1
|
Yang M, Liu Z, Nie Q, Cheng M, Pei S, Yang D, Cheng C, Guo D. Multicomponent Gas Sensing Fiber Probe System Based on Platinum Coated Capillary Enhanced Raman Spectroscopy. ACS Sens 2024; 9:4591-4598. [PMID: 39240233 DOI: 10.1021/acssensors.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This paper proposes a novel multicomponent gas-sensing optical fiber probe system. It utilizes a precisely engineered Platinum-coated capillary fabricated via Atomic Layer Deposition (ALD) technology as the core for enhanced Raman spectroscopy, marking the first application of ALD in creating such a structure for gas Raman sensing. The noble metal capillary gas Raman probe demonstrates a low detection limit of 55 ppm for CO2 with a 30 s exposure time and good repeatability in multicomponent gas sensing. The capillary exhibits excellent stability, environmental resistance, and a large core diameter, enabling a rapid gas exchange rate and making it suitable for practical applications.
Collapse
Affiliation(s)
- Minghong Yang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Zhixiong Liu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qilu Nie
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Mengen Cheng
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shilong Pei
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dexun Yang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Cheng
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Donglai Guo
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Merian A, Silva A, Wolf S, Frosch T, Frosch T. Ultrasensitive Raman Gas Spectroscopy for Dinitrogen Sensing at the Parts-per-Billion Level. Anal Chem 2024; 96:14884-14890. [PMID: 39231523 PMCID: PMC11412228 DOI: 10.1021/acs.analchem.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sensing small changes in the concentration of dinitrogen (N2) is a difficult analytical task. As N2-sensing is crucial for nitrogen cycle research in general and studies of denitrification in particular, researchers went to great lengths to develop techniques like the gas-flow-soil-core method, which achieves a precision of 200 ppb at 20 ppm of N2. Here, we present a Raman gas spectroscopic technique based on high pressure, high laser power, and high-NA signal collection, which achieves a limit of detection (LoD) of 59 ppb N2 and a precision of 27 ppb at 10 ppm of N2. This improves the lowest LoD for N2 reported for Raman gas spectroscopy by 2 orders of magnitude. Furthermore, this constitutes an improvement in precision by 1 order of magnitude compared to the GC-MS-based gas-flow-soil-core method currently established in denitrification research. We show that the presented setup is both stable and tight enough to ensure highly sensitive, precise, and repeatable measurements of N2. As Raman gas spectroscopy is a versatile and comprehensive method, the described technique could be easily expanded to other relevant gases like nitrous oxide or to simultaneous multigas sensing. In summary, our method offers possibilities for N2-sensing and could eventually enable denitrification studies with increased sensitivity and a larger scope.
Collapse
Affiliation(s)
- Andreas Merian
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Artur Silva
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
| | - Sebastian Wolf
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Timea Frosch
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and Biomedical Engineering Group, Technical University Darmstadt, Merckstr. 25, 64283 Darmstadt, Germany
- Leibniz Institute of Photonic Technology, 07745 Jena, Germany
| |
Collapse
|
3
|
Fang X, Cui L, Yu H, Qi Y. Fe(III)-Based Fluorescent Probe for High-Performance Recognition, Test Strip Analysis, and Cell Imaging of Carbon Monoxide. Anal Chem 2024; 96:11588-11594. [PMID: 38967368 DOI: 10.1021/acs.analchem.4c02438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Fluorescence sensing and imaging techniques are being widely studied for detecting carbon monoxide (CO) in living organisms due to their speed, sensitivity, and ease of use to biological systems. Most fluorescent probes used for this purpose are based on heavy metal ions like Pd, with a few using elements like Ru, Rh, Ir, Os, Tb, and Eu. However, these metals can be expensive and toxic to cells. There is a need for more affordable and biologically safe fluorescent probes for CO detection. Drawing inspiration from the robust affinity exhibited by heme iron toward CO, in this work, a rhodamine derivative called RBF was developed for imaging CO in living cells by binding to Fe(III) and could be used for CO sensing. A Fe(III)-based fluorescent probe for CO imaging in living cells offers advantages of cost effectiveness, low toxicity, and ease of use. The fluorescence detection using the RBF-Fe system showed a direct correlation with increasing levels of CORM-3 (LOD = 146 nM) or the exposure time of CO gas, displaying reduced fluorescence. A CO test paper based on RBF-Fe was created for simple on-site CO detection, where fluorescence would diminish in response to CO exposure, allowing rapid (2 min) visual identification. Imaging of CO in living cells was successfully conducted using the probe system, showing a decrease in fluorescence intensity as CORM-3 concentrations increased, indicating its effectiveness in monitoring CO levels accurately within living cells.
Collapse
Affiliation(s)
- Xinkuo Fang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yanyu Qi
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| |
Collapse
|
4
|
Fang X, Zhang Z, Qi Y, Yue B, Yu J, Yang H, Yu H. High-Performance Recognition, Cell-Imaging, and Efficient Removal of Carbon Monoxide toward a Palladium-Mediated Fluorescent Sensing Platform. Anal Chem 2023; 95:11518-11525. [PMID: 37462228 DOI: 10.1021/acs.analchem.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Novel high-performance fluorescent approaches have always significant demand for room-temperature detection of carbon monoxide (CO), which is highly toxic even at low concentration levels and is not easy to recognize due to its colorless and odorless nature. In this paper, we constructed a palladium-mediated fluorescence turn-on sensing platform (TPANN-Pd) for the recognition of CO at room temperature, revealing simultaneously quick response speed (<30 s), excellent selectivity, superior sensitivity, and low detection limit (∼160 nM for CORM-3, ∼1.7 ppb for CO vapor). Moreover, rapid detection and efficient removal (24%) from the air by naked-eye vision has been successfully realized based on TPANN-Pd supramolecular gels. Furthermore, the developed sensing platform was elucidated with low cytotoxicity and high cellular uptake, and it was successfully applied to CO imaging in living cells, providing real-time monitoring of potential CO-involved reactions in biological systems.
Collapse
Affiliation(s)
- Xinkuo Fang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
- College of Physics, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zehua Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yanyu Qi
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Bingbing Yue
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jinghua Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, PR China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, PR China
| |
Collapse
|
5
|
Kelly TW, Davidson IA, Warren C, Brooks WSM, Foster MJ, Poletti F, Richardson DJ, Horak P, Wheeler NV. Sub-ppm gas phase Raman spectroscopy in an anti-resonant hollow core fiber. OPTICS EXPRESS 2022; 30:43317-43329. [PMID: 36523032 DOI: 10.1364/oe.473887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate recent progress in the development of a Raman gas sensor using a single cladding ring anti-resonant hollow core micro-structured optical fiber (HC-ARF) and a low power pump source. The HC-ARF was designed specifically for low attenuation and wide bandwidth in the visible spectral region and provided low loss at both the pump wavelength (532 nm) and Stokes wavelengths up to a Raman shift of 5000 cm-1. A novel selective core pressurization scheme was also implemented to further reduce the confinement loss, improving the Raman signal enhancement by a factor of 1.9 compared to a standard fiber filling scheme. By exploiting longer lengths of fiber, direct detection of both methane and hydrogen at concentrations of 5 and 10 ppm respectively is demonstrated and a noise equivalent limit-of-detection of 0.15 ppm is calculated for methane.
Collapse
|
6
|
Li T, Wang Z, Wang C, Huang J, Zhou M. Chlorination in the pandemic times: The current state of the art for monitoring chlorine residual in water and chlorine exposure in air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156193. [PMID: 35613644 PMCID: PMC9124365 DOI: 10.1016/j.scitotenv.2022.156193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/12/2023]
Abstract
During the COVID-19 pandemic, the use of chlorine-based disinfectants has surged due to their excellent performance and cost-effectiveness in intercepting the spread of the virus and bacteria in water and air. Many authorities have demanded strict chlorine dosage for disinfection to ensure sufficient chlorine residual for inactivating viruses and bacteria while not posing harmful effects to humans as well as the environment. Reliable chlorine sensing techniques have therefore become the keys to ensure a balance between chlorine disinfection efficiency and disinfection safety. Up to now, there is still a lack of comprehensive review that collates and appraises the recently available techniques from a practical point of view. In this work, we intend to present a detailed overview of the recent advances in monitoring chlorine in both dissolved and gaseous forms aiming to present valuable information in terms of method accuracy, sensitivity, stability, reliability, and applicability, which in turn guides future sensor development. Data on the analytical performance of different techniques and environmental impacts associated with the dominated chemical-based techniques are thus discussed. Finally, this study concludes with highlights of gaps in knowledge and trends for future chlorine sensing development. Due to the increasing use of chlorine in disinfection and chemical synthesis, we believe the information present in this review is a relevant and timely resource for the water treatment industry, healthcare sector, and environmental organizations.
Collapse
Affiliation(s)
- Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China; Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD 4222, Australia
| | - Zhengguo Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Chenxu Wang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Jiayu Huang
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, PR China
| | - Ming Zhou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast campus, QLD 4222, Australia.
| |
Collapse
|
7
|
Wang P, Chen W, Wang J, Lu Y, Tang Z, Wan F. Dense-pattern multi-pass cavity based on spherical mirrors in a Z-shaped configuration for Raman gas sensing. OPTICS LETTERS 2022; 47:2466-2469. [PMID: 35561377 DOI: 10.1364/ol.458602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
We report a dense-pattern multi-pass cavity (MPC) based on four spherical mirrors placed in a Z-shaped cavity configuration for improving the Raman signals from gases. The folding structure of the cavity causes dense patterns of spots, and at least 420 beams are reflected in the cavity. Raman spectra of ambient air, methane, and ethylene are recorded to demonstrate the performance of our apparatus. At atmospheric pressure, ppm-level detection limits of the gases are achieved with 10 s of exposure time. The Raman signal intensities of the gases show excellent linearity with the gases' partial pressures, which means that high-accuracy detection is also feasible.
Collapse
|