1
|
Shen M, Dai X, Ning D, Xu H, Zhou Y, Chen G, Ren Z, Chen M, Gao M, Bao J. Integrating Pt nanoparticles with 3D Cu 2- x Se/GO nanostructure to achieve nir-enhanced peroxidizing Nano-enzymes for dynamic monitoring the level of H 2O 2 during the inflammation. Front Immunol 2024; 15:1392259. [PMID: 39086491 PMCID: PMC11288797 DOI: 10.3389/fimmu.2024.1392259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 μM to 0.53μM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Man Shen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianling Dai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongni Ning
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hanqing Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Zhou
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gangan Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhangyin Ren
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Ye J, Lu J, Yuan H, Wan Z, Wan X, Tang Y, Li L, Wen D. Monodispersed Molecular Phthalocyanine with Sulfur-Driven Electron Delocalization for Enhanced Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308285. [PMID: 38353330 DOI: 10.1002/smll.202308285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 07/05/2024]
Abstract
Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.
Collapse
Affiliation(s)
- Jianqi Ye
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lanqing Li
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Liu Y, Yan X, Li L, Xing Y, Zhao P, Liu M, Zhu Y, Liu N, Zhang Z. Nanoreactor based on Cu nanoparticles confined in B, N co-doped porous carbon nanotubes for glutathione biosensing. Mikrochim Acta 2023; 190:325. [PMID: 37493765 DOI: 10.1007/s00604-023-05893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
A cost-effective approach has been developed to synthesize Cu nanoparticles encapsulated into B and N double-doped carbon nanotubes (Cu@BCNNTs) by one-step pyrolysis. According to the specific binding of Cu-Cl and Cu-glutathione (GSH), we employed Cu@BCNNTs to build an electrochemical sensing platform to detect GSH. The unique space-confined structure can prevent Cu nanoparticles from agglomeration. In addition, B and N co-doped porous hollow tubes can improve the electrochemical conductivity, expand the number of active sites, enhance surface adsorption, and shorten the transport path. These favorable characteristics of Cu@BCNNTs make them have excellent electrocatalytic properties. These results display that the prepared sensor can detect GSH from 0.5 to 120 μM with a detection limit of 0.024 μM. The obtained sensors can be successfully applied in the human serum with recovery of GSH ranging from 100.2 to 103.9%. This work provides a new vision to synthesize nanoparticles confined in a hollow tube for the applications in biosensing and medical diagnostics.
Collapse
Affiliation(s)
- Yu Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Luo Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yue Xing
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Puyu Zhao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meihan Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunxue Zhu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ning Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Zhou H, Liu R, Pan G, Cao M, Zhang L. Unique Electron-Transfer-Mediated Electrochemiluminescence of AuPt Bimetallic Nanoclusters and the Application in Cancer Immunoassay. BIOSENSORS 2023; 13:bios13050550. [PMID: 37232911 DOI: 10.3390/bios13050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Noble Metal nanoclusters (NCs) are promising electrochemiluminescence (ECL) emitters due to their amazing optical properties and excellent biocompatibility. They have been widely used in the detection of ions, pollutant molecules, biomolecules, etc. Herein, we found that glutathione-capped AuPt bimetallic NCs (GSH-AuPt NCs) emitted strong anodic ECL signals with triethylamine as co-reactants which had no fluorescence (FL) response. Due to the synergistic effect of bimetallic structures, the ECL signals of AuPt NCs were 6.8 and 94 times higher than those of monometallic Au and Pt NCs, respectively. The electric and optical properties of GSH-AuPt NCs differed from those of Au and Pt NCs completely. An electron-transfer mediated ECL mechanism was proposed. The excited electrons may be neutralized by Pt(II) in GSH-Pt and GSH-AuPt NCs, resulting in the vanished FL. Furthermore, abundant TEA radicals formed on the anode contributed electrons to the highest unoccupied molecular orbital of GSH-Au2.5Pt NCs and Pt(II), booming intense ECL signals. Because of the ligand effect and ensemble effect, bimetallic AuPt NCs exhibited much stronger ECL than GSH-Au NCs. A sandwich-type immunoassay for alpha fetoprotein (AFP) cancer biomarkers was fabricated with GSH-AuPt NCs as signal tags, which displayed a wide linear range from 0.01 to 1000 ng·mL-1 and a limit of detection (LOD) down to 1.0 pg·mL-1 at 3S/N. Compared to previous ECL AFP immunoassays, this method not only had a wider linear range but also a lower LOD. The recoveries of AFP in human serum were around 108%, providing a wonderful strategy for fast, sensitive, and accurate cancer diagnosis.
Collapse
Affiliation(s)
- Huiwen Zhou
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ruanshan Liu
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Miaomiao Cao
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Wang J, Zhe Y, Zhao Z, Zhang S, Wu W, Mao J, Lin Y. Stretchable Oxygen-Tolerant Sensor Based on a Single-Atom Fe-N 4 Electrocatalyst for Observing the Role of Oxidative Stress in Hypertension. Anal Chem 2023; 95:5159-5167. [PMID: 36896726 DOI: 10.1021/acs.analchem.3c00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Oxidative stress and related oxidative damage have a causal relation with the pathogenesis of hypertension. Therefore, it is crucial to determine the mechanism of oxidative stress in hypertension by applying mechanical forces on cells to simulate hypertension while monitoring the release of reactive oxygen species (ROS) from cells under an oxidative stress environment. However, cellular level research has rarely been explored because monitoring the ROS released by cells is still challenging owing to the interference of O2. In this study, an Fe single-atom-site catalyst anchored on N-doped carbon-based materials (Fe SASC/N-C) was synthesized, which exhibits excellent electrocatalytic activity for the reduction of hydrogen peroxide (H2O2) at a peak potential of +0.1 V and can effectively avoid the interference of O2. Furthermore, we constructed a flexible and stretchable electrochemical sensor based on the Fe SASC/N-C catalyst to study the release of cellular H2O2 under simulated hypoxic and hypertension conditions. Density functional theory calculations show that the highest transition state energy barrier from the oxygen reduction reaction (ORR), i.e., O2 to H2O, is 0.38 eV. In comparison, the H2O2 reduction reaction (HPRR) can be completed only by overcoming a lower energy barrier of 0.24 eV, endowing the HPRR to be more favorable on Fe SASC/N-C compared with the ORR. This study provided a reliable electrochemical platform for real-time investigation of H2O2-related underlying mechanisms of the hypertension process.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Sichen Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjie Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
6
|
Tungsten oxide nanowires and polyaniline hybrid film-based electrochromic device with multicolor display and enhanced capacitance. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
Yang X, Li X, He Q, Ding Y, Luo B, Xie Q, Chen J, Hu Y, Su Z, Qin X. One-step synthesis of triethanolamine-capped Pt nanoparticle for colorimetric and electrochemiluminescent immunoassay of SARS-CoV spike proteins. Microchem J 2023; 186:108329. [PMID: 36590823 PMCID: PMC9789547 DOI: 10.1016/j.microc.2022.108329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Platinum nanoparticles (PtNPs) have been attracted worldwide attention due to their versatile application potentials, especially in the catalyst and sensing fields. Herein, a facile synthetic method of triethanolamine (TEOA)-capped PtNPs (TEOA@PtNP) for electrochemiluminescent (ECL) and colorimetric immunoassay of SARS-CoV spike proteins (SARS-CoV S-protein, a target detection model) is developed. Monodisperse PtNPs with an average diameter of 2.2 nm are prepared by a one-step hydrothermal synthesis method using TEOA as a green reductant and stabilizer. TEOA@PtNPs can be used as a nanocarrier to combine with antigen by the high-affinity antibody, which leads to a remarkable inhibition of electron transfer efficiency and mass transfer processes. On the basis of its peroxidase-like activity and easy-biolabeling property, the TEOA@PtNP can be used to establish a colorimetric immunosensor of SARS-CoV S-protein thought catalyzing the reaction of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB). Especially, the Ru(bpy)3 2+ ECL reaction is well-achieved with the TEOA@PtNPs due to their great conductivity and loading abundant TEOA co-reactants, resulting in an enhancing ECL signal in immunoassay of SARS-CoV S-protein. As a consequence, two proposed methods could achieve sensitive detection of SARS-CoV S-protein in wide ranges, the colorimetric and ECL detection limits were as low as 8.9 fg /mL and 4.2 fg /mL (S/N = 3), respectively. We believe that the proposed colorimetric and ECL immunosesors with high sensitivity, good reproducibility, and good stability will be a promising candidate for a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyu Li
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qingguo He
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yanbin Ding
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Luo
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qiuju Xie
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Chen
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yue Hu
- Bairuopu Town Center Health Center, Changsha 410206, China
| | - Zhaohong Su
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Qin
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Liu J, Li X, Cheng L, Sun J, Xia X, Zhang X, Song Y, Sun D, Sun J, Zhang L. Atomic layer deposition of Pt nanoparticles onto Co/MoN nanoarrays for improved electrochemical detection of H 2O 2. Chem Commun (Camb) 2023; 59:474-477. [PMID: 36524562 DOI: 10.1039/d2cc05521j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The design and preparation of advanced nanocatalysts for the sensitive electrochemical detection of H2O2 is of great significance. Herein, a facile Pt@Co/MoN sensing platform was fabricated by depositing Pt nanoparticles onto Co/MoN nanoarrays using atomic layer deposition (ALD) technology. Benefitting from the unique nanostructure and the strong interaction between Pt and the nitride support, the prepared Pt@Co/MoN exhibited excellent performance in the electrochemical detection of H2O2. This work provides an interesting strategy to fabricate low-Pt electrocatalysts on a nanoarray support for future applications in electroanalysis.
Collapse
Affiliation(s)
- Jinzheng Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xue Li
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Lidi Cheng
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Junwei Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Xiaomin Xia
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Yanyan Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Deshuai Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China. .,The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, Qingdao, 266003, P. R. China.
| |
Collapse
|
9
|
Sun X, Duan M, Li R, Meng Y, Bai Q, Wang L, Liu M, Yang Z, Zhu Z, Sui N. Ultrathin Graphdiyne/Graphene Heterostructure as a Robust Electrochemical Sensing Platform. Anal Chem 2022; 94:13598-13606. [PMID: 36124415 DOI: 10.1021/acs.analchem.2c03387] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Graphdiyne (GDY) has been considered as an appealing electrode material for electrochemical sensing because of its alkyne-rich structure and high degrees of π-conjugation, which shows great affinity to heavy metal ions and pollutant molecules via d-π and π-π interactions. However, the low surface area and poor conductivity of bulk GDY limit its electrochemical performance. Herein, a two-dimensional ultrathin GDY/graphene (GDY/G) nanostructure was synthesized and used as an electrode material for electrochemical sensing. Graphene plays the role of an epitaxy template for few-layered GDY growth and conductive layers. The formed few-layered GDY with a high surface area possesses abundant affinity sites toward heavy metal ions (Cd2+, Pb2+) and toxic molecules, for example, nitrobenzene and 4-nitrophenol, via d-π and π-π interactions, respectively. Moreover, hemin as a key part of the enzyme catalytic motif was immobilized on GDY/G via π-π interactions. The artificial enzyme mimic hemin/GDY/G-modified electrode exhibited promising ascorbic acid and uric acid detection performance with excellent sensitivity and selectivity, a good linear range, and reproducibility. More importantly, real sample detection and the feasibility of this electrochemical sensor as a wearable biosensor were demonstrated.
Collapse
Affiliation(s)
- Xiuchao Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Menglu Duan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongteng Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yuan Meng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lina Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Manhong Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43 0AL, United Kingdom
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
10
|
Cao L, Lu S, Guo C, Chen W, Gao Y, Ye D, Guo Z, Ma W. A novel electrochemical immunosensor based on PdAgPt/MoS2 for the ultrasensitive detection of CA 242. Front Bioeng Biotechnol 2022; 10:986355. [PMID: 36091451 PMCID: PMC9449583 DOI: 10.3389/fbioe.2022.986355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Dynamic monitoring of tumor markers is an important way to the diagnosis of malignant tumor, evaluate the therapeutic effect of tumor and analyze the prognosis of cancer patients. As a tumor marker of digestive tract, CA242 is often used to Assess the therapeutic effect of colorectal cancer and pancreatic cancer. In this study, immunosensor technology was used to detect CA242. PdAgPt nanocomposites, which have great advantages in biocompatibility, electrical conductivity and catalytic properties, were prepared by hydrothermal synthesis method. The prepared PdAgPt nanocomposites were loaded onto the surface of molybdenum disulfide (MoS2) with large surface area, and the new nanocomposites were synthesized. Using PdAgPt/MoS2 as signal amplification platform, the label-free CA242 electrochemical immunosensor has a wide detection range that extends from 1*10−4 U/ml to 1*102 U/ml and a low detection limit (LOD, 3.43*10−5 U/ml) after optimization of experimental conditions. In addition, the CA242 immunosensor designed in this study also performed well in the evaluation of repeatability, selectivity and stability, and was successfully used for the detection of CA242 in human serum sample. Therefore, the label-free electrochemical immunosensor constructed in this study has a broad application prospect in the detection of clinical biomarkers.
Collapse
Affiliation(s)
- Linlin Cao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chengjie Guo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Wenqiang Chen
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Yinan Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Diwen Ye
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zejun Guo
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Wanshan Ma,
| |
Collapse
|
11
|
Atomically dispersed Ru3 site catalysts for electrochemical sensing of small molecules. Biosens Bioelectron 2022; 216:114609. [DOI: 10.1016/j.bios.2022.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
|
12
|
Li J, Jiao L, Xiao X, Nashalian A, Mathur S, Zhu Z, Wu W, Guo W, Zhai Y, Lu X, Chen J. Flexible Prussian Blue‐Au Fibers as Robust Peroxidase‐Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. ELECTROANAL 2022. [DOI: 10.1002/elan.202200116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Lei Jiao
- Central China Normal University CHINA
| | - Xiao Xiao
- University of California Los Angeles UNITED STATES
| | | | | | | | | | | | | | | | - Jun Chen
- University of California Los Angeles UNITED STATES
| |
Collapse
|
13
|
Wang X, Dong S, Wei H. Recent advances on nanozyme‐based electrochemical biosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|