1
|
Seredin P, Goloshchapov D, Buylov N, Kashkarov V, Shikhaliev K, Potapov A, Ippolitov Y, Kartsev V, Kuyumchyan S, de Oliveira Freitas R. A Study of the Peculiarities of the Formation of a Hybrid Interface Based on Polydopamine between Dental Tissues and Dental Composites, Using IR and Raman Microspectroscopy, at the Submicron Level. Int J Mol Sci 2023; 24:11636. [PMID: 37511394 PMCID: PMC10380397 DOI: 10.3390/ijms241411636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The creation of buffer (hybrid) layers that provide improved adhesion to two heterogeneous materials is a promising and high-priority research area in the field of dental materials science. In our work, using FTIR and Raman microspectroscopy at the submicron level in a system of dental composites/intact dental enamel, we assessed the molecular features of formation and chemically visualized the hybrid interface formed on the basis of a nature-like adhesive, polydopamine (PDA). It is shown that a homogeneous bioinspired PDA-hybrid interface with an increased content of O-Ca-O bonds can be created using traditional methods of dental tissue pretreatment (diamond micro drilling, acid etching), as well as the subsequent alkalinization procedure and the developed synthesis technology. The development of the proposed technology for accelerated deposition of PDA-hybrid layers, as well as the creation of self-assembled biomimetic nanocomposites with antibacterial properties, may in the future find clinical application for minimally invasive dental restoration procedures.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Nikita Buylov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Khidmet Shikhaliev
- Laboratory of Organic Additives for the Processes of Chemical and Electrochemical Deposition of Metals and Alloys Used in the Electronics Industry, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Andrey Potapov
- Laboratory of Organic Additives for the Processes of Chemical and Electrochemical Deposition of Metals and Alloys Used in the Electronics Industry, Voronezh State University, University Sq. 1, 394018 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya St. 11, 394006 Voronezh, Russia
| | | | - Sergey Kuyumchyan
- Saint Petersburg State University Hospital, 154, Fontanka River Embankment, 198103 St. Petersburg, Russia
| | - Raul de Oliveira Freitas
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Sao Paulo, Brazil
| |
Collapse
|
2
|
Besnard C, Marie A, Sasidharan S, Harper RA, Shelton RM, Landini G, Korsunsky AM. Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dent J (Basel) 2023; 11:98. [PMID: 37185477 PMCID: PMC10137518 DOI: 10.3390/dj11040098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.
Collapse
Affiliation(s)
- Cyril Besnard
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Ali Marie
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Sisini Sasidharan
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| | - Robert A. Harper
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Gabriel Landini
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, West Midlands, UK
| | - Alexander M. Korsunsky
- MBLEM, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, Oxfordshire, UK
| |
Collapse
|
3
|
Efficient controlled release of cannabinoids loaded in γ-CD-MOFs and DPPC liposomes as novel delivery systems in oral health. Mikrochim Acta 2023; 190:125. [PMID: 36894805 PMCID: PMC9998313 DOI: 10.1007/s00604-023-05692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
Olivetol (OLV), as a cannabidiol (CBD) analog, was incorporated in γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as potential analgesic drug delivery systems (DDS) for dental hypersensitivity (DH) treatment. These DDS have been scarcely employed in oral health, being the first time in case of MOFs loaded with cannabinoids. In vitro experiments using bovine teeth were performed to verify if the drug is able to reach the dentin, where it can flow to the pulp tissues and exert its analgesic effect; enamel and dentin regions were analyzed by synchrotron radiation-based FTIR microspectroscopy. Principal component analysis (PCA) was used to process the spectroscopic data as a powerful chemometric tool, and it revealed a similar behavior in both regions. The studied DDS have been characterized by different techniques, and is was demonstrated that DDS is an efficient way to carry the drug through dental tissues without compromising their structure.
Collapse
|
4
|
Czigány Z, Kis VK. Acquisition and evaluation procedure to improve the accuracy of SAED. Microsc Res Tech 2023; 86:144-156. [PMID: 36069159 PMCID: PMC10087671 DOI: 10.1002/jemt.24229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
The achievement of this work is that fine tuning of experimental and evaluation parameters can improve the absolute accuracy and reproducibility of selected area electron diffraction (SAED) to 0.1% without using internal standard. Due to the proposed procedure it was possible to reach a reproducibility better than 0.03% for camera length between sessions by careful control of specimen height and illumination conditions by monitoring lens currents. We applied a calibration specimen composed of nanocrystalline grains free of texture and providing narrow diffraction rings. Refinements of the centre of the diffraction pattern and corrections for elliptic ring distortions allowed for determining the ring diameters with an accuracy of 0.1%. We analyze the effect of different error sources and reason the achieved absolute accuracy of the measurement. Application of the proposed evaluation procedure is inevitable in case of multicomponent nanocomposites or textured materials and/or having close diffraction rings where application of automated procedures is limited. The achieved accuracy of 0.1% without internal standard is approaching that of routine laboratory XRD, and reduction of instrumental broadening due to the elaborated evaluation procedure allows for separation of close reflections, provides more reliable ring width and thus improved input parameters for further nanostructure analysis as demonstrated on dental enamel bioapatite.
Collapse
Affiliation(s)
- Zsolt Czigány
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Viktória Kovács Kis
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
5
|
Seredin P, Goloshchapov D, Kashkarov V, Khydyakov Y, Nesterov D, Ippolitov I, Ippolitov Y, Vongsvivut J. Development of a Hybrid Biomimetic Enamel-Biocomposite Interface and a Study of Its Molecular Features Using Synchrotron Submicron ATR-FTIR Microspectroscopy and Multivariate Analysis Techniques. Int J Mol Sci 2022; 23:11699. [PMID: 36233001 PMCID: PMC9569639 DOI: 10.3390/ijms231911699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy. The results obtained indicate the possibility of forming a bonding that mimics the properties of natural tissue with controlled molecular properties in the hybrid layer. The diffusion of the amino acid booster conditioner component, the calcium alkali, and the modified adhesive with nanocrystalline carbonate-substituted hydroxyapatite in the hybrid interface region creates a structure that should stabilize the reconstituted crystalline enamel layer. The developed technology can form the basis for an individualized, personalized approach to dental enamel restorations.
Collapse
Affiliation(s)
- Pavel Seredin
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Goloshchapov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Vladimir Kashkarov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Yury Khydyakov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Dmitry Nesterov
- Solid State Physics and Nanostructures Department, Voronezh State University, University sq.1, 394018 Voronezh, Russia
| | - Ivan Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, 394006 Voronezh, Russia
| | - Jitraporn Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty Ltd.), 800 Blackburn Rd, Clayton, VIC 3168, Australia
| |
Collapse
|