1
|
Han Y, Zhang P, Duan X, Gao X, Gao L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. NANOSCALE 2025; 17:3616-3634. [PMID: 39744955 DOI: 10.1039/d4nr04714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers. First, we provide a brief overview of current nanotechnology-enabled electrochemical biosensors. Subsequently, we highlight the precise synthesis of metal NCs protected by various ligands such as peptides, proteins and nucleic acids. Next, we summarize the design and construction of electrochemical biosensors that utilize metal NCs as electrode materials to detect electrochemically active and inactive disease-associated biomarkers, including small biomolecules (glucose, reactive oxygen species, cholesterol, neurotransmitters and amino acids) and biomacromolecules (proteins, enzymes, and nucleic acids). Due to unique electrocatalytic properties, high specific surface areas, and atomically modulated structures, metal NCs promote electron exchange or act as a redox medium in these electrochemical sensing platforms. Finally, we conclude with present challenges and propose future research directions, with the aim to enhance the specificity, sensitivity, and durability of customized metal NC-based electrochemical biosensors for precise disease diagnostics.
Collapse
Affiliation(s)
- Ying Han
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaoyi Duan
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Wei X, Xiong H, Zhou Y, Chen X, Yang W. Tracking epithelial-mesenchymal transition in breast cancer cells based on a multiplex electrochemical immunosensor. Biosens Bioelectron 2024; 258:116372. [PMID: 38735081 DOI: 10.1016/j.bios.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.
Collapse
Affiliation(s)
- Xue Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hanzhi Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yunfan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
3
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
Wang S, Guo Y, Wang X, Zhang X, Yang T, Wang JH. Multiplex Sensing of Biomarkers on the Cancer Cell Surface by an Epithelial-Mesenchymal Transition (EMT) Sensing Panel Enables Precise Differentiating of Cancer Cells at Various EMT Stages. Anal Chem 2024; 96:13270-13277. [PMID: 39093913 DOI: 10.1021/acs.analchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.
Collapse
Affiliation(s)
- Siyi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yushuang Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Xia D, Zhang Y, Zhang C, Yao X, Tang Y, Wang F, Han X, Yin H, Xu C, Gao X. Observation of the protein expression level via naked eye: Pt clusters catalyze non-color molecules into brown-colored molecules in cells. Front Chem 2023; 11:1145415. [PMID: 36860645 PMCID: PMC9969140 DOI: 10.3389/fchem.2023.1145415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α v β 3 is overexpressed in various tumor cells and plays a key role in tumor genesis, invasion, and metastasis. Therefore, it is of great significance to precisely detect the α v β 3 level in cells via a simple method. For this purpose, we have constructed a peptide-coated platinum (Pt) cluster. Due to its bright fluorescence, well-defined Pt atom numbers, and peroxidase-like catalytic activity, this cluster can be used to evaluate α v β 3 levels in cells by fluorescence imaging, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic amplification of visual dyes, respectively. In this report, the expression level of α v β 3 in living cells is well-detected by the naked eye under an ordinary light microscope when the Pt cluster binds to αvβ3 in cells and catalyzes non-color 3,3'-diaminobenzidine (DAB) into brown-colored molecules in situ. Moreover, SiHa, HeLa, and 16HBE cell lines with different α v β 3 expression levels can be visually distinguished by the peroxidase-like Pt clusters. This research will provide a reliable method for the simple detection of α v β 3 levels in cells.
Collapse
Affiliation(s)
- Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yong Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chunyu Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiuxiu Yao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yuhua Tang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Fuchao Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xu Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hongzong Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| | - Xueyun Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China,*Correspondence: Hongzong Yin, ; Chao Xu, ; Xueyun Gao,
| |
Collapse
|
6
|
Li H, Li J, Wang M, Feng W, Gao F, Han Y, Shi Y, Du Z, Yuan Q, Cao P, Wang X, Gao X, Cao K, Gao L. Clusterbody Enables Flow Sorting-Assisted Single-Cell Mass Spectrometry Analysis for Identifying Reversal Agent of Chemoresistance. Anal Chem 2023; 95:560-564. [PMID: 36563048 DOI: 10.1021/acs.analchem.2c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identifying effective reversal agents overcoming multidrug resistance with causal mechanisms from an efflux pump protein is of vital importance for enhanced tumor chemotherapy in clinic. To achieve this end, we construct a metal cluster-based probe, named clusterbody, to develop flow sorting-assisted single-cell mass spectrometry analysis. This clusterbody synthesized by biomimetic mineralization possesses an antibody-like property to selectively recognize an efflux pump protein. The intrinsic red fluorescence emission of the clusterbody facilitates fluorescence-activated high-throughput cell sorting of subpopulations with different multidrug resistance levels. Furthermore, based on the accurate formula of the clusterbody, the corresponding protein abundance at the single-cell level is determined through detecting gold content via precise signal amplification by laser ablation inductively coupled plasma mass spectrometry. Therefore, the effect of reversal agent treatment overcoming multidrug resistance is evaluated in a quantitative manner. This work opens a new avenue to identify reversal agents, shedding light on developing combined or synergetic tumor therapy.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yijie Shi
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Zhongying Du
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peng Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Fei J, Li J. Advance in ATP-involved Active Self-assembled Systems. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|