1
|
Wang S, Zhou Y, Ding K, Ding ZQ, Zhang W, Liu Y. High-throughput and multimodal profiling of antigen-specific T cells with a droplet-based cell-cell interaction screening platform. Biosens Bioelectron 2025; 267:116815. [PMID: 39348735 DOI: 10.1016/j.bios.2024.116815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Identifying antigen-specific T cells from tumor-infiltrating lymphocytes is essential for designing effective T cell immunotherapies. Traditional methods can detect antigen-specific T cells but struggle with high-throughput screening and multimodal profiling simultaneously. To address this issue, we developed DropCCI, a new strategy that transfers antigen information to co-incubated T cells for high-throughput, non-contaminated multimodal profiling. In DropCCI, droplets encapsulated DNA barcodes and antigen-loaded antigen-presenting cells (APCs), while click chemistry-modified T cells were injected into these droplets to capture free barcodes and acquire the corresponding antigen information. Following cell-cell interaction, APCs were removed via streptavidin-biotin conjugation, to prevent contamination. The resulting T cells underwent single-cell omics sequencing for comprehensive profiling of their antigen specificity, transcriptome, and genomics accurately. This click-chemistry method allowed detection of antigen-specific T cells without lysing APCs, avoiding cross-cell contamination and enabling low-noise multimodal profiling of primary T cells. With a completion time within 12 h and no requirement for complex equipment, DropCCI provides unbiased single-cell sequencing results that offer a comprehensive understanding of anti-tumor T cell responses. The concept of DropCCI holds great promise not only for advancing the field of T cell immunotherapy but also for its potential application in studying other cell-cell interactions.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Neurology and Cell Biology, School of Life Science, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Yan Zhou
- Department of Neurology and Cell Biology, School of Life Science, Xuzhou Medical University, Xuzhou, 221002, China; Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Ke Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | | | - Wenjie Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518107, China.
| |
Collapse
|
2
|
Yu Z, Tong W, Shi J, Chen S, Shui L, Chen H, Shi L, Jin J, Zhu Y. Droplet Impedance Feedback-Enabled Microsampling Microfluidic Device for Precise Chemical Information Monitoring. Anal Chem 2024; 96:16946-16954. [PMID: 39387494 DOI: 10.1021/acs.analchem.4c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Microelectrodes have transformed our understanding of spatiotemporal responses to electrical stimulation. However, biological signals are often molecular, complicating the capture of intricate chemical signals. The microfluidic chip developed in this paper accurately measures droplet volume by using impedance analysis. The utilization of droplet volume as a feedback signal for precise microsampling pressure control ensures that microsampling remains unaffected by droplet volume influence. Once the microsampling is complete, chemiluminescence detection enables high temporal resolution and continuous and sensitive monitoring of chemical information within the droplets. Experimental verification shows that the chip can avoid volume influence through impedance feedback, achieving consistent and stable microampling at the nanoliter level (0-3 nL). In just 0.3 s, it can perform sensitive chemiluminescence detection of H2O2 and glucose within droplets. The linear detection ranges for these analytes are 10-50,000 and 20-600 μM, respectively, with the limit of detection being 0.648 and 0.334 μM. The significance of this chip lies in its ability to reveal changes in both electrical and chemical signals during transient biological processes. Its potential applications are numerous, encompassing a wide range of emerging areas such as single-cell analysis, cell communication, and cellular immunity.
Collapse
Affiliation(s)
- Zhihang Yu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Wenqiang Tong
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jiaming Shi
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lingling Shui
- Joint International Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
3
|
Ding Y, Zoppi G, Antonini G, Geiger R, deMello AJ. Robust Double Emulsions for Multicolor Fluorescence-Activated Cell Sorting. Anal Chem 2024; 96:14809-14818. [PMID: 39231502 PMCID: PMC11411495 DOI: 10.1021/acs.analchem.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events. Unfortunately, current droplet sorting instruments have significant limitations, most notably related to analytical throughput and complex operation. In contrast, commercial fluorescence-activated cell sorters offer superior speed, sensitivity, and multiplexing capabilities, although their use as droplet sorters is poorly defined and underutilized. Herein, we present a universally applicable and simple-to-implement workflow for generating double emulsions and performing multicolor cell sorting using a commercial FACS instrument. This workflow achieves a double emulsion detection rate exceeding 90%, enabling multicellular encapsulation and high-throughput immune cell activation sorting for the first time. We anticipate that the presented droplet sorting strategy will benefit cell biology laboratories by providing access to an advanced microfluidic toolbox with minimal effort and cost investment.
Collapse
Affiliation(s)
- Yun Ding
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Giada Zoppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Gaia Antonini
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Zhao Z, Zhai H, Zuo P, Wang T, Xie R, Tian M, Song R, Xu X, Li Z. Image-activated pico-injection for single-cell analysis. Talanta 2024; 272:125765. [PMID: 38346358 DOI: 10.1016/j.talanta.2024.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
The addition of reagents into preformed droplets is a crucial yet intricate task in droplet-based applications where sequential reactions is required. Pico-injection offers high throughput and robustness in accomplishing this task, but the existing pico-injection techniques work in an indiscriminate manner, making it difficult to target particular groups of droplets. Here we report image-activated pico-injection (imgPico) for label-free, on-demand reagent supplementation into droplets. The imgPico detects the droplets of interest by real-time image analysis and makes decisions for the downstream pico-injection operation. We studied the performance of different algorithms for the image analysis and optimized the experimental settings of the imgPico. In the validation experiment, the imgPico successfully injected fluorescent dyes into droplets encapsulating one, two, and three cells, respectively, as expected. We further demonstrated the utility of imgPico by targeting droplets encapsulating single cells in droplet-based single-cell RNA sequencing (scRNA-seq) using exceedingly high cell density, and the results showed that the imgPico effectively reduced the presence of doublets in the scRNA-seq data. With the merits of being label-free and versatile, the imgPico represents a technical advance with potential applications in single-cell analysis.
Collapse
Affiliation(s)
- Zhantao Zhao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Heng Zhai
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Peng Zuo
- ThunderBio Innovation, Shenzhen, 518108, China
| | - Tao Wang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Run Xie
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Mu Tian
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Ruyuan Song
- ThunderBio Innovation, Shenzhen, 518108, China
| | - Xiaonan Xu
- ThunderBio Innovation, Shenzhen, 518108, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
This S, Costantino S, Melichar HJ. Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics. SCIENCE ADVANCES 2024; 10:eadk2298. [PMID: 38446885 PMCID: PMC10917351 DOI: 10.1126/sciadv.adk2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8+ T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Santiago Costantino
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département d’Ophtalmologie, Université de Montréal, Montréal, Québec, Canada
| | - Heather J. Melichar
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Kim H, Kim S, Lim H, Chung AJ. Expanding CAR-T cell immunotherapy horizons through microfluidics. LAB ON A CHIP 2024; 24:1088-1120. [PMID: 38174732 DOI: 10.1039/d3lc00622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized cancer treatment, particularly in hematological malignancies. However, their application to solid tumors is limited, and they face challenges in safety, scalability, and cost. To enhance current CAR-T cell therapies, the integration of microfluidic technologies, harnessing their inherent advantages, such as reduced sample consumption, simplicity in operation, cost-effectiveness, automation, and high scalability, has emerged as a powerful solution. This review provides a comprehensive overview of the step-by-step manufacturing process of CAR-T cells, identifies existing difficulties at each production stage, and discusses the successful implementation of microfluidics and related technologies in addressing these challenges. Furthermore, this review investigates the potential of microfluidics-based methodologies in advancing cell-based therapy across various applications, including solid tumors, next-generation CAR constructs, T-cell receptors, and the development of allogeneic "off-the-shelf" CAR products.
Collapse
Affiliation(s)
- Hyelee Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Suyeon Kim
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Hyunjung Lim
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
| | - Aram J Chung
- Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.
- School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.
- MxT Biotech, 04785 Seoul, Republic of Korea
| |
Collapse
|
7
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Qi J, Zhu H, Li Y, Guan X, He Y, Ren G, Guo Q, Liu L, Gu Y, Dong X, Liu Y. Creation of a High-Throughput Microfluidic Platform for Single-Cell Transcriptome Sequencing of Cell-Cell Interactions. SMALL METHODS 2023; 7:e2300730. [PMID: 37712212 DOI: 10.1002/smtd.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Cell-cell interaction is one of the major modalities for transmitting information between cells and activating the effects of functional cells. However, the construction of high-throughput analysis technologies from cell omics focusing on the impact of interactions of functional cells on targets has been relatively unexplored. Here, they propose a droplet-based microfluidic platform for cell-cell interaction sequencing (c-c-seq) and screening in vitro to address this challenge. A class of interacting cells is pre-labeled using cell molecular tags, and additional single-cell sequencing reagents are introduced to quickly form functional droplet mixes. Lastly, gene expression analysis is used to deduce the impact of the interaction, while molecular sequence tracing identifies the type of interaction. Research into the active effect between antigen-presenting cells and T cells, one of the most common cell-to-cell interactions, is crucial for the advancement of cancer therapy, particularly T cell receptor-engineered T cell therapy. As it allows for high throughput, this platform is superior to well plates as a research platform for cell-to-cell interactions. When combined with the next generation of sequencing, the platform may be able to more accurately evaluate interactions between epitopes and receptors and verify their functional relevance.
Collapse
Affiliation(s)
- Jingyu Qi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Yijian Li
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Guan
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Guanhua Ren
- China National Institute of Standardization, Beijing, 100191, China
| | - Qiang Guo
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ying Gu
- BGI Research, Shenzhen, 518083, China
| | - Xuan Dong
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, 518083, China
| | - Ya Liu
- BGI Research, Shenzhen, 518083, China
| |
Collapse
|
9
|
Gupta P, Alheib O, Shin JW. Towards single cell encapsulation for precision biology and medicine. Adv Drug Deliv Rev 2023; 201:115010. [PMID: 37454931 PMCID: PMC10798218 DOI: 10.1016/j.addr.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
10
|
Zhong J, Liang M, Ai Y. DUPLETS: Deformability-Assisted Dual-Particle Encapsulation Via Electrically Activated Sorting. SMALL METHODS 2023; 7:e2300089. [PMID: 37246250 DOI: 10.1002/smtd.202300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Indexed: 05/30/2023]
Abstract
Co-encapsulation of bead carriers and biological cells in microfluidics has become a powerful technique for various biological assays in single-cell genomics and drug screening because of its distinct capability of single-cell confinement. However, current co-encapsulation approaches exist a trade-off between cell/bead pairing rate and probability of multiple cells in individual droplets, significantly limiting the effective throughput of single-paired cell-bead droplets production. Deformability-assisted dUal-Particle encapsuLation via Electrically acTivated Sorting (DUPLETS) system is reported to overcome this problem. The DUPLETS can differentiate the encapsulated content in individual droplets and sort out targeted droplets via a combined screening of mechanical and electrical characteristics of single droplets in label-free manners and with the highest effective throughput in comparison to current commercial platforms. The DUPLETS has been demonstrated to enrich single-paired cell-bead droplets to over 80% (above eightfold higher than current co-encapsulation techniques). It eliminates multicell droplets to 0.1% whereas up to ≈24% in 10× Chromium. It is believed that merging DUPLETS into the current co-encapsulation platforms can meaningfully elevate sample quality in terms of high purity of single-paired cell-bead droplets, low fraction of multicell droplets, and high cell viability, which can benefit a multitude of biological assay applications.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
11
|
Yu Z, Jin J, Chen S, Shui L, Chen H, Shi L, Zhu Y. Smart Droplet Microfluidic System for Single-Cell Selective Lysis and Real-Time Sorting Based on Microinjection and Image Recognition. Anal Chem 2023; 95:12875-12883. [PMID: 37581609 DOI: 10.1021/acs.analchem.3c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Single-cell analysis has important implications for understanding the specificity of cells. To analyze the specificity of rare cells in complex blood and biopsy samples, selective lysis of target single cells is pivotal but difficult. Microfluidics, particularly droplet microfluidics, has emerged as a promising tool for single-cell analysis. In this paper, we present a smart droplet microfluidic system that allows for single-cell selective lysis and real-time sorting, aided by the techniques of microinjection and image recognition. A custom program evolved from Python is proposed for recognizing target droplets and single cells, which also coordinates the operation of various parts in a whole microfluidic system. We have systematically investigated the effects of voltage and injection pressure applied to the oil-water interface on droplet microinjection. An efficient and selective droplet injection scheme with image feedback has been demonstrated, with an efficiency increased dramatically from 2.5% to about 100%. Furthermore, we have proven that the cell lysis solution can be selectively injected into target single-cell droplets. Then these droplets are shifted into the sorting area, with an efficiency for single K562 cells reaching up to 73%. The system function is finally explored by introducing complex cell samples, namely, K562 cells and HUVECs, with a success rate of 75.2% in treating K562 cells as targets. This system enables automated single-cell selective lysis without the need for manual handling and sheds new light on the cooperation with other detection techniques for a broad range of single-cell analysis.
Collapse
Affiliation(s)
- Zhihang Yu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Jing Jin
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siyuan Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lingling Shui
- Joint International Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Huaying Chen
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
| | - Yonggang Zhu
- Center for Microflows and Nanoflows, School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
12
|
Li Y, Qi J, Liu Y, Zheng Y, Zhu H, Zang Y, Guan X, Xie S, Zhao H, Fu Y, Xiang H, Zhang W, Chen H, Liu H, Zhao Y, Feng Y, Bu F, Liang Y, Li Y, Xu Q, He Y, Sun L, Liu L, Gu Y, Xu X, Hou Y, Dong X, Liu Y. High-Throughput Screening of Functional Neo-Antigens and Their Specific T-Cell Receptors via the Jurkat Reporter System Combined with Droplet Microfluidics. Anal Chem 2023. [PMID: 37300490 DOI: 10.1021/acs.analchem.3c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T-cell receptor (TCR)-engineered T cells can precisely recognize a broad repertoire of targets derived from both intracellular and surface proteins of tumor cells. TCR-T adoptive cell therapy has shown safety and promising efficacy in solid tumor immunotherapy. However, antigen-specific functional TCR screening is time-consuming and expensive, which limits its application clinically. Here, we developed a novel integrated antigen-TCR screening platform based on droplet microfluidic technology, enabling high-throughput peptide-major histocompatibility complex (pMHC)-to-TCR paired screening with a high sensitivity and low background signal. We introduced DNA barcoding technology to label peptide antigen candidate-loaded antigen-presenting cells and Jurkat reporter cells to check the specificity of pMHC-TCR candidates. Coupled with the next-generation sequencing pipeline, interpretation of the DNA barcodes and the gene expression level of the Jurkat T-cell activation pathway provided a clear peptide-MHC-TCR recognition relationship. Our proof-of-principle study demonstrates that the platform could achieve pMHC-TCR paired high-throughput screening, which is expected to be used in the cross-reactivity and off-target high-throughput paired testing of candidate pMHC-TCRs in clinical applications.
Collapse
Affiliation(s)
- Yijian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yang Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518116, China
| | | | | | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Haitao Xiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weicong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Huan Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yu Feng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fanyu Bu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yanling Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying He
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Li Sun
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518060, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
| | - Yong Hou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen 518083, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
13
|
Zhong J, Liang M, Tang Q, Ai Y. Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting. Mater Today Bio 2023; 19:100594. [PMID: 36910274 PMCID: PMC9999206 DOI: 10.1016/j.mtbio.2023.100594] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Single-cell encapsulation in droplets has become a powerful tool in immunotherapy, medicine discovery, and single-cell analysis, thanks to its capability for cell confinement in picoliter volumes. However, the purity and throughput of single-cell droplets are limited by random encapsulation process, which resuts in a majority of empty and multi-cells droplets. Herein we introduce the first label-free selectable cell quantity encapsulation in droplets sorting system to overcome this problem. The system utilizes a simple and reliable electrical impedance based screening (98.9% of accuracy) integrated with biocompatible acoustic sorting to select single-cell droplets, achieving 90.3% of efficiency and up to 200 Hz of throughput, by removing multi-cells (∼60% of rejection) and empty droplets (∼90% of rejection). We demonstrate the use of the droplet sorting to improve the throughput of single-cell encapsulation by ∼9-fold compared to the conventional random encapsulation process.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qiang Tang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
14
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Ngan Ngo TK, Kuo CH, Tu TY. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. BIOMICROFLUIDICS 2023; 17:011501. [PMID: 36647540 PMCID: PMC9840534 DOI: 10.1063/5.0108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite several extraordinary improvements in cancer immunotherapy, its therapeutic effectiveness against many distinct cancer types remains mostly limited and requires further study. Different microfluidic-based cancer immunotherapy-on-a-chip (ITOC) systems have been developed to help researchers replicate the tumor microenvironment and immune system. Numerous microfluidic platforms can potentially be used to perform various on-chip activities related to early clinical cancer immunotherapy processes, such as improving immune checkpoint blockade therapy, studying immune cell dynamics, evaluating cytotoxicity, and creating vaccines or organoid models from patient samples. In this review, we summarize the most recent advancements in the development of various microfluidic-based ITOC devices for cancer treatment niches and present future perspectives on microfluidic devices for immunotherapy research.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Biomedical Engineering Department, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yuan Tu
- Author to whom correspondence should be addressed:
| |
Collapse
|
16
|
Zhou J, Wei A, Bertsch A, Renaud P. High precision, high throughput generation of droplets containing single cells. LAB ON A CHIP 2022; 22:4841-4848. [PMID: 36416090 DOI: 10.1039/d2lc00841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Poisson limit is a major problem for the isolation of single cells in different single-cell technologies and applications. In droplet-based single-cell assays, a scheme that is increasingly popular, the intrinsic randomness during single-cell encapsulation in droplets requires most of the created droplets to be empty, which has a profound impact on the efficiency and throughput of such techniques, and on the predictability of the combinatory droplet assays. Here we present a simple passive microfluidic system overcoming this limitation with unprecedented efficacy, allowing the generation of single-cell droplets for a wide range of operating conditions, with extremely high throughput (more than 22 000 single-cell loaded droplets per minute) and with an extremely low fault ratio (doublets or empty droplets), applicable to any cells and deformable particles. This versatile technique will shift the paradigm of single-cell encapsulation and will impact single-cell sequencing, rare cell isolation, multicellular/bead studies in immunology or cancer biology, etc.
Collapse
Affiliation(s)
- Jiande Zhou
- Laboratory of Microsystems 4, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Amaury Wei
- Laboratory of Microsystems 4, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Arnaud Bertsch
- Laboratory of Microsystems 4, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| | - Philippe Renaud
- Laboratory of Microsystems 4, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
17
|
Liu Y, Wang S, Lyu M, Xie R, Guo W, He Y, Shi X, Wang Y, Qi J, Zhu Q, Zhang H, Luo T, Chen H, Zhu Y, Dong X, Li Z, Gu Y, Liu L, Xu X, Liu Y. Droplet Microfluidics Enables Tracing of Target Cells at the Single-Cell Transcriptome Resolution. Bioengineering (Basel) 2022; 9:674. [PMID: 36354585 PMCID: PMC9687293 DOI: 10.3390/bioengineering9110674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2023] Open
Abstract
The rapid promotion of single-cell omics in various fields has begun to help solve many problems encountered in research, including precision medicine, prenatal diagnosis, and embryo development. Meanwhile, single-cell techniques are also constantly updated with increasing demand. For some specific target cells, the workflow from droplet screening to single-cell sequencing is a preferred option and should reduce the impact of operation steps, such as demulsification and cell recovery. We developed an all-in-droplet method integrating cell encapsulation, target sorting, droplet picoinjection, and single-cell transcriptome profiling on chips to achieve labor-saving monitoring of TCR-T cells. As a proof of concept, in this research, TCR-T cells were encapsulated, sorted, and performed single-cell transcriptome sequencing (scRNA-seq) by injecting reagents into droplets. It avoided the tedious operation of droplet breakage and re-encapsulation between droplet sorting and scRNA-seq. Moreover, convenient device operation will accelerate the progress of chip marketization. The strategy achieved an excellent recovery performance of single-cell transcriptome with a median gene number over 4000 and a cross-contamination rate of 8.2 ± 2%. Furthermore, this strategy allows us to develop a device with high integrability to monitor infused TCR-T cells, which will promote the development of adoptive T cell immunotherapy and their clinical application.
Collapse
Affiliation(s)
- Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyu Wang
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Xie
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Ying He
- Department of Gynaecological Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518116, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jingyu Qi
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Hui Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tao Luo
- Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361101, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
18
|
Heiligenthal L, van der Loh M, Polack M, Blaha ME, Moschütz S, Keim A, Sträter N, Belder D. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale. Anal Bioanal Chem 2022; 414:6977-6987. [PMID: 35995875 PMCID: PMC9436884 DOI: 10.1007/s00216-022-04266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Microfluidic double-emulsion droplets allow the realization and study of biphasic chemical processes such as chemical reactions or extractions on the nanoliter scale. Double emulsions of the rare type (o1/w/o2) are used here to realize a lipase-catalyzed reaction in the non-polar phase. The surrounding aqueous phase induces the transfer of the hydrophilic product from the core oil phase, allowing on-the-fly MS analysis in single double droplets. A microfluidic two-step emulsification process is developed to generate the (o1/w/o2) double-emulsion droplets. In this first example of microfluidic double-emulsion MS coupling, we show in proof-of-concept experiments that the chemical composition of the water layer can be read online using ESI–MS. Double-emulsion droplets were further employed as two-phase micro-reactors for the hydrolysis of the lipophilic ester p-nitrophenyl palmitate catalyzed by the Candida antarctica lipase B (CalB). Finally, the formation of the hydrophilic reaction product p-nitrophenol within the double-emulsion droplet micro-reactors is verified by subjecting the double-emulsion droplets to online ESI–MS analysis.
Collapse
Affiliation(s)
- Laura Heiligenthal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Marie van der Loh
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Maximilian E Blaha
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Antje Keim
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Lyu M, Shi X, Liu X, Liu Y, Zhu X, Liao L, Zhao H, Sun N, Wang S, Chen L, Fan L, Xu Q, Zhu Q, Gao K, Chen H, Zhu Y, Li Z, Guo W, Zheng Y, Gu Y, Liu L, Wang M, Liu Y. Generation and Screening of Antigen-Specific Nanobodies from Mammalian Cells Expressing the BCR Repertoire Library Using Droplet-Based Microfluidics. Anal Chem 2022; 94:7970-7980. [PMID: 35604850 DOI: 10.1021/acs.analchem.2c00865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanobodies, also known as VHHs, originate from the serum of Camelidae. Nanobodies have considerable advantages over conventional antibodies, including smaller size, more modifiable, and deeper tissue penetration, making them promising tools for immunotherapy and antibody-drug development. A high-throughput nanobody screening platform is critical to the rapid development of nanobodies. To date, droplet-based microfluidic systems have exhibited improved performance compared to the traditional phage display technology in terms of time and throughput. In realistic situations, however, it is difficult to directly apply the technology to the screening of nanobodies. Requirements of plasma cell enrichment and high cell viability, as well as a lack of related commercial reagents, are leading causes for impeding the development of novel methods. We overcame these obstacles by constructing a eukaryotic display system that secretes nanobodies utilizing homologous recombination and eukaryotic transformation technologies, and the significant advantages are that it is independent of primary cell viability and it does not require plasma cell enrichment in advance. Next, a signal capture system of "SA-beads + Biotin-antigen + nanobody-6 × His + fluorescence-labeled anti-6 × His (secondary antibody)" was designed for precise localization of the eukaryotic-expressed nanobodies in a droplet. Based on this innovation, we screened 293T cells expressing anti-PD-L1 nanobodies with a high positive rate of targeted cells (up to 99.8%). Then, single-cell transcriptomic profiling uncovered the intercellular heterogeneity and BCR sequence of target cells at a single-cell level. The complete complementarity determining region (CDR3) structure was obtained, which was totally consistent with the BCR reference. This study expanded the linkage between microfluidic technology and nanobody applications and also showed potential to accelerate the rapid transformation of nanobodies in the large-scale market.
Collapse
Affiliation(s)
- Menghua Lyu
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyang Shi
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xijun Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Na Sun
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Linzhe Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Linyuan Fan
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qumiao Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Yue Zheng
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|