosphatase, have been incorporated to construct immunosensors. Herein, the development of immunoassays based on nanozymes with various types of detection signals are highlighted and discussed in detail. Furthermore, the challenges and perspectives of the design of novel nanozymes for widespread applications are discussed.
Collapse
|
29
|
Wei X, Song S, Song W, Wen Y, Xu W, Chen Y, Wu Z, Qin Y, Jiao L, Wu Y, Sha M, Huang J, Cai X, Zheng L, Hu L, Gu W, Eguchi M, Asahi T, Yamauchi Y, Zhu C. Tuning iron spin states in single-atom nanozymes enables efficient peroxidase mimicking. Chem Sci 2022; 13:13574-13581. [PMID: 36507158 PMCID: PMC9682990 DOI: 10.1039/d2sc05679h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
The large-scale application of nanozymes remains a significant challenge owing to their unsatisfactory catalytic performances. Featuring a unique electronic structure and coordination environment, single-atom nanozymes provide great opportunities to vividly mimic the specific metal catalytic center of natural enzymes and achieve superior enzyme-like activity. In this study, the spin state engineering of Fe single-atom nanozymes (FeNC) is employed to enhance their peroxidase-like activity. Pd nanoclusters (PdNC) are introduced into FeNC, whose electron-withdrawing properties rearrange the spin electron occupation in Fe(ii) of FeNC-PdNC from low spin to medium spin, facilitating the heterolysis of H2O2 and timely desorption of H2O. The spin-rearranged FeNC-PdNC exhibits greater H2O2 activation activity and rapid reaction kinetics compared to those of FeNC. As a proof of concept, FeNC-PdNC is used in the immunosorbent assay for the colorimetric detection of prostate-specific antigen and achieves an ultralow detection limit of 0.38 pg mL-1. Our spin-state engineering strategy provides a fundamental understanding of the catalytic mechanism of nanozymes and facilitates the design of advanced enzyme mimics.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing 102249 P. R. China
| | - Yating Wen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Yifeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Zhichao Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Meng Sha
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Jiajia Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences Beijing Synchrotron Radiation Facility Beijing 100049 P. R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology Wuhan 430205 P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku Tokyo 169-8555 Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University Wuhan 430079 PR China
| |
Collapse
|
30
|
Chen T, Zhou D, Hou S, Li Y, Liu Y, Zhang M, Zhang G, Xu H. Designing Hierarchically Porous Single Atoms of Fe-N 5 Catalytic Sites with High Oxidase-like Activity for Sensitive Detection of Organophosphorus Pesticides. Anal Chem 2022; 94:15270-15279. [DOI: 10.1021/acs.analchem.2c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Dandan Zhou
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Shenghuai Hou
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yan Li
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Ying Liu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Manlin Zhang
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Ganbing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan430062, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| |
Collapse
|
31
|
Zhou M, Huang H, Zhao X, Cheng Z, Deng W, Tan Y, Xie Q. A Novel Signaling Strategy for an Ultrasensitive Photoelectrochemical Immunoassay Based on Electro-Fenton Degradation of Liposomes on a Photoelectrode. Anal Chem 2022; 94:13913-13920. [PMID: 36166257 DOI: 10.1021/acs.analchem.2c02827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A signaling strategy can directly determine the analytical performance and application scope of photoelectrochemical (PEC) immunoassays, so it is of great significance to develop an effective signaling strategy. The electro-Fenton reaction has been extensively used to degrade organic pollutants, but it has not been applied to PEC immunoassays. Herein, we report a novel signaling strategy for a PEC immunoassay based on electro-Fenton degradation of liposomes (Lip) on a photoelectrode. Lip vesicles are coated on Au@TiO2 core-shell photoactive material, which can prevent ascorbic acid (AA) from scavenging photogenerated holes. In the presence of a target, the immunomagnetic bead labels are converted to Fe3+ for electro-Fenton reaction, and hydroxyl radicals generated by the electro-Fenton reaction can degrade the Lip vesicles on the photoelectrode. Because of the degradation of Lip vesicles, photogenerated holes can be scavenged more effectively by AA, leading to an increase in photocurrent. Based on the electro-Fenton-regulated interface electron transfer, the sensitive "signal on" PEC immunoassay of a carcinoembryonic antigen is achieved, which features a dynamic range from 0.05 to 5 × 104 pg mL-1 and a detection limit of 0.01 pg mL-1. Our work provides a novel and efficient PEC immunoassay platform by introducing the electro-Fenton reaction into PEC analysis.
Collapse
Affiliation(s)
- Min Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hui Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiao Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
32
|
Jiang B, Guo Z, Liang M. Recent progress in single-atom nanozymes research. NANO RESEARCH 2022; 16:1878-1889. [PMID: 36118987 PMCID: PMC9465666 DOI: 10.1007/s12274-022-4856-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Single-atom nanozyme (SAzyme) is the hot topic of the current nanozyme research. Its intrinsic properties, such as high activity, stability, and low cost, present great substitutes to natural enzymes. Moreover, its fundamental characteristics, i.e., maximized atom utilizations and well-defined geometric and electronic structures, lead to higher catalytic activities and specificity than traditional nanozymes. SAzymes have been applied in many biomedical areas, such as anti-tumor therapy, biosensing, antibiosis, and anti-oxidation therapy. Here, we will discuss a series of representative examples of SAzymes categorized by their biomedical applications in this review. In the end, we will address the future opportunities and challenges SAzymes facing in their designs and applications.
Collapse
Affiliation(s)
- Bing Jiang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
33
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
34
|
Hu Q, Hu S, Li S, Liu S, Liang Y, Cao X, Luo Y, Xu W, Wang H, Wan J, Feng W, Niu L. Boronate Affinity-Based Electrochemical Aptasensor for Point-of-Care Glycoprotein Detection. Anal Chem 2022; 94:10206-10212. [DOI: 10.1021/acs.analchem.2c01699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shuhan Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Sijie Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wanjing Xu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Haocheng Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
35
|
Liu X, Liu Y, Yang W, Feng X, Wang B. Controlled Modification of Axial Coordination for Transition-Metal Single-Atom Electrocatalyst. Chemistry 2022; 28:e202201471. [PMID: 35707987 DOI: 10.1002/chem.202201471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 12/16/2022]
Abstract
Single-atom catalysts (SACs) have emerged as a new frontier in areas such as electrocatalysis, photocatalysis, and enzymatic catalysis. Aided by recent advances in the synthetic methodologies of nanomaterials, atomic characterization technologies, and theoretical calculation modeling, various SACs have been prepared for a variety of catalytic reactions. To meet the requirements of SACs with distinctive performance and appreciable selectivity, much research has been carried out to adjust the coordination configuration and electronic properties of SACs. This concept summarizes the latest advances in the experimental and computational efforts aimed at tuning the axial coordination of SACs. Series of atoms, functional groups or even macrocycles are oriented into the atomic metal center, and how this affects the electrocatalytic performance is also reviewed. Finally, this concept presents perspectives for the further precise design, preparation and in-situ detection of axially coordinated SACs.
Collapse
Affiliation(s)
- Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
36
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|
37
|
Li J, Jiao L, Xiao X, Nashalian A, Mathur S, Zhu Z, Wu W, Guo W, Zhai Y, Lu X, Chen J. Flexible Prussian Blue‐Au Fibers as Robust Peroxidase‐Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. ELECTROANAL 2022. [DOI: 10.1002/elan.202200116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Lei Jiao
- Central China Normal University CHINA
| | - Xiao Xiao
- University of California Los Angeles UNITED STATES
| | | | | | | | | | | | | | | | - Jun Chen
- University of California Los Angeles UNITED STATES
| |
Collapse
|
38
|
Tang M, Li J, Cai X, Sun T, Chen C. Single-atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chem Asian J 2022; 17:e202101422. [PMID: 35143111 DOI: 10.1002/asia.202101422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Indexed: 11/07/2022]
Abstract
Nanozymes have received extensive attention in the fields of sensing and detection, medical therapy, industry, and agriculture thanks to the combination of the catalytic properties of natural enzymes and the physicochemical properties of nanomaterials, coupled with superior stability and ease of preparation. Despite the promise of nanozymes, conventional nanozymes are constrained by their oversized size and low catalytic capacity in sophisticated practical application environments. single-atom nanozymes (SAzymes) were characterized as nanozymes with high catalytic efficiency by uniformly distributed single atoms as catalysis sites, thus effectively addressing the defects of conventional nanozymes. This paper reviews the activity improvement scheme and catalytic mechanism of SAzymes and highlights the latest research progress of SAzymes in the fields of biomedical sensing and therapy. Eventually, the challenges and future directions of SAzymes are discussed in this paper.
Collapse
Affiliation(s)
- Minglu Tang
- Northeast Forestry University, Department of chemistry, CHINA
| | - Jingqi Li
- Northeast Forestry University, Department of chemistry, CHINA
| | - Xinda Cai
- Northeast Forestry University, Department of chemistry, CHINA
| | - Tiedong Sun
- Northeast Forestry University, 26 Hexing road, Xiangfang district, Harbin city, Heilongjiang province, 150040, Harbin, CHINA
| | - Chunxia Chen
- Northeast Forestry University, Department of chemistry, CHINA
| |
Collapse
|
39
|
Long B, Zhao Y, Cao P, Wei W, Mo Y, Liu J, Sun CJ, Guo X, Shan C, Zeng MH. Single-Atom Pt Boosting Electrochemical Nonenzymatic Glucose Sensing on Ni(OH)2/N-Doped Graphene. Anal Chem 2022; 94:1919-1924. [DOI: 10.1021/acs.analchem.1c04912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Baojun Long
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Yuanmeng Zhao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Peiyu Cao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Wen Wei
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Yan Mo
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Juejing Liu
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Changsheng Shan
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
| | - Ming-Hua Zeng
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei 430062, P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|