1
|
Fuse-Murakami T, Matsumoto R, Kanamori T. N-Terminal Amino Acid Affects the Translation Efficiency at Lower Temperatures in a Reconstituted Protein Synthesis System. Int J Mol Sci 2024; 25:5264. [PMID: 38791303 PMCID: PMC11120837 DOI: 10.3390/ijms25105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The Escherichia coli (E. coli)-based protein synthesis using recombinant elements (PURE) system is a cell-free protein synthesis system reconstituted from purified factors essential for E. coli translation. The PURE system is widely used for basic and synthetic biology applications. One of the major challenges associated with the PURE system is that the protein yield of the system varies depending on the protein. Studies have reported that the efficiency of translation is significantly affected by nucleotide and amino acid sequences, especially in the N-terminal region. Here, we investigated the inherent effect of various N-terminal sequences on protein synthesis using the PURE system. We found that a single amino acid substitution in the N-terminal region significantly altered translation efficiency in the PURE system, especially at low temperatures. This result gives us useful suggestions for the expression of the protein of interest in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Takashi Kanamori
- GeneFrontier Corporation, 273-1 Kashiwa, Kashiwa-shi 277-0005, Chiba, Japan
| |
Collapse
|
2
|
Goncharuk MV, Vasileva EV, Ananiev EA, Gorokhovatsky AY, Bocharov EV, Mineev KS, Goncharuk SA. Facade-Based Bicelles as a New Tool for Production of Active Membrane Proteins in a Cell-Free System. Int J Mol Sci 2023; 24:14864. [PMID: 37834312 PMCID: PMC10573531 DOI: 10.3390/ijms241914864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.
Collapse
Affiliation(s)
- Marina V. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Ekaterina V. Vasileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Egor A. Ananiev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Andrey Y. Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
3
|
Shihoya W, Sano FK, Nureki O. Structural insights into endothelin receptor signalling. J Biochem 2023; 174:317-325. [PMID: 37491722 PMCID: PMC10533325 DOI: 10.1093/jb/mvad055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023] Open
Abstract
Endothelins and their receptors, type A (ETA) and type B (ETB), modulate vital cellular processes, including growth, survival, invasion and angiogenesis, through multiple G proteins. This review highlights the structural determinations of these receptors by X-ray crystallography and cryo-electron microscopy, and their activation mechanisms by endothelins. Explorations of the conformational changes upon receptor activation have provided insights into the unique G-protein coupling feature of the endothelin receptors. The review further delves into the binding modes of the clinical antagonist and the inverse agonists. These findings significantly contribute to understanding the mechanism of G-protein activation and have potential implications for drug development, particularly in the context of vasodilatory antagonists and agonists targeting the endothelin receptors.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Stano P, Gentili PL, Damiano L, Magarini M. A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things? Molecules 2023; 28:5564. [PMID: 37513436 PMCID: PMC10385758 DOI: 10.3390/molecules28145564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting "molecular communication" (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, "bottom-up" SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pier Luigi Gentili
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Luisa Damiano
- Department of Communication, Arts and Media, IULM University, 20143 Milan, Italy
| | - Maurizio Magarini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Sano FK, Akasaka H, Shihoya W, Nureki O. Cryo-EM structure of the endothelin-1-ET B-G i complex. eLife 2023; 12:85821. [PMID: 37096326 PMCID: PMC10129325 DOI: 10.7554/elife.85821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
The endothelin ETB receptor is a promiscuous G-protein coupled receptor that is activated by vasoactive peptide endothelins. ETB signaling induces reactive astrocytes in the brain and vasorelaxation in vascular smooth muscle. Consequently, ETB agonists are expected to be drugs for neuroprotection and improved anti-tumor drug delivery. Here, we report the cryo-electron microscopy structure of the endothelin-1-ETB-Gi complex at 2.8 Å resolution, with complex assembly stabilized by a newly established method. Comparisons with the inactive ETB receptor structures revealed how endothelin-1 activates the ETB receptor. The NPxxY motif, essential for G-protein activation, is not conserved in ETB, resulting in a unique structural change upon G-protein activation. Compared with other GPCR-G-protein complexes, ETB binds Gi in the shallowest position, further expanding the diversity of G-protein binding modes. This structural information will facilitate the elucidation of G-protein activation and the rational design of ETB agonists.
Collapse
Affiliation(s)
- Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Haueis L, Stech M, Kubick S. A Cell-free Expression Pipeline for the Generation and Functional Characterization of Nanobodies. Front Bioeng Biotechnol 2022; 10:896763. [PMID: 35573250 PMCID: PMC9096027 DOI: 10.3389/fbioe.2022.896763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free systems are well-established platforms for the rapid synthesis, screening, engineering and modification of all kinds of recombinant proteins ranging from membrane proteins to soluble proteins, enzymes and even toxins. Also within the antibody field the cell-free technology has gained considerable attention with respect to the clinical research pipeline including antibody discovery and production. Besides the classical full-length monoclonal antibodies (mAbs), so-called "nanobodies" (Nbs) have come into focus. A Nb is the smallest naturally-derived functional antibody fragment known and represents the variable domain (VHH, ∼15 kDa) of a camelid heavy-chain-only antibody (HCAb). Based on their nanoscale and their special structure, Nbs display striking advantages concerning their production, but also their characteristics as binders, such as high stability, diversity, improved tissue penetration and reaching of cavity-like epitopes. The classical way to produce Nbs depends on the use of living cells as production host. Though cell-based production is well-established, it is still time-consuming, laborious and hardly amenable for high-throughput applications. Here, we present for the first time to our knowledge the synthesis of functional Nbs in a standardized mammalian cell-free system based on Chinese hamster ovary (CHO) cell lysates. Cell-free reactions were shown to be time-efficient and easy-to-handle allowing for the "on demand" synthesis of Nbs. Taken together, we complement available methods and demonstrate a promising new system for Nb selection and validation.
Collapse
Affiliation(s)
- Lisa Haueis
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|