1
|
Alyamni N, Abot JL, Zestos AG. Voltammetric detection of Neuropeptide Y using a modified sawhorse waveform. Anal Bioanal Chem 2024; 416:4807-4818. [PMID: 38914733 PMCID: PMC11315718 DOI: 10.1007/s00216-024-05373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
- Department of Chemistry, American University, Washington, D.C., 20016, USA
| | - Jandro L Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C., 20064, USA
| | - Alexander G Zestos
- Department of Chemistry, American University, Washington, D.C., 20016, USA.
| |
Collapse
|
2
|
Alyamni N, Abot JL, Zestos AG. Perspective-Advances in Voltammetric Methods for the Measurement of Biomolecules. ECS SENSORS PLUS 2024; 3:027001. [PMID: 38645638 PMCID: PMC11024638 DOI: 10.1149/2754-2726/ad3c4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Voltammetry is a powerful electroanalytical tool that makes fast, real-time measurements of neurotransmitters and other molecules. Electroanalytical methods like cyclic, pulse, and stripping voltammetry are useful for qualitative and quantitative examination. Neurochemical sensing has been enhanced using carbon-based electrodes and waveform modification methods that improve sensitivity and stability of electrode performance. Voltammetry has revolutionized neurochemical monitoring by providing real-time information on neurotransmitter dynamics for neurochemical studies. Selectivity and electrode fouling remain issues for biomolecule detection, but recent advances promise new methods of analysis for other applications to enhance spatiotemporal resolution, sensitivity, selectivity, and other important considerations.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Jandro L. Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
3
|
Gupta B, Perillo ML, Siegenthaler JR, Christensen IE, Welch MP, Rechenberg R, Banna GMHU, Galstyan D, Becker MF, Li W, Purcell EK. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. BIOSENSORS 2023; 13:576. [PMID: 37366941 DOI: 10.3390/bios13060576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Neurotransmitter release is important to study in order to better understand neurological diseases and treatment approaches. Serotonin is a neurotransmitter known to play key roles in the etiology of neuropsychiatric disorders. Fast-scan cyclic voltammetry (FSCV) has enabled the detection of neurochemicals, including serotonin, on a sub-second timescale via the well-established carbon fiber microelectrode (CFME). However, poor chronic stability and biofouling, i.e., the adsorption of interferent proteins to the electrode surface upon implantation, pose challenges in the natural physiological environment. We have recently developed a uniquely designed, freestanding, all-diamond boron-doped diamond microelectrode (BDDME) for electrochemical measurements. Key potential advantages of the device include customizable electrode site layouts, a wider working potential window, improved stability, and resistance to biofouling. Here, we present a first report on the electrochemical behavior of the BDDME in comparison with CFME by investigating in vitro serotonin (5-HT) responses with varying FSCV waveform parameters and biofouling conditions. While the CFME delivered lower limits of detection, we also found that BDDMEs showed more sustained 5-HT responses to increasing or changing FSCV waveform-switching potential and frequency, as well as to higher analyte concentrations. Biofouling-induced current reductions were significantly less pronounced at the BDDME when using a "Jackson" waveform compared to CFMEs. These findings are important steps towards the development and optimization of the BDDME as a chronically implanted biosensor for in vivo neurotransmitter detection.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Mason L Perillo
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - James R Siegenthaler
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Isabelle E Christensen
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Matthew P Welch
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - G M Hasan Ul Banna
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Davit Galstyan
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - Michael F Becker
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
| | - Wen Li
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
- Fraunhofer USA Center Midwest, Coatings and Diamond Technologies Division, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Erin K Purcell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Hettiarachchi P, Niyangoda SS, Jarosova R, Johnson MA. Dopamine Release Impairments Accompany Locomotor and Cognitive Deficiencies in Rotenone-Treated Parkinson's Disease Model Zebrafish. Chem Res Toxicol 2022; 35:1974-1982. [PMID: 36178476 PMCID: PMC10127151 DOI: 10.1021/acs.chemrestox.2c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we carried out neurochemical and behavioral analysis of zebrafish (Danio rerio) treated with rotenone, an agent used to chemically induce a syndrome resembling Parkinson's disease (PD). Dopamine release, measured with fast-scan cyclic voltammetry (FSCV) at carbon-fiber electrodes in acutely harvested whole brains, was about 30% of that found in controls. Uptake, represented by the first order rate constant (k) and the half-life (t1/2) determined by nonlinear regression modeling of the stimulated release plots, was also diminished. Behavioral analysis revealed that rotenone treatment increased the time required for zebrafish to reach a reward within a maze by more than 50% and caused fish to select the wrong pathway, suggesting that latent learning was impaired. Additionally, zebrafish treated with rotenone suffered from diminished locomotor activity, swimming shorter distances with lower mean velocity and acceleration. Thus, the neurochemical and behavioral approaches, as applied, were able to resolve rotenone-induced differences in key parameters. This approach may be effective for screening therapies in this and other models of neurodegeneration.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Sayuri S. Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
- Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
5
|
Jarosova R, Niyangoda SS, Hettiarachchi P, Johnson MA. Impaired Dopamine Release and Latent Learning in Alzheimer's Disease Model Zebrafish. ACS Chem Neurosci 2022; 13:2924-2931. [PMID: 36113115 PMCID: PMC10127145 DOI: 10.1021/acschemneuro.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, fatal, neurodegenerative disorder for which only treatments of limited efficacy are available. Despite early mentions of dementia in the ancient literature and the first patient diagnosed in 1906, the underlying causes of AD are not well understood. This study examined the possible role of dopamine, a neurotransmitter that is involved in cognitive and motor function, in AD. We treated adult zebrafish (Danio rerio) with okadaic acid (OKA) to model AD and assessed the resulting behavioral and neurochemical changes. We then employed a latent learning paradigm to assess cognitive and motor function followed by neurochemical analysis with fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure the electrically stimulated dopamine release. The behavioral assay showed that OKA treatment caused fish to have lower motivation to reach the goal chamber, resulting in impeded learning and decreased locomotor activity compared to controls. Our voltammetric measurements revealed that the peak dopamine overflow in OKA-treated fish was about one-third of that measured in controls. These findings highlight the profound neurochemical changes that may occur in AD. Furthermore, they demonstrate that applying the latent learning paradigm and FSCV to zebrafish is a promising tool for future neurochemical studies and may be useful for screening drugs for the treatment of AD.
Collapse
Affiliation(s)
- Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
- Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Sayuri S. Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|