1
|
Guo Z, Zhang M, Zhang H, Ren X, Xiao Y, Sun W, Wang Y, Liu S, Huang J. Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching. Mikrochim Acta 2024; 192:33. [PMID: 39725729 DOI: 10.1007/s00604-024-06883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB2+), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg2+-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy. The presence of OTA triggers CHA and signaling responses along with the formation of G-quadruplex-hemin DNAzyme, which promotes the oxidation of TMB with H2O2, leading to the etching of AuNRs and a reduction in their aspect ratio. AuNRs experienced a blue shift in the longitudinal localized surface plasmon resonance peak, resulting in a color change. The technique has been shown to detect OTA with a low detection limit of 0.309 pg/mL, demonstrating high sensitivity and specificity. The detection technique offers versatility by enabling the detection of other pollutants through a simple replacement of the aptamer, expanding the range of detection platforms available for pollutant determinations.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Mingshuo Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haiping Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xinru Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yijing Xiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Weiqing Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, People's Republic of China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, People's Republic of China.
| |
Collapse
|
2
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
3
|
Yang H, Wu Z, Sun S, Zhang S, Shi P. A DNA nanowire based-DNAzyme walker for amplified imaging of microRNA in tumor cells. J Mater Chem B 2024; 12:11381-11388. [PMID: 39403919 DOI: 10.1039/d4tb01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging. Here, we report a DNA nanowire based-DNAzyme Walker (D-Walker), which loads the DNAzyme based-molecular beacon (D-MB) onto DNA nanowires (NWs) functionalized with aptamers. The experimental results demonstrated that the intracellular target miRNA can specifically activate the pre-locked DNAzyme through a strand displacement reaction, thereby triggering the cleavage of its substrate molecular beacon (MB) and subsequent fluorescence emission. NWs decorated with aptamers can effectively prevent the degradation of the D-Walker by nuclease, and can enter target cells without any transfection reagents, which enhances the stability and reliability of cell imaging. Furthermore, the D-Walker exhibited a remarkable sensitivity with a limit of detection (LOD) of 61 pM and was capable of distinguishing miRNA-21 from other closely related family members. This study provides a novel strategy for intracellular miRNA imaging, offering a promising tool for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoqi Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|
4
|
Yu M, Zhang Y, Zhang M, Zhang X, Hu M, Li L, Yu Z, Xu Y, Guo Y, Sun H, Zhang W. Enzymatically Cyclic Activated Biosensor Based on a Tetrahedral DNA Framework for Precise Tumor in Situ Molecular Imaging. ACS Sens 2024; 9:5302-5311. [PMID: 39388771 DOI: 10.1021/acssensors.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The development of stimulus-responsive and amplification-based strategies is crucial for achieving improved spatial specificity and enhanced sensitivity in tumor molecular imaging, addressing challenges such as off-tumor signal leakage and limited biomarker content. Therefore, a cyclically activated enzymatic biosensor based on the modification of an AP site within a tetrahedral framework DNA (AP-tFNA) was rationally developed for tumor cell-specific molecular imaging using the endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) as a target, exhibiting superior spatial specificity and high sensitivity. APE1, which predominantly localizes within the nucleus in normal cells but exhibits cytosolic and nucleus expression in cancer cells, can specifically recognize and cleave the AP site in AP-tFNA, resulting in the separation of the fluorophore and quenching group, thereby inducing a fluorescence signal. Additionally, upon completion of the excision of one AP site in AP-tFNA, APE1 is released, thereby initiating a subsequent cycle of hydrolytic cleavage reactions. The experimental results demonstrated that AP-tFNA enables precise differentiation of tumor cells both in vitro and in vivo. In particular, the AP-tFNA can monitor drug resistance in neuroblastoma cells and classify the risk for neuroblastoma patients at the clinical plasma level.
Collapse
Affiliation(s)
- Muchun Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ying Xu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yanjun Guo
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Huiqing Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Zhengzhou 450018, China
| |
Collapse
|
5
|
Han Y, Jiang M, Zhou J, Lei H, Yuan R, Chai Y. The Acid-Stimulated Self-Assembled DNA Nanonetwork for Sensitive Detection and Living Cancer Cell Imaging of MicroRNA-221. Anal Chem 2024; 96:16715-16723. [PMID: 39392416 DOI: 10.1021/acs.analchem.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, a novel functional DNA structure, acid-stimulated self-assembly DNA nanonetwork (ASDN), was proposed for miRNA-221 sensitive detection and high-resolution living cancer cell imaging. Significantly, the self-assembly of ASDN only occurred in the acidic extracellular environment of cancer cells, which could be endocytosed by cancer cells to eliminate the interference of noncancer cells and deliver the ASDN into cancer cells. Subsequently, endogenous miRNA-221 could trigger the catalytic hairpin assembly within ASDN, resulting in the separation of the fluorophore Cy5 and the quencher BHQ2 to recover the substantial Cy5 fluorescence signals, thus achieving signal amplification for sensitive detection of miRNA-221 with a detection limit of 5.5 pM, as well as facilitating high-resolution and low-background imaging of miRNA-221 in cancer cells. In consequence, this strategy provides an innovative DNA nanonetwork to distinguish cancer cells from other cells for sensitive detection of biomarkers, offering a meaningful reference for the application of DNA nanostructure self-assembly technology in relevant fundamental research and disease diagnosis.
Collapse
Affiliation(s)
- Yichen Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mengshi Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hongmin Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
6
|
Liu S, Zhao J, Wei J, Yuan R, Chen S. Dual-Function DNA Nanowires with Self-Feedback Amplification and Efficient Signal Transduction for Intracellular Imaging of MicroRNA-155. Anal Chem 2024; 96:13644-13651. [PMID: 39110983 DOI: 10.1021/acs.analchem.4c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Intracellular detection and imaging of microRNAs (miRNAs) with low expression usually face the problem of unsatisfactory sensitivity. Herein, a novel dual-function DNA nanowire (DDN) with self-feedback amplification and efficient signal transduction was developed for the sensitive detection and intracellular imaging of microRNA-155 (miRNA-155). Target miRNA-155 triggered catalytic hairpin assembly (CHA) to generate plenty of double-stranded DNA (dsDNA), and a trigger primer exposed in dsDNA initiated a hybridization chain reaction (HCR) between four well-designed hairpins to produce DDN, which was encoded with massive target sequences and DNAzyme. On the one hand, target sequences in DDN acted as self-feedback amplifiers to reactivate cascaded CHA and HCR, achieving exponential signal amplification. On the other hand, DNAzyme encoded in DDN acted as signal transducers, successively cleaving Cy5 and BHQ-2 labeled substrate S to obtain a significantly enhanced fluorescence signal. This efficient signal transduction coupling self-feedback amplification greatly improved the detection sensitivity with a limit of detection of 160 aM for miRNA-155, enabling ultrasensitive imaging of low-abundance miRNA-155 in living cells. The constructed DDN creates a promising fluorescence detection and intracellular imaging platform for low-expressed biomarkers, exhibiting tremendous potential in biomedical studies and clinical diagnosis of diseases.
Collapse
Affiliation(s)
- Shengjuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jian Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Yang Z, Zhou J, Liu F, Chai Y, Zhang P, Yuan R. CsPbBr 3 Perovskite Quantum Dots Encapsulated by a Polymer Matrix for Ultrasensitive Dynamic Imaging of Intracellular MicroRNA. Anal Chem 2024; 96:10738-10747. [PMID: 38898770 DOI: 10.1021/acs.analchem.4c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.
Collapse
Affiliation(s)
- Zezhou Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Jiang M, Zhou J, Chai Y, Yuan R. Ultrahigh-Speed 3D DNA Walker with Dual Self-Protected DNAzymes for Ultrasensitive Fluorescence Detection and Intracellular Imaging of microRNA. Anal Chem 2024; 96:9866-9875. [PMID: 38835317 DOI: 10.1021/acs.analchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.
Collapse
Affiliation(s)
- Mengshi Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
9
|
Zhang YW, Wang SM, Li XQ, Kang B, Chen HY, Xu JJ. Endogenous AND Logic DNA Nanomachine for Highly Specific Cancer Cell Imaging. Anal Chem 2024; 96:7030-7037. [PMID: 38656919 DOI: 10.1021/acs.analchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu-Min Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Liu X, Lu L, Zhang N, Jiang W. Regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. Talanta 2024; 269:125507. [PMID: 38056417 DOI: 10.1016/j.talanta.2023.125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Apoptosis is a typical programmed death mode with complex molecular regulation mechanisms. Developing advanced strategies to monitor apoptosis progression is conducive to disease treatment related with apoptosis. Herein, we developed a regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. The nanoprobe is constructed by modifying specially designed double-stranded DNA (dsDNA) and caspase 3-specific cleavable peptides (pep) to the surface of AuNP. After uptake by cells, the nanoprobe recognizes miRNA 21 and triggers fluorescence recovery, enabling silencing and imaging of the upstream signaling molecule miRNA 21. Once miRNA 21 is silenced, the downstream signaling molecule caspase 3 is activated and cleaves the substrate peptides, and fluorescence is restored for in situ imaging of caspase 3. The apoptosis induced by silencing miRNA 21 has been successfully implemented in HeLa and A549 cells. The expression level of miRNA 21 and corresponding changes of caspase 3 have also been effectively monitored. These results suggested this nanoprobe will be a potential tool for apoptosis-related biomedical research and clinical application.
Collapse
Affiliation(s)
- Xiaoting Liu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Ling Lu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
11
|
Sun Z, Ren Y, Zhu W, Xiao Y, Wu H. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. Analyst 2024; 149:599-613. [PMID: 38221846 DOI: 10.1039/d3an01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nucleic acids, including DNA and RNA, have been considered as powerful and functional biomaterials owing to their programmable structure, good biocompatibility, and ease of synthesis. However, traditional nucleic acid-based probes have always suffered from inherent limitations, including restricted cell internalization efficiency and structural instability. In recent years, DNA nanotechnology has shown great promise for the applications of bioimaging and drug delivery. The attractive superiorities of DNA nanostructures, such as precise geometries, spatial addressability, and improved biostability, have enabled them to be a novel category of nucleic acid delivery systems for biomedical applications. In this review, we introduce the development of DNA nanotechnology, and highlight recent advances of DNA nanostructure-based delivery systems for cellular imaging and therapeutic applications. Finally, we propose the challenges as well as opportunities for the future development of DNA nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Zhaorong Sun
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
12
|
Wu X, Shuai X, Nie K, Li J, Liu L, Wang L, Huang C, Li C. DNA-Based Fluorescent Nanoprobe for Cancer Cell Membrane Imaging. Molecules 2024; 29:267. [PMID: 38202850 PMCID: PMC10780466 DOI: 10.3390/molecules29010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression. This article examines the recent application of DNA nanomaterials for fluorescence imaging on cell membranes. First, we present the conditions for imaging DNA nanomaterials in the cell membrane microenvironment, such as the ATP, pH, etc. Second, we summarize the imaging applications of cell membrane receptors and other molecules. Finally, some difficulties and challenges associated with DNA nanomaterials in the imaging of cell membranes are presented.
Collapse
Affiliation(s)
- Xiaoqiao Wu
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Kunhan Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| |
Collapse
|
13
|
Wang FP, Guan Y, Liu JW, Cheng H, Hu R. A functional nucleic acid-based fluorescence sensing platform based on DNA supersandwich nanowires and cation exchange reaction. Analyst 2023; 148:5033-5040. [PMID: 37667620 DOI: 10.1039/d3an01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Accurate and sensitive analysis of p53 DNA is important for early diagnosis of cancer. In this work, a fluorescence sensing system based on DNA supersandwich nanowires and cation exchange (CX)-triggered multiplex signal amplification was constructed for the detection of p53 DNA. In the presence of p53 DNA, the DNA self-assembles to form a DNA supersandwich nanowire that generates long double-stranded DNA. Subsequently, the cation exchange (CX) reaction between ZnS and Ag+ was utilized to release free Zn2+. With the participation of Zn2+, DNAzyme catalyzes the hydrolysis of numerous catalytic molecular beacons, resulting in a greatly enhanced fluorescence signal due to the cycling of DNAzyme. The fluorescence values increased in proportion to the concentrations of p53 DNA in the range of 10 pM to 200 nM, and a detection limit (LOD) of 2.34 pM (S/N = 3) was obtained. This method provides an effective strategy for the quantitative detection of p53 DNA.
Collapse
Affiliation(s)
- Fu-Peng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Jia-Wen Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China.
| |
Collapse
|
14
|
Sun W, Yin J, Liu L, Wu Z, Wang Y, Liu T, Xiong H, Liu X, Wang X, Jiang H. Endogenous miRNA and K + Co-Activated Dynamic Assembly of DNA Coacervates for Intracellular miRNA Imaging and Mitochondrial Intervention. Anal Chem 2023; 95:14101-14110. [PMID: 37674256 DOI: 10.1021/acs.analchem.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intracellular dynamic assembly of DNA structures may be beneficial for the development of multifunctional nanoplatforms for the regulation of cell behaviors, providing new strategies for disease diagnosis and intervention. Herein, we propose the dynamic assembly of DNA coacervates in living cells triggered by miRNA-21 and K+, which can be used for both miRNA imaging and mitochondrial intervention. The rationale is that miRNA-21 can trigger the hybridization chain reaction to generate G-quadruplex precursors, and K+ can mediate the assembly of G-quadruplex-based coacervates, allowing the colorimetric detection of miRNA-21 ranging from 10 pM to 10 μM. Moreover, the as-formed DNA coacervates can specifically target mitochondria in MCF-7 breast cancer cells using the MCF-7 cell membrane as delivery carriers, which further act as an anionic shielding to inhibit communication between mitochondria and environments, with a significant inhibitory effect on ATP production and cellular migration behaviors. This work provides an ideal multifunctional nanoplatform for rationally interfering with cellular metabolism and migration behaviors through the dynamic assembly of DNA coacervates mediated by endogenous molecules, which has a large number of potential applications in the biomedical field, especially theranostics for cancer metastasis.
Collapse
Affiliation(s)
- Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhicheng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
15
|
Li X, Cheng J, Zeng K, Wei S, Xiao J, Lu Y, Zhu F, Wang Z, Wang K, Wu X, Zhang Z. Accelerated Hybridization Chain Reaction Kinetics Using Poly DNA Tetrahedrons and Its Application in Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41237-41246. [PMID: 37625096 DOI: 10.1021/acsami.3c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Traditional hybridization chain reaction (HCR) as a popular isothermal amplification technique shows some inevitable disadvantages in bioanalysis due to its relatively slow kinetics, which could be markedly promoted when the HCR initiator occurs under tension. Herein, a poly DNA tetrahedrons (pTDNs)-mediated HCR was successfully constructed to make its initiator in a stretched state by long-range electrostatic forces owing to the superimposed electrostatic interactions derived from the synthesized pTDNs, and it was hypothesized that it could remarkably enhance HCR performance, which was testified by theoretical simulations and experimental studies. Consequently, pTDNs-mediated HCR was applied to develop a novel immunoassay for rapid and sensitive detection of aflatoxin B1 as a proof-of-concept, and its signal amplification was attributed to the increased G4 DNAzyme that loaded on the second antibody. Our work paves a promising way using simple DNA frameworks alone to heighten HCR kinetics for reaction speed improvement and signal amplification in bioanalysis.
Collapse
Affiliation(s)
- Xuesong Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Zeng
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shulin Wei
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxuan Xiao
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanyan Lu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyang Wu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Han Y, Zhou J, Liu F, Ouyang Y, Yuan R, Chai YQ. pH-Stimulated Self-Locked DNA Nanostructure for the Effective Discrimination of Cancer Cells and Simultaneous Detection and Imaging of Endogenous Dual-MicroRNAs. Anal Chem 2023; 95:12754-12760. [PMID: 37590171 DOI: 10.1021/acs.analchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In this study, a pH-stimulated self-locked DNA nanostructure (SLDN) was developed to efficiently distinguish cancer cells from other cells for the simultaneous detection and imaging of endogenous dual-microRNAs (miRNAs). Impressively, the SLDN was specifically unlocked in the acidic environment of cancer cells to form unlocked-SLDN to disengage the i-motif sequence with a labeled fluorophore for the recovery of a fluorescence signal, resulting in the differentiation of cancer cells from normal cells. Meanwhile, unlocked-SLDN could combine and recognize the targets miRNA-21 and miRNA-155 simultaneously to trigger the hybridization chain reaction (HCR) amplification for sensitive dual-miRNA detection, with detection limits of 1.46 pM for miRNA-21 and 0.72 pM for miRNA-155. Significantly, compared with the current miRNA imaging strategy based on the traditional DNA nanostructure, the strategy proposed here remarkably eliminates the interference of normal cells to achieve high-resolution colocation imaging of miRNAs in tumor cells with an ultralow background signal. This work provided a specific differentiation method for tumor cells to materialize sensitive biomarker detection and distinguishable high-definition live-cell imaging for precise cancer diagnosis and multifactor research of tumor progression.
Collapse
Affiliation(s)
- Yichen Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- The Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
17
|
Huang X, Li Z, Tong Y, Zhang Y, Shen T, Chen M, Huang Z, Shi Y, Wen S, Liu SY, Guo J, Zou X, Dai Z. DNAzyme-Amplified Cascade Catalytic Hairpin Assembly Nanosystem for Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2023; 95:11793-11799. [PMID: 37402285 DOI: 10.1021/acs.analchem.3c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Shaoqiang Wen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
18
|
Wang J, Wang K, Peng H, Zhang Z, Yang Z, Song M, Jiang G. Entropy-Driven Three-Dimensional DNA Nanofireworks for Simultaneous Real-Time Imaging of Telomerase and MicroRNA in Living Cells. Anal Chem 2023; 95:4138-4146. [PMID: 36790864 DOI: 10.1021/acs.analchem.2c05200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Real-time monitoring of different types of intracellular tumor-related biomarkers is of key importance for the identification of tumor cells. However, it is hampered by the low abundance of biomarkers, inefficient free diffusion of reactants, and complex cytoplasmic milieu. Herein, we present a stable and general method for in situ imaging of microRNA-21 and telomerase utilizing simple highly integrated dual tetrahedral DNA nanostructures (TDNs) that can naturally enter cells, which could initiate to form the three-dimensional (3D) higher-order DNA superstructures (DNA nanofireworks, DNFs) through a reliable target-triggered entropy-driven strand displacement reaction in living cells for remarkable signal amplification. Importantly, the excellent biostability, biocompatibility, and sensitivity of this approach benefited from (i) the precise multidirectional arrangement of probes with a pure DNA structure and (ii) the local target concentration enhanced by the spatially confined microdomain inside the DNFs. This strategy provides a pivotal molecular toolbox for broad applications such as biomedical imaging and early precise cancer diagnosis.
Collapse
Affiliation(s)
- Jin Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaixuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.,School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Li D, Zhang XL, Chai YQ, Yuan R. Controllable Three-Dimensional DNA Nanomachine-Mediated Electrochemical Biosensing Platform for Rapid and Ultrasensitive Detection of MicroRNA. Anal Chem 2023; 95:1490-1497. [PMID: 36596235 DOI: 10.1021/acs.analchem.2c04519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, a high-efficiency controllable three-dimensional (3D) DNA nanomachine (CDNM) was reasonably developed by regulating the diameter of the core and the length of the DNAzyme cantilever, which acquired greater amplification efficiency and speedier walking rate than traditional 3D DNA nanomachines with gold nanoparticles as the cores and DNAzymes as the walking arms. Significantly, once the target miRNA-21 existed, a large number of silent DNAzymes on the CDNM could be activated by enzyme-free-target-recycling amplification (EFTRA) to achieve fast cleavage and walking on the biosensor surface under the interaction of Mg2+. Impressively, when the diameter of the core was 40 nm and the length of the DNAzyme cantilever was 5 nm (15 bp), the CDNM could complete the reaction process in 60 min that was at least twice shorter than those of conventional DNA nanomachines. Moreover, the designed electrochemical biosensor successfully detected target miRNA-21 at an ultrasensitive level with a wide response range (100 aM to 1 nM) and a low detection limit (33.1 aM). Therefore, the developed CDNM provides a new idea for exploring functional DNA nanomachines in the field of biosensing for applications.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
20
|
Dong Z, Xu X, Ni J, Li Y, An K, Meng L, Wu H. Cruciate DNA probes for amplified multiplexed imaging of microRNAs in living cells. J Mater Chem B 2022; 11:204-210. [PMID: 36504047 DOI: 10.1039/d2tb02027k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The real-time imaging of low-abundance tumor-related microRNAs (miRNAs) in living cells holds great potential for early clinical diagnosis of cancers. However, the relatively low detection sensitivity and possible false-positive signals of a probe in complex cellular matrices remain critical challenges for accurate RNA detection. Herein, we developed a novel aptamer-functionalized cruciate DNA probe that enabled amplified multiple miRNA imaging in living cells via catalytic hairpin assembly (CHA). The cross-shaped design of the cruciate DNA probe improved the stability against nucleases and acted as a modular scaffold for CHA circuits for efficient delivery into tumor cells. The cruciate DNA probe allowed self-assembly through thermal annealing and displayed excellent performance for sensitive miRNA detection in vitro. The cruciate DNA probe could be internalized into nucleolin-overexpressed cells specifically via cell-targeting of the AS1411 aptamer, achieving amplified fluorescence imaging and quantitative evaluation of the expression of miRNAs in living cells. Through the simultaneous detection of intracellular multiple miRNAs, the developed cruciate DNA probe could provide more accurate information and reduce the chances of false positive signals for cancer diagnosis. This approach offers a new opportunity for promoting the development of miRNA-related biomedical research and tumor diagnostic applications.
Collapse
Affiliation(s)
- Zhe Dong
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jing Ni
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuancheng Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Kang An
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Ling Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
21
|
Zhan J, Liu Z, Liu R, Zhu JJ, Zhang J. Near-Infrared-Light-Mediated DNA-Logic Nanomachine for Bioorthogonal Cascade Imaging of Endogenous Interconnected MicroRNAs and Metal Ions. Anal Chem 2022; 94:16622-16631. [DOI: 10.1021/acs.analchem.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Yang F, Li S, Li X, Yuan R, Xiang Y. Robust DNA Cross-Linked Polymeric Lighting-Up Nanogel Facilitates Sensitive Live Cell MicroRNA Imaging. Anal Chem 2022; 94:16079-16085. [DOI: 10.1021/acs.analchem.2c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
23
|
Yu S, Shang J, He S, Wang Q, Li R, Chen Y, Liu X, Wang F. Multiply Guaranteed and Successively Amplified Activation of a Catalytic DNA Machine for Highly Efficient Intracellular Imaging of MicroRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203341. [PMID: 35843889 DOI: 10.1002/smll.202203341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
DNA amplification machines show great promise for intracellular imaging, yet are always constrained by off-site machinery activation or signal leakage, originating from the inherent thermodynamically driven hybridization between machinery substrates. Herein, an entropy-driven catalytic DNA amplification machine is integrated with the on-site amplified substrate exposure procedure to realize the high-contrast in vivo imaging of microRNA (miRNA). The key machinery substrate (fuel strands) is initially split into substrate subunits that are respectively grafted into an auxiliary DNA polymerization amplification accessory for eliminating the undesired signal leakage. Meanwhile, in target cells, the auxiliary polymerization accessory can be motivated by cell-specific mRNA for successively restoring their intact machine-propelling functions for guaranteeing the on-site amplified imaging of miRNA with high specificity. This intelligent on-site multiply guaranteed machinery can improve the specificity of catalytic DNA machines for discriminating different cell types and, thus, can provide a remarkable prospect in biomedical diagnosis.
Collapse
Affiliation(s)
- Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
24
|
Li X, Yang F, Li S, Yuan R, Xiang Y. Size-Discriminative DNA Nanocage Framework Enables Sensitive and High-Fidelity Imaging of Mature MicroRNA in Living Cells. Anal Chem 2022; 94:9927-9933. [PMID: 35749565 DOI: 10.1021/acs.analchem.2c02026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mature microRNAs (miRNAs) are closely associated with cell proliferation and differentiation, stress response, and carcinogenesis, and monitoring intracellular miRNAs can contribute to the studies of their regulatory roles and molecular mechanisms of disease progression. However, accurate and reliable detection of mature miRNAs in complex physiological environments encounters the challenge of undesired detection accuracy ascribed to the coexistence of their precursor microRNAs (pre-miRNAs) and degradation of sensing probes. Here, we demonstrate the synthesis of a new size-discriminative DNA nanocage framework (DNF) for the sensitive monitoring of mature miRNA-21 in living cells with high accuracy via cascaded toehold-mediated strand displacement reaction (TSDR) amplifications. The DNF is prepared by a simple self-assembly of six ssDNAs, and the signal probes are docked inside the DNF. Because of its rigid framework structure, the DNF shows enhanced enzyme stability. Upon entering cells, only the short target mature miRNA-21 sequences instead of the large-sized pre-miRNAs are allowed to be accommodated inside the cavity of the DNF owing to the size-discriminative capability of the DNF. The cascaded TSDR amplifications can thus be activated by the mature miRNA-21 together with endogenous ATP to result in magnified fluorescence for sensitive detection and selective discrimination of miRNA-21 from the interference pre-miRNAs. Our results indicate that the DNF probes can offer robust sensing means for detecting various intracellular mature miRNAs with high accuracy for disease diagnoses and biomedical studies.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
25
|
Dong C, Xiong J, Ni J, Fang X, Zhang J, Zhu D, Weng L, Zhang Y, Song C, Wang L. Intracellular miRNA-Triggered Surface-Enhanced Raman Scattering Imaging and Dual Gene-Silencing Therapy of Cancer Cell. Anal Chem 2022; 94:9336-9344. [PMID: 35728270 DOI: 10.1021/acs.analchem.2c00842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of theranostic nanosystems integrating cascaded surface-enhanced Raman scattering (SERS) imaging and gene silencing therapy for accurate cancer diagnosis and treatment is still a big challenge and rarely reported. Herein, a novel Au nanoparticles (AuNPs)-based theranostic nanosystem containing AuNP-Ys and AuNP-Ds for highly sensitive and specific cancer diagnosis and treatment was proposed for cascaded SERS imaging of intracellular cancer-related miR-106a and miR-106a-triggered DNAzyme-based dual gene-silencing therapy of cancer cells. The AuNP-Ys were prepared by modifying the AuNPs with specially designed Y-motifs, and the AuNP-Ds were obtained by colabeling Raman molecules and dsDNA linkers on AuNPs. When identifying the intracellular cancer-related miRNAs, the Y-motifs and dsDNA linkers undergoes miRNA-triggered ATP-driven conformational transitions and releases the miRNA for recycling, which results in the formation of AuNP network nanostructures to generate significantly enhanced SERS signals for sensitive identification of the cancer cells as well as the amplification and specific activation of DNAzymes to catalyze the Mg2+-assisted cleavage of the Survivin and c-Jun mRNAs for effective dual gene-silencing therapy of cancer cells. The AuNP-based theranostic nanosystem achieves the synergism of target-triggered SERS imaging and DNAzyme-based dual gene-silencing therapy with enhanced specificity, sensitivity, and curative effect, which can be a powerful tool for accurate diagnosis and efficient treatment of cancers.
Collapse
Affiliation(s)
- Chen Dong
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingrong Xiong
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Ni
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinyue Fang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dan Zhu
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chunyuan Song
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
26
|
Su ML, Chen ZP, Ye BB, Chen HR, Yuan R, Li P, Liang WB. Three-in-One System Based on Multi-Path Nucleic Acid Amplification for Bioanalysis of Pre-miRNA/miRNA and Dicer Activity. Anal Chem 2022; 94:8258-8266. [PMID: 35640096 DOI: 10.1021/acs.analchem.2c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Today, a lot of attention is being paid to the pre-miRNAs/miRNAs or activity of Dicer due to their important functions in various physiological processes. Especially, the intrinsic relationship among these associated targets is of significant importance for more in-depth research on the mechanism of disease formation and early diagnosis. Herein, a strategy for simultaneous bioanalysis of miRNAs/pre-miRNAs and Dicer enzyme based on the self-designed multi-path nucleic acid amplification technology was proposed. Typically, in the presence of pre-miRNA-155, it can hybridize with Helper to generate a structure with two new toeholds, one of which could react with H1, H2, and H3, performing a modified CHA reaction with obvious fluorescence responses of FAM, and another of which could hybridize with H4, H5, and H6 to construct the [H4-H5-H6]n DNA nanosphere with obvious fluorescence responses of Cy5. Similarly, miRNA-155 could just hybridize with H1, H2, and H3 to generate the same modified CHA reaction with obvious fluorescence responses of FAM. Due to the successful multi-path nucleic acid amplification, the proposed bioanalysis strategy could be successfully employed for miRNA-155 and pre-miRNA-155 analysis in the range from 500 pM to 100 nM and 1 to 300 nM, respectively. The proposed strategy could be applied to explore another inter-related nucleic acid relationship also, providing great potential in bioanalysis of various nucleic acids.
Collapse
Affiliation(s)
- Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bei-Bei Ye
- Department of Maxillofacial and Ear Nose and Throat Oncology Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300020, PR China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ping Li
- Department of Maxillofacial and Ear Nose and Throat Oncology Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300020, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
27
|
Li J, Huang J. Fuel‐powered DNA nanomachines for biosensing and cancer therapy. Chempluschem 2022; 87:e202200098. [DOI: 10.1002/cplu.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Li
- Yangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Jin Huang
- Hunan University Chemistry lushan road 410082 Changsha CHINA
| |
Collapse
|
28
|
Zhao SJ, Zheng P, Wu Z, Jiang JH. DNA-Templated Bioorthogonal Reactions via Catalytic Hairpin Assembly for Precise RNA Imaging in Live Cells. Anal Chem 2022; 94:2693-2698. [PMID: 35119262 DOI: 10.1021/acs.analchem.1c05509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has been a significant interest in developing proximity-induced bioorthogonal reactions for nucleic acid detection and imaging, owing to their high specificity and tunable reaction kinetics. Herein, we reported the first design of a fluorogenic sensor by coupling a bioorthogonal reaction with a DNA cascade circuit for precise RNA imaging in live cells. Two DNA hairpin probes bearing tetrazines or vinyl ether caged fluorophores were designed and synthesized. Upon target mRNA triggering catalytic hairpin assembly, the chemical reaction partners were brought in a spatial proximity to yield high effective concentrations, which dramatically facilitated the bioorthogonal reaction efficiency to unmask the vinyl ether group to activate fluorescence. The proposed fluorogenic sensor was demonstrated to have a high signal-to-noise ratio up to ∼30 fold and enabled the sensitive detection of target mRNA with a detection limit of 4.6 pM. Importantly, the fluorogenic sensor presented low background signals in biological environments due to the unique "click to release" feature, avoiding false positive results caused by unspecific degradation. We also showed that the fluorogenic sensor could accurately image mRNA in live cells and distinguish the relative mRNA expression levels in both tumor and normal cells. Benefiting from these significant advantages, our method provides a useful tool for basic studies of bioorthogonal chemistry and early clinical diagnosis.
Collapse
Affiliation(s)
- Su-Jing Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ping Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
29
|
Gao Y, Zhang S, Wu C, Li Q, Shen Z, Lu Y, Wu ZS. Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. ACS NANO 2021; 15:19211-19224. [PMID: 34854292 DOI: 10.1021/acsnano.1c04260] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abnormal expression of miRNAs is often detected in various human cancers. DNAzyme machines combined with gold nanoparticles (AuNPs) hold promise for detecting specific miRNAs in living cells but show short circulation time due to the fragility of catalytic core. Using miRNA-21 as the model target, by introducing a circular bulging DNA shield into the middle of the catalytic core, we report herein a self-protected DNAzyme (E) walker capable of fully stepping on the substrate (S)-modified AuNP for imaging intracellular miRNAs. The DNAzyme walker exhibits 5-fold enhanced serum resistance and more than 8-fold enhanced catalytic activity, contributing to the capability to image miRNAs much higher than commercial transfection reagent and well-known FISH technique. Diseased cells can accurately be distinguished from healthy cells. Due to its universality, DNAzyme walker can be extended for imaging other miRNAs only by changing target binding domain, indicating a promising tool for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Chengwei Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| |
Collapse
|