1
|
Kai M, Shen WT, Wang D, Yu Y, Zhang JA, Sun L, Fang RH, Gao W, Zhang L. Aptamer-Encapsulated Cellular Nanoparticles for Neurotoxin Neutralization. Adv Healthc Mater 2025; 14:e2403539. [PMID: 39460406 DOI: 10.1002/adhm.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Aptamers are single-stranded oligonucleotides that fold into defined architectures for specific target binding. In this study, aptamers are selected that specifically bind to small-molecule neurotoxins and encapsulate them into cell membrane-coated nanoparticles (referred to as 'cellular nanoparticles' or 'CNPs') for effective neutralization of neurotoxins. Specifically, six different aptamers are selected that bind to saxitoxin (STX) or tetrodotoxin (TTX) and encapsulate them into metal-organic framework cores, which are then coated with neuronal cell membrane. The resulting CNPs exhibit high colloidal stability, minimal aptamer leakage, and effective protection of aptamer payloads against enzyme degradation. This detoxification platform combines membrane-enabled broad-spectrum neutralization with aptamer-based specific toxin binding, offering dual-modal neutralization mechanisms for efficient neurotoxin neutralization. The in vitro neutralization efficacy is demonstrated using a neuron osmotic swelling assay, a Na+ flux fluorescence assay, and a cytotoxicity assay. The in vivo neutralization efficacy is further validated using mouse models of STX and TTX intoxication in both therapeutic and preventative regimens. Overall, integrating aptamers with CNPs combines the strengths of both technologies, resulting in a robust solution for broad-spectrum toxin-neutralization applications.
Collapse
Affiliation(s)
- Mingxuan Kai
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Tang Y, Yao L, Wang Y, Lin B, Yao Y, Chen L, Huang H, Xu J, Guo L. Signal-on lateral flow immunoassays for rapid detection of tetrodotoxin in pufferfish. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136973. [PMID: 39724712 DOI: 10.1016/j.jhazmat.2024.136973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Small-molecule biotoxins are frequently founded in grains, corns, peanuts, and different kinds of aquatic products, and they are harmful to human health. Lateral flow immunoassays (LFIAs) have been widely used for on-site detection of small-molecule biotoxins. However, most of the reported LFIAs approaches are signal-off type because each small-molecule biotoxin only has one antigen binding site due to the small size of the molecule. In this work, we demonstrate a signal-on LFIAs approach for on-site detection of small-molecule biotoxin based on the aptamer/antibody molecular recognition system, and the detection of tetrodotoxin (TTX) was selected as an example. A TTX specific aptamer with high affinity was modified on the gold nanoparticles (AuNPs) to act as the colloid gold labels, and a TTX specific antibody was immobilized on the testing line of the LFIAs to act as the capture antibody. This aptamer/antibody combinations not only allow qualitative screening by the naked eye but also enable semi-quantitative detection when combined with smartphone measurement of RGB values. The detection range was 8-100 ng/mL, with a detection limit of 8 ng/mL, and recoveries ranging from 99.00 % to 110.95 %. The RSD for intra-batch reproducibility was 6.98 %, and the RSD for batch-to-batch reproducibility was 5.20 %. Meanwhile, the proposed LFIAs was successfully demonstrated for the detection of TTX in globefish indicating that the aptamer sensor has good homogeneity for the detection of TTX.
Collapse
Affiliation(s)
- Yajie Tang
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China; Hefei University of Technology, Hefei, Anhui 230009, China
| | - Li Yao
- Changsha University of Science & Technology, Changsha, Hunan 410114, China; Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yueliang Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Bingyong Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Yuanyuan Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China
| | - Jianguo Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; Jiaxing Key Laboratory of Molecular Recognition and Sensing, China.
| |
Collapse
|
3
|
Zhang Y, Zhang S, Ning Z, Lin X, Duan N, Wang Z, Wu S. Development of an Automated Capture-SELEX Device for Efficient Screening of β-Conglycinin Aptamer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28148-28156. [PMID: 39630145 DOI: 10.1021/acs.jafc.4c10043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
β-Conglycinin is the main allergen present in soybeans, and it is causing wide concern due to its notable allergenicity, heat, and digestive enzyme resistance. Screening for aptamers that both recognize β-conglycinin and inhibit the allergic reactions that it triggers is necessary. Conventional aptamer screening is labor-intensive, requires skilled personnel, and has limited reproducibility. To address these limitations, an automated device was developed to enhance the efficiency of aptamer selection in Capture-SELEX. The device achieves highly integrated, reproducible, and accurate contamination control. Using this device, a high-affinity and specific aptamer, β-5, was selected with a Kd = 18.24 ± 2.42 nM for β-conglycinin, as confirmed by isothermal titration calorimetry and fluorescence polarization. Thermodynamic analysis revealed that enthalpy-driven binding and docking simulations clarified the recognition mechanism. Overall, this automated device enables high-efficiency aptamer generation for certain targets, with aptamer β-5 expected to play a vital role in the detection of β-conglycinin and the targeted inhibition of its allergic reaction.
Collapse
Affiliation(s)
- Yingming Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shikun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyuan Ning
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhang X, Qiao K, Cui R, Xu M, Cai S, Huang Q, Liu Z. Tetrodotoxin: The State-of-the-Art Progress in Characterization, Detection, Biosynthesis, and Transport Enrichment. Mar Drugs 2024; 22:531. [PMID: 39728106 DOI: 10.3390/md22120531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a neurotoxin that binds to sodium channels and blocks sodium conduction. Importantly, TTX has been increasingly detected in edible aquatic organisms. Because of this and the lack of specific antidotes, TTX poisoning is now a major threat to public health. However, it is of note that ultra-low dose TTX is an excellent analgesic with great medicinal value. These contradictory effects highlight the need for further research to elucidate the impacts and functional mechanisms of TTX. This review summarizes the latest research progress in relation to TTX sources, analogs, mechanisms of action, detection methods, poisoning symptoms, therapeutic options, biosynthesis pathways, and mechanisms of transport and accumulation in pufferfish. This review also provides a theoretical basis for reducing the poisoning risks associated with TTX and for establishing an effective system for its use and management to ensure the safety of fisheries and human health.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Ruimin Cui
- College of Food Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Shuilin Cai
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361021, China
| |
Collapse
|
5
|
Bruno JG. Preliminary Development of DNA Aptamer Quantum Dot-Based Competitive Lateral Flow Assays for Saxitoxin and Tetrodotoxin. J Fluoresc 2024:10.1007/s10895-024-04049-1. [PMID: 39578342 DOI: 10.1007/s10895-024-04049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Initial proof-of-concept development of competitive lateral flow (LF) test strips involving red quantum dots (Qdots) is demonstrated with visible confirmation of the competitive displacement of Qdot-protein-saxitoxin (Stx) and -tetrodotoxin (Ttx) conjugates over 15 min. The measured limits of detection (LODs) for the best versions of the assays were in the 1-2 µg range when a bovine serum albumin (BSA)-Stx or -Ttx conjugate was used as the analyte for safety reasons and NIH ImageJ image analysis was applied. However, when one assumes that only one of the primary amines in BSA labeled with Stx or Ttx is needed as the "epitope" for capture and calculates the weight of the toxin adducts on an equal mole basis to that of 1 µg of toxin-BSA conjugate, the LODs are as low as 4.5 ng of toxin. No cross-reactivity was seen for these prototype test strips when BSA-Stx and BSA-Ttx were switched as analytes at or near their respective LODs which is in agreement with published specificity and affinity studies for these aptamers in the literature.
Collapse
Affiliation(s)
- John G Bruno
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, Austin, TX, 78741, USA.
| |
Collapse
|
6
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Lin C, Li Q, Liu D, Feng Q, Zhou H, Shi B, Zhang X, Hu Y, Jiang X, Sun X, Wang D. Recent research progress in tetrodotoxin detection and quantitative analysis methods. Front Chem 2024; 12:1447312. [PMID: 39206441 PMCID: PMC11349515 DOI: 10.3389/fchem.2024.1447312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Tetrodotoxin (TTX) is a highly potent and widely distributed ion-channel marine neurotoxin; it has no specific antidote and poses a great risk to human health. Therefore, detecting and quantifying TTX to effectively implement prevention strategies is important for food safety. The development of novel and highly sensitive, highly specific, rapid, and simple techniques for trace TTX detection has attracted widespread attention. This review summarizes the latest advances in the detection and quantitative analysis of TTX, covering detection methods based on biological and cellular sensors, immunoassays and immunosensors, aptamers, and liquid chromatography-mass spectrometry. It further discusses the advantages and applications of various detection technologies developed for TTX and focuses on the frontier areas and development directions of TTX detection, providing relevant information for further investigations.
Collapse
Affiliation(s)
- Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dong Liu
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Bohe Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinxin Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xinmiao Jiang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiaoming Sun
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Liu S, Huo Y, Yin S, Chen C, Shi T, Mi W, Hu Z, Gao Z. A smartphone-based fluorescent biosensor with metal-organic framework biocomposites and cotton swabs for the rapid determination of tetrodotoxin in seafood. Anal Chim Acta 2024; 1311:342738. [PMID: 38816159 DOI: 10.1016/j.aca.2024.342738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Tetrodotoxin (TTX) is a potent neurovirulent marine biotoxin that is present in puffer fish and certain marine animals. It is capable of causing severe neurotoxic symptoms and even death when consumed through contaminated seafood. Due to its high toxicity, developing an effective assay for TTX determination in seafood has significant benefits for food safety and human health. Currently, it remains challenging to achieve on-site determination of TTX in seafood. To facilitate mass on-site assays, more affordable technologies utilizing accessible equipment that require no skilled personnel are needed. RESULTS A smartphone-based portable fluorescent biosensor is proposed for TTX determination by using metal-organic framework (MOF) biocomposites and cotton swabs. Oriented antibody (Ab)-decorated and fluorescent quantum dot (QD)-loaded MOF biocomposites (QD@MOF*Ab) are rapidly synthesized for binding targets and fluorescent responses by utilizing the tunability of zinc-based MOF. Moreover, facile Ab-immobilized household cotton swabs are utilized as TTX capture tools. TTX forms sandwich immune complexes with QD@MOF*Ab probes, achieving signal amplification. These probes are excited by a portable device to generate bright fluorescent signals, which can be detected by the naked eye, and TTX quantitative results are obtained using a smartphone. When observed with the naked eye, the limit of detection (LOD) is 0.4 ng/mL, while intelligent quantitation presents an LOD of 0.13 ng/mL at logarithmic concentrations of 0.2-400 ng/mL. SIGNIFICANCE This biosensor is convenient to use, and an easy-to-operate analysis is completed within 15 min, thus demonstrating excellent performance in terms of detection speed and portability. Furthermore, it successfully determines TTX contents in puffer fish and clam samples, demonstrating its potential for monitoring seafood. Herein, this work provides a favorable rapid sensing platform that is easily portable.
Collapse
Affiliation(s)
- Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Caiyun Chen
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhiyong Hu
- School of Public Health, Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- School of Public Health, Binzhou Medical University, Yantai, 264003, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
9
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
10
|
Campàs M, Reverté J, Tudó À, Alkassar M, Diogène J, Sureda FX. Automated Patch Clamp for the Detection of Tetrodotoxin in Pufferfish Samples. Mar Drugs 2024; 22:176. [PMID: 38667793 PMCID: PMC11050952 DOI: 10.3390/md22040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.
Collapse
Affiliation(s)
- Mònica Campàs
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Jaume Reverté
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Àngels Tudó
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Mounira Alkassar
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| | - Jorge Diogène
- IRTA, Marine and Continental Waters (AMiC) Programme, Ctra. Poble Nou del Delta, km. 5.5, 43540 La Ràpita, Spain; (J.R.); (M.A.); (J.D.)
| | - Francesc X. Sureda
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain;
| |
Collapse
|
11
|
Manea I, Casian M, Hosu-Stancioiu O, de-Los-Santos-Álvarez N, Lobo-Castañón MJ, Cristea C. A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Anal Chim Acta 2024; 1297:342325. [PMID: 38438246 DOI: 10.1016/j.aca.2024.342325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
This review summarizes the stepwise strategy and key points for magnetic beads (MBs)-based aptamer selection which is suitable for isolating aptamers against small and large molecules via systematic evolution of ligands by exponential enrichment (SELEX). Particularities, if any, are discussed according to the target size. Examples targeting small molecules (<1000 Da) such as xenobiotics, toxins, pesticides, herbicides, illegal additives, hormones, and large targets such as proteins (biomarkers, pathogens) are discussed and presented in tabular formats. Of special interest are the latest advances in more efficient alternatives, which are based on novel instrumentation, materials or microelectronics, such as fluorescence MBs-SELEX or microfluidic chip system-assisted MBs-SELEX. Limitations and perspectives of MBs-SELEX are also reviewed. Taken together, this review aims to provide practical insights into MBs-SELEX technologies and their ability to screen multiple potential aptamers against targets from small to large molecules.
Collapse
Affiliation(s)
- Ioana Manea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Magdolna Casian
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania; Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
| | - Oana Hosu-Stancioiu
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. de Roma s/n, 33011, Oviedo, Spain
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
13
|
Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF. Selection and characterization of ssDNA aptamer targeting Macrobrachium rosenbergii nodavirus capsid protein: A potential capture agent in gold-nanoparticle-based aptasensor for viral protein detection. JOURNAL OF FISH DISEASES 2024; 47:e13892. [PMID: 38014615 DOI: 10.1111/jfd.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.
Collapse
Affiliation(s)
- Norazli Ghadin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Nur Afiqah Md Yusof
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Wu SW, Chen YJ, Chang YW, Huang CY, Liu BH, Yu FY. Novel enzyme-linked aptamer-antibody sandwich assay and hybrid lateral flow strip for SARS-CoV-2 detection. J Nanobiotechnology 2024; 22:5. [PMID: 38169397 PMCID: PMC10762915 DOI: 10.1186/s12951-023-02191-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
We have successfully generated oligonucleotide aptamers (Apts) and monoclonal antibodies (mAbs) targeting the recombinant nucleocapsid (N) protein of SARS-CoV-2. Apts were obtained through seven rounds of systematic evolution of ligands by exponential enrichment (SELEX), while mAbs were derived from the 6F6E11 hybridoma cell line. Leveraging these Apts and mAbs, we have successfully devised two innovative and remarkably sensitive detection techniques for the rapid identification of SARS-CoV-2 N protein in nasopharyngeal samples: the enzyme-linked aptamer-antibody sandwich assay (ELAAA) and the hybrid lateral flow strip (hybrid-LFS). ELAAA exhibited an impressive detection limit of 0.1 ng/mL, while hybrid-LFS offered a detection range of 0.1 - 0.5 ng/mL. In the evaluation using ten nasopharyngeal samples spiked with known N protein concentrations, ELAAA demonstrated an average recovery rate of 92%. Additionally, during the assessment of five nasopharyngeal samples from infected individuals and ten samples from healthy volunteers, hybrid-LFS displayed excellent sensitivity and specificity. Our study introduces a novel and efficient on-site approach for SARS-CoV-2 detection in nasopharyngeal samples. The reliable hybrid Apt-mAb strategy not only advances virus diagnostic methods but also holds promise in combating the spread of related diseases.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
| | - Ying-Ju Chen
- School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Yu-Wen Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung, 402, Taiwan.
| |
Collapse
|
15
|
Liu S, Huo Y, Hu Z, Cao G, Gao Z. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Mikrochim Acta 2023; 191:57. [PMID: 38153525 DOI: 10.1007/s00604-023-06118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05-500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.
Collapse
Affiliation(s)
- Sha Liu
- Binzhou Medical University, Yantai, 264003, China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yapeng Huo
- Yantai Center for Disease Control and Prevention, Yantai, 264003, China
| | - Zhiyong Hu
- Binzhou Medical University, Yantai, 264003, China
| | - Gaofang Cao
- Binzhou Medical University, Yantai, 264003, China.
| | - Zhixian Gao
- Binzhou Medical University, Yantai, 264003, China.
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
16
|
Zhang L, Xu X, Cao L, Zhu Z, Ding Y, Jiang H, Li B, Liu J. Multi-aptamer-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of S. pneumoniae and S. aureus. Mikrochim Acta 2023; 191:29. [PMID: 38095724 DOI: 10.1007/s00604-023-06094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
A novel nucleic acid aptamer nanoprobes-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of Streptococcus pneumoniae and Staphylococcus aureus is presented. In this fluorescence assay system, utilizing the hairpin allosteric effect caused by the aptamer binding to the target bacteria, the detection of S. pneumoniae is first achieved through changes in fluorescence due to FRET. Subsequently, a Cas12a protein mixture is added to detect S. aureus. The amplified output signal is triggered by two methods to ensure the sensitivity of the method: the synergistic FRET effect is achieved by the assembly of multi-aptamer through the conjugation of streptavidin-biotin, and the trans-cleavage function of CRISPR/Cas 12a. Under the optimized conditions, the proposed hairpin allosteric aptasensor could achieve high sensitivity (a detection limit of 135 cfu/mL) and broad-concentration quantification (dynamic range of 103-107 cfu/mL) of S. pneumoniae. The aptamer-assisted CRISPR system for S. aureus detection showed good linearity (R2 = 0.996) in the concentration range 102-108 cfu/mL, with a detection limit of 39 cfu/mL. No cross-reactivity with other foodborne pathogenic bacteria was observed in both systems. Taking only 55 min, this method of multiple pathogen detection proved to be promising.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China
| | - Xuejing Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China
| | - Linhong Cao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China
| | - Zixin Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China
| | - Yinhuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China
| | - Hui Jiang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Baolin Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, 646000, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.
| |
Collapse
|
17
|
Li J, Liu Y, Liu D, Xu T, Zhang C, Li J, Wang ZA, Du Y. In Silico Selection and Validation of High-Affinity ssDNA Aptamers Targeting Paromomycin. Anal Chem 2023. [PMID: 37384819 DOI: 10.1021/acs.analchem.3c01575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Glycans are promising for disease diagnosis since glycan biosynthesis is significantly affected by disease states, and glycosylation changes are probably more pronounced than protein expression during the transformation to the diseased condition. Glycan-specific aptamers can be developed for challenging applications such as cancer targeting; however, the high flexibility of glycosidic bonds and scarcity of studies on glycan-aptamer binding mechanisms increased the difficulty of screening. In this work, the model of interactions between glycans and ssDNA aptamers synthesized based on the sequence of rRNA genes was developed. Our simulation-based approach revealed that paromomycin as a representative example of glycans is preferred to bind base-restricted stem structures of aptamers because they are more critical in stabilizing the flexible structures of glycans. Combined experiments and simulations have identified two optimal mutant aptamers. Our work would provide a potential strategy that the glycan-binding rRNA genes could act as the initial aptamer pools to accelerate aptamer screening. In addition, this in silico workflow would be potentially applied in the more extensive in vitro development and application of RNA-templated ssDNA aptamers targeting glycans.
Collapse
Affiliation(s)
- Jiaqing Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, China
| | - Yangyang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
| | - Tong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, China
| | - Chen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, 100190 Beijing, China
| |
Collapse
|
18
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
19
|
Huang Y, Xu A, Xu Y, Wu H, Sun M, Madushika L, Wang R, Yuan J, Wang S, Ling S. Sensitive and rapid detection of tetrodotoxin based on gold nanoflower-and latex microsphere-labeled monoclonal antibodies. Front Bioeng Biotechnol 2023; 11:1196043. [PMID: 37260827 PMCID: PMC10227513 DOI: 10.3389/fbioe.2023.1196043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Tetrodotoxin (TTX) could result in serious diseases due to its extremely high neurotoxicity. Thus, it is of great importance to measure TTX for food safety. In this study, an anti-TTX monoclonal antibody with good specificity and high affinity was used to develop the immunochromatographic test strips (ICTS). Gold nanoflower (AuNF) with multiple branches and latex microsphere (LM) with large particle size as signal reporters were employed for improving the sensitivity of test strips. Both AuNF and LM probes are stable, and the developed ICTS were specific to TTX, demonstrating no cross-reactivity with other marine toxins. The linear range of AuNF- and LM-based strips for TTX was 9.49-330.98 ng/mL and 5.40-443.19 ng/mL, respectively. The limit of detection (LOD) of AuNF- and LM-based strips was determined to be 9.49 ng/mL and 5.40 ng/mL, respectively. In summary, the developed ICTS based on AuNF and LM signal probes displayed enhancement of sensitivity and provided rapid and specific detection of TTX.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sumei Ling
- *Correspondence: Shihua Wang, ; Sumei Ling,
| |
Collapse
|
20
|
Molejon NA, Lapada CM, Skouridou V, Rollon AP, El-Shahawi M, Bashammakh A, O'Sullivan CK. Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Anal Biochem 2023; 669:115118. [PMID: 36963555 DOI: 10.1016/j.ab.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Cholera and milder diarrheal disease are caused by Vibrio cholerae and enterotoxigenic Escherichia coli and are still a prominent public health concern. Evaluation of suspicious isolates is essential for the rapid containment of acute diarrhea outbreaks or prevention of epidemic cholera. Existing detection techniques require expensive equipment, trained personnel and are time-consuming. Antibody-based methods are also available, but cost and stability issues can limit their applications for point-of-care testing. This study focused on the selection of single stranded DNA aptamers as simpler, more stable and more cost-effective alternatives to antibodies for the co-detection of AB5 toxins secreted by enterobacteria causing acute diarrheal infections. Cholera toxin and Escherichia coli heat-labile enterotoxin, the key toxigenicity biomarkers of these bacteria, were immobilized on magnetic beads and were used in a SELEX-based selection strategy. This led to the enrichment of sequences with a high % GC content and a dominant G-rich motif as revealed by Next Generation Sequencing. Enriched sequences were confirmed to fold into G-quadruplex structures and the binding of one of the most abundant candidates to the two enterotoxins was confirmed. Ongoing work is focused on the development of monitoring tools for potential environmental surveillance of epidemic choleraand milder diarrheal disease.
Collapse
Affiliation(s)
- Nerissa A Molejon
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Catherine M Lapada
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Vasso Skouridou
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.
| | - Analiza P Rollon
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Mohammed El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulaziz Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ciara K O'Sullivan
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
21
|
Su L, Wan J, Hu Q, Qin D, Han D, Niu L. Target-Synergized Biologically Mediated RAFT Polymerization for Electrochemical Aptasensing of Femtomolar Thrombin. Anal Chem 2023; 95:4570-4575. [PMID: 36825747 DOI: 10.1021/acs.analchem.3c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The assay of thrombin levels is integral to the assessment of coagulation function and clinical screening of coagulation disorder-related diseases. In this work, we illustrate the ingenious use of the target-synergized biologically mediated reversible addition-fragmentation chain transfer (RAFT) polymerization (tsBMRP) as a novel amplification strategy for the electrochemical aptamer-based biosensing of thrombin at the femtomolar levels. Briefly, the tsBMRP-based strategy relies on the boronate affinity-mediated decoration of the glycan chain(s) of the target itself with RAFT agents and the subsequent recruitment of signal labels via BMRP, mediated by the direct reduction of RAFT agents by NADH into initiating/propagating radicals. Obviously, the tsBMRP-based strategy is biologically friendly, low-cost, and simple in operation. As thrombin is a glycoconjugate, its electrochemical aptasensing involves the use of the thrombin-binding aptamer (TBA) as the recognition receptor, the site-specific decoration of RAFT agents to the glycan chain of thrombin via boronate affinity, and further the recruitment of ferrocene signal labels via the BMRP of ferrocenylmethyl methacrylate (FcMMA). As boronate affinity results in the decoration of each glycan chain with tens of RAFT agents while BMRP recruits hundreds of signal labels to each RAFT agent-decorated site, the tsBMRP-based strategy allows us to detect thrombin at a concentration of 35.3 fM. This electrochemical aptasensor is highly selective, and its applicability to thrombin detection in serum samples has been further demonstrated. The merits of high sensitivity and selectivity, low cost, good anti-interference capability, and simple operation make the tsBMRP-based electrochemical thrombin aptasensor great promise in biomedical and clinical applications.
Collapse
Affiliation(s)
- Luofeng Su
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials and Devices, Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Yao J, Jin Z, Zhao Y. Electroactive and SERS-Active Ag@Cu 2O NP-Programed Aptasensor for Dual-Mode Detection of Tetrodotoxin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10240-10249. [PMID: 36749896 DOI: 10.1021/acsami.2c21424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Dual-mode nanotags with noninterference sensing signals improved the detection accuracy and sensitivity for the applications of tetrodotoxin (TTX) monitoring. Electroactive and surface-enhanced Raman scattering (SERS)-active Ag@Cu2O nanoparticles (NPs) were fabricated and displayed two electrooxidation signals at -0.13 and 0.17 V, attributed to the oxidization process of Cu+ and Ag0, respectively. Ag@Cu2O NPs were also found to exhibit stronger SERS performances than individual Ag NPs. The dielectric Cu2O shell with a large dielectric constant inhibited the attenuation of electromagnetic (EM) waves of Ag NPs, which strengthened the EM fields for SERS enhancement. The electron transfer from Ag to Cu2O to 4-aminothiophenol (4-ATP) also contributed to the SERS performances. Ag@Cu2O NPs were modified by TTX aptamers and assembled with MXene nanosheets (NSs) due to the large surface, good conductivity, and inherent Raman properties. The assemblies showed two-peaked electrooxidation signals and prominent SERS activity. An electrochemical detection curve was established by using the total peak intensity at -0.13 and 0.17 V as detection signals, and a ratiometric SERS detection curve was developed by applying the intensity at 1078 cm-1 (4-ATP) as the detection signal and 730 cm-1 (MXene NSs) as the reference signal. An electrochemical and SERS signal-programed dual-mode aptasensor was proposed for accurate TTX detection, with the limits of detection of 31.6 pg/mL for the electrochemical signal and 38.3 pg/mL for the SERS signal. The rational design of plasmonic metal-semiconductor heterogeneous nanocomposites had important prospects in establishing a multimodal biosensing platform for the quantitative and accurate detection of analytes in complex systems.
Collapse
Affiliation(s)
- Jie Yao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
24
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
A dual-mode biosensor for salivary cortisol with antibody-aptamer sandwich pattern and enzyme catalytic amplification. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Guo H, Deng B, Zhao L, Gao Y, Zhang X, Yang C, Zou B, Chen H, Sun M, Wang L, Jiao B. Programmed Aptamer Screening, Characterization, and Rapid Detection for α-Conotoxin MI. Toxins (Basel) 2022; 14:toxins14100706. [PMID: 36287974 PMCID: PMC9606946 DOI: 10.3390/toxins14100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Conotoxins (CTXs) are a variety of mixed polypeptide toxins, among which α-conotoxin MI (CTX-MI) is the most toxic. Serious toxic symptoms, a lack of counteracting drugs, and cumbersome detection processes have made CTX-MI a hidden danger for humans. One of the obstacles to resolving this problem is the absence of specific recognition elements. Aptamers have shown great advantages in the fields of molecule detection, drug development, etc. In this study, we screened and characterized aptamers for CTX-MI through a programmed process. MBMI-01c, the isolated aptamer, showed great affinity, with an affinity constant (K<sub>D</sub>) of 0.524 μM, and it formed an antiparallel G-quadruplet (GQ) structure for the specific recognition of CTX-MI. Additionally, an aptasensor based on the biolayer interferometry (BLI) platform was developed and displayed high precision, specificity, and repeatability with a limit of detection (LOD) of 0.26 μM. This aptasensor provides a potential tool for the rapid detection of CTX-MI in 10 min. The aptamer can be further developed for the enrichment, detoxification, and biological studies of CTX-MI. Additionally, the programmed process is applicable to screening and characterizing aptamers for other CTXs.
Collapse
|
27
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
28
|
Bai H, He L, Liu J, Liu Z, Ren J, Wang E. Development of a Simple Enzyme-Linked Hybrid-Sandwich Assay for Sensitive Detection of Cardiac Troponin I. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Xu X, Zhu L, Wang X, Lan X, Chu H, Tian H, Xu W. Sandwich capture ultrasensitive sensor based on biohybrid interface for the detection of Cronobacter sakazakii. Appl Microbiol Biotechnol 2022; 106:4287-4296. [PMID: 35616722 DOI: 10.1007/s00253-022-11978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
A simple, rapid and ultrasensitive visual sensing method for the detection of Cronobacter sakazakii (C. sakazakii) based on a biohybrid interface was established. During the entire sensing process, quadruple-cascade amplification showed its superior sensing performance. First, the prepared immunomagnetic beads (IMB) were used to isolate and enrich specific targets from the food matrix. After adding the fusion aptamer, the aptamer sequence specifically recognized the target and formed the immune sandwich structure of antibody-target-fusion aptamer. In addition, the fusion aptamer also included the template sequence of exponential amplification reaction (EXPAR), which contained the antisense sequence of the G-rich sequence. Therefore, a large number of G-rich sequences can be generated after EXPAR can be triggered in the presence of Bst. DNA polymerase, nicking endonuclease, cDNA, and dNTP. They were self-assembled into G-quadruplex structures and then combined with hemin to form G4/hemin DNAzyme, resulting in visible coloration and measuring absorbance at 450 nm for quantitative detection. The assay showed a limit of detection (LOD) of 2 CFU/mL in pure culture and 12 CFU/g in milk powder in optimal conditions. This method provides a promising strategy for rapid and point-of-care testing (POCT) since it does not require DNA extraction, medium culturing, and expensive instrumentation. KEY POINTS: •Single-cell level detection of C. sakazakii with ultrasensitive and rapidness •The fusion aptamer integrated recognition and amplification •Sensing analysis of C. sakazakii based on cascade amplification of biohybrid interface.
Collapse
Affiliation(s)
- Xiuyuan Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Xinxin Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health (Institute of Nutrition and Health), China Agricultural University, Tianxiu Road 10, Beijing, 100083, People's Republic of China. .,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), Beijing Laboratory for Food Quality and Safety, College of Food Science & Nutritional Engineering, Beijing, 100083, People's Republic of China.
| |
Collapse
|
30
|
Huang PJJ, Liu J. Selection of Aptamers for Sensing Caffeine and Discrimination of Its Three Single Demethylated Analogues. Anal Chem 2022; 94:3142-3149. [PMID: 35143165 DOI: 10.1021/acs.analchem.1c04349] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the growing consumption of caffeine-containing beverages, detection of caffeine has become an important biomedical, bioanalytical, and environmental topic. We herein isolated four high-quality aptamers for caffeine with dissociation constants ranging from 2.2 to 14.6 μM as characterized using isothermal titration calorimetry. Different binding patterns were obtained for the three single demethylated analogues: theobromine, theophylline, and paraxanthine, highlighting the effect of the molecular symmetry of the arrangement of the three methyl groups in caffeine. A structure-switching fluorescent sensor was designed showing a detection limit of 1.2 μM caffeine, which reflected the labeled caffeine concentration within 6.1% difference for eight commercial beverages. In 20% human serum, a detection limit of 4.0 μM caffeine was achieved. With the four aptamer sensors forming an array, caffeine and the three analogues were well separated from nine other closely related molecules.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
31
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|