1
|
Mendes ML, Borrmann KF, Dittmar G. Eleven shades of PASEF. Expert Rev Proteomics 2024; 21:367-376. [PMID: 39435569 DOI: 10.1080/14789450.2024.2413092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The introduction of trapped ion mobility spectrometry (TIMS) in combination with fast high-resolution time-of-flight (TOF) mass spectrometry to the proteomics field led to a jump in protein identifications and quantifications, as well as a lowering of the limit of detection for proteins from biological samples. Parallel Accumulation-Serial Fragmentation (PASEF) is a driving force for this development and has been adapted to discovery as well as targeted proteomics. AREAS COVERED Over the last decade, the PASEF concept has been optimized and led to the implementation of eleven new measurement techniques. In this review, we describe all currently described PASEF measurement techniques and their application to clinical proteomics. Literature was searched using PubMed and Google Scholar search engines. EXPERT OPINION The use of a dual TIMS tunnel has revolutionized the depth and the speed of proteomics measurements. Currently, we witness how this technique is pushing clinical proteomics forward.
Collapse
Affiliation(s)
- Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Klara F Borrmann
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
2
|
Jiang Y, DeBord D, Vitrac H, Stewart J, Haghani A, Van Eyk JE, Fert-Bober J, Meyer JG. The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics? J Proteome Res 2024; 23:1871-1882. [PMID: 38713528 PMCID: PMC11161313 DOI: 10.1021/acs.jproteome.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The coevolution of liquid chromatography (LC) with mass spectrometry (MS) has shaped contemporary proteomics. LC hyphenated to MS now enables quantification of more than 10,000 proteins in a single injection, a number that likely represents most proteins in specific human cells or tissues. Separations by ion mobility spectrometry (IMS) have recently emerged to complement LC and further improve the depth of proteomics. Given the theoretical advantages in speed and robustness of IMS in comparison to LC, we envision that ongoing improvements to IMS paired with MS may eventually make LC obsolete, especially when combined with targeted or simplified analyses, such as rapid clinical proteomics analysis of defined biomarker panels. In this perspective, we describe the need for faster analysis that might drive this transition, the current state of direct infusion proteomics, and discuss some technical challenges that must be overcome to fully complete the transition to entirely gas phase proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Daniel DeBord
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Heidi Vitrac
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Jordan Stewart
- MOBILion Systems Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Ali Haghani
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jesse G Meyer
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
3
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Liu X, Fu B, Chen J, Sun Z, Zheng D, Li Z, Gu B, Zhang Y, Lu H. High-throughput intact Glycopeptide quantification strategy with targeted-MS (HTiGQs-target) reveals site-specific IgG N-glycopeptides as biomarkers for hepatic disorder diagnosis and staging. Carbohydr Polym 2024; 325:121499. [PMID: 38008487 DOI: 10.1016/j.carbpol.2023.121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/28/2023]
Abstract
Liver disease is one of the leading causes of global mortality, and identifying biomarkers for diagnosing the progression of liver diseases is crucial for improving its outcomes. Targeted mass spectrometry technology is a powerful tool with unique advantages for verifying biomarker candidates and clinical applications. It is particularly useful in validating protein biomarkers with post-translational modifications, eliminating the need for site-specific antibodies. Especially, targeted mass spectrometry technique is particularly critical for translation of glycoproteins into clinical applications as there are no site-specific antibodies for N-glycosylation. Nevertheless, its limitation in analyzing only one sample per run has become apparent when dealing with a large number of clinical samples. Herein, we developed a high-throughput intact N-glycopeptides quantification strategy with targeted-MS (HTiGQs-Target), which allows the validation of 20 samples per run with an average analysis time of only 3 min per sample. We applied HTiGQs-Target in a cohort of 461 serum samples (including 120 healthy controls (HC), 127 chronic hepatitis B (CHB) cases, 106 liver cirrhosis (LC) cases, and 108 hepatocellular carcinomas (HCC) cases) and found that a panel of 10 IgG N-glycopeptides have strong clinical utility in evaluating the severity of the liver disease.
Collapse
Affiliation(s)
- Xuejiao Liu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Bin Fu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Jierong Chen
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China
| | - Zhenyu Sun
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Zhonghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bing Gu
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong, Academy of Medical Sciences, Guangzhou, Guangdong 510000, China.
| | - Ying Zhang
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| | - Haojie Lu
- Liver Cancer Institute of Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
6
|
Jiang Y, Salladay-Perez I, Momenzadeh A, Covarrubias AJ, Meyer JG. Simultaneous Multi-Omics Analysis by Direct Infusion Mass Spectrometry (SMAD-MS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546628. [PMID: 37425781 PMCID: PMC10326973 DOI: 10.1101/2023.06.26.546628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Combined multi-omics analysis of proteomics, polar metabolomics, and lipidomics requires separate liquid chromatography-mass spectrometry (LC-MS) platforms for each omics layer. This requirement for different platforms limits throughput and increases costs, preventing the application of mass spectrometry-based multi-omics to large scale drug discovery or clinical cohorts. Here, we present an innovative strategy for simultaneous multi-omics analysis by direct infusion (SMAD) using one single injection without liquid chromatography. SMAD allows quantification of over 9,000 metabolite m/z features and over 1,300 proteins from the same sample in less than five minutes. We validated the efficiency and reliability of this method and then present two practical applications: mouse macrophage M1/M2 polarization and high throughput drug screening in human 293T cells. Finally, we demonstrate relationships between proteomic and metabolomic data are discovered by machine learning.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ivan Salladay-Perez
- Department of Molecular Biology, Immunology, and Molecular Genetics, University of California, Los Angeles, 90095, USA
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony J. Covarrubias
- Department of Molecular Biology, Immunology, and Molecular Genetics, University of California, Los Angeles, 90095, USA
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Jiang Y, Hutton A, Cranney CW, Meyer JG. Label-Free Quantification from Direct Infusion Shotgun Proteome Analysis (DISPA-LFQ) with CsoDIAq Software. Anal Chem 2023; 95:677-685. [PMID: 36527718 PMCID: PMC9850400 DOI: 10.1021/acs.analchem.2c02249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Large-scale proteome analysis requires rapid and high-throughput analytical methods. We recently reported a new paradigm in proteome analysis where direct infusion and ion mobility are used instead of liquid chromatography (LC) to achieve rapid and high-throughput proteome analysis. Here, we introduce an improved direct infusion shotgun proteome analysis protocol including label-free quantification (DISPA-LFQ) using CsoDIAq software. With CsoDIAq analysis of DISPA data, we can now identify up to ∼2000 proteins from the HeLa and 293T proteomes, and with DISPA-LFQ, we can quantify ∼1000 proteins from no more than 1 μg of sample within minutes. The identified proteins are involved in numerous valuable pathways including central carbon metabolism, nucleic acid replication and transport, protein synthesis, and endocytosis. Together with a high-throughput sample preparation method in a 96-well plate, we further demonstrate the utility of this technology for performing high-throughput drug analysis in human 293T cells. The total time for data collection from a whole 96-well plate is approximately 8 h. We conclude that the DISPA-LFQ strategy presents a valuable tool for fast identification and quantification of proteins in complex mixtures, which will power a high-throughput proteomic era of drug screening, biomarker discovery, and clinical analysis.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Alexandre Hutton
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Caleb W. Cranney
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jesse G. Meyer
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
8
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Mendes ML, Dittmar G. Targeted proteomics on its way to discovery. Proteomics 2022; 22:e2100330. [PMID: 35816345 DOI: 10.1002/pmic.202100330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
For a long time, targeted and discovery proteomics covered different corners of the detection spectrum, with targeted proteomics focused on small target sets. This changed with the recent advances in highly multiplexed analysis. While discovery proteomics still pushes higher numbers of identified and quantified proteins, the advances in targeted proteomics rose to cover large parts of less complex proteomes or proteomes with low protein detection counts due to dynamic range restrictions, like the blood proteome. These new developments will impact, especially on the field of biomarker discovery and the possibility of using targeted proteomics for diagnostic purposes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of cellular signalling, Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of cellular signalling, Department of Infection and Immunity, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| |
Collapse
|