1
|
Gong Z, Yuan P, Gan Y, Long X, Deng Z, Tang Y, Yang Y, Zhong S. A one-pot isothermal Fluorogenic Mango II arrays-based assay for label-free detection of miRNA. Talanta 2025; 281:126920. [PMID: 39306943 DOI: 10.1016/j.talanta.2024.126920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The capability to detect a small number of miRNAs in clinical samples with simplicity, selectivity, and sensitivity is immensely valuable, yet it remains a daunting task. Here, we described a novel Mango II aptamers-based sensor for the one-pot, sensitive and specific detection of miRNAs. Target miRNA-initiated mediated catalyzed hairpin assembly (CHA) would allow for the production of plenty of DNA duplexes and the formation of the complete T7 promoter, motivating the rolling circle transcription (RCT). Then, the subsequent RCT process efficiently generates a huge number of repeating RNA Mango II aptamers, brightened by the incorporation of fluorescent dye TO1-B for miRNA quantification, realizing label-free and high signal-to-background ratio. Moreover, this assay possesses a remarkable ability to confer high selectivity, enabling the distinction of miRNAs among family members with mere 1- or 2- nucleotide (nt) differences. By employing the proposed assay, we have successfully achieved a sensitive evaluation of miR-21 content in diverse cell lines and clinical serum samples. This offers a versatile approach for the sensitive assay of miRNA biomarkers in molecular diagnosis.
Collapse
Affiliation(s)
- Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Panpan Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yuqing Gan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yalan Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
2
|
Yuan A, Sun T, Chen L, Zhang D, Xie W, Peng H. CRISPR/Cas12a Corona Nanomachine for Detecting Circulating Tumor Nucleic Acids in Serum. Anal Chem 2024; 96:20074-20081. [PMID: 39639565 DOI: 10.1021/acs.analchem.4c04993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Circulating tumor nucleic acids (CTNAs), which consist of cell-free DNA or RNA released from tumor cells, are utilized as potential biomarkers for diagnosing and managing tumor prognosis. There is a significant demand for developing a highly sensitive and reliable assay for CTNAs detection. In this study, we engineered a CRISPR/Cas12a corona nanomachine capable of detecting circulating tumor DNA and RNA in serum. This nanomachine consists of a protein shell incorporating Cas12a/crRNA ribonucleoprotein complexes and a scaffold AuNP core decorated with substrate ssDNA strands. The protective CRISPR corona shields the nucleic acid core from degradation by nuclease DNase/RNase, thereby enhancing the stability of the CRISPR/Cas12a corona nanomachine in biological fluids, even tolerating up to undiluted human serum and FBS. Upon encountering target CTNAs, the CRISPR/Cas12a is activated through the sequence-specific hybridization between crRNA and CTNAs. Subsequently, the activated CRISPR/Cas12a autonomously cleaves the collateral ssDNA substrates on AuNPs, releasing the fluorophore-labeled fragment and generating an increasing fluorescent signal. The CRISPR corona nanomachine was successfully employed to detect various CTNAs, including circulating tumor (ct)DNA/RNA (EGFR L858R) and microRNA-21, achieving a limit of detection of 0.14 pM for ctDNA and 1.0 pM for RNA. This CRISPR corona nanomachine enables simultaneous detection of both DNA and RNA in complex biological samples, offering a promising tool for early diagnosis.
Collapse
Affiliation(s)
- Aijiao Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianrui Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leyuan Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang L, Luo S, Li W, Su W, Chen S, Liu C, Pan W, Situ B, Zheng L, Li L, Yan X, Zhang Y. Co-freezing localized CRISPR-Cas12a system enables rapid and sensitive nucleic acid analysis. J Nanobiotechnology 2024; 22:602. [PMID: 39367442 PMCID: PMC11452933 DOI: 10.1186/s12951-024-02831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/02/2024] [Indexed: 10/06/2024] Open
Abstract
Rapid and sensitive nucleic acid detection is vital in disease diagnosis and therapeutic assessment. Herein, we propose a co-freezing localized CRISPR-Cas12a (CL-Cas12a) strategy for sensitive nucleic acid detection. The CL-Cas12a was obtained through a 15-minute co-freezing process, allowing the Cas12a/crRNA complex and hairpin reporter confined on the AuNPs surface with high load efficiency, for rapid sensing of nucleic acid with superior performance to other localized Cas12a strategies. This CL-Cas12a based platform could quantitatively detect targets down to 98 aM in 30 min with excellent specificity. Furthermore, the CL-Cas12a successful applied to detect human papillomavirus infection and human lung cancer-associated single-nucleotide mutations. We also achieved powerful signal amplification for imaging Survivin mRNA in living cells. These findings highlight the potential of CL-Cas12a as an effective tool for nucleic acid diagnostics and disease monitoring.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Wanting Su
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
| | - Chunchen Liu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P.R. China.
| | - Xiaohui Yan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P.R. China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Kim JJ, Hong JS, Kim H, Choi M, Winter U, Lee H, Im H. CRISPR/Cas13a-assisted amplification-free miRNA biosensor via dark-field imaging and magnetic gold nanoparticles. SENSORS & DIAGNOSTICS 2024; 3:1310-1318. [PMID: 39129860 PMCID: PMC11308380 DOI: 10.1039/d4sd00081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
MicroRNAs (miRNAs) are short (about 18-24 nucleotides) non-coding RNAs and have emerged as potential biomarkers for various diseases, including cancers. Due to their short lengths, the specificity often becomes an issue in conventional amplification-based methods. Next-generation sequencing techniques could be an alternative, but the long analysis time and expensive costs make them less suitable for routine clinical diagnosis. Therefore, it is essential to develop a rapid, selective, and accurate miRNA detection assay using a simple, affordable system. In this work, we report a CRISPR/Cas13a-based miRNA biosensing using point-of-care dark-field (DF) imaging. We utilized magnetic-gold nanoparticle (MGNPs) complexes as signal probes, which consist of 200 nm-sized magnetic beads and 60 nm-sized gold nanoparticles (AuNPs) linked by DNA hybridization. Once the CRISPR/Cas13a system recognized the target miRNAs (miR-21-5p), the activated Cas13a cleaved the bridge linker containing RNA sequences, releasing 60 nm-AuNPs detected and quantified by a portable DF imaging system. The combination of CRISPR/Cas13a, MGNPs, and DF imaging demonstrated amplification-free detection of miR-21-5p within 30 min at a detection limit of 500 attomoles (25 pM) and with single-base specificity. The CRISPR/Cas13a-assisted MGNP-DF assay achieved rapid, selective, and accurate detection of miRNAs with simple equipment, thus providing a potential application for cancer diagnosis.
Collapse
Affiliation(s)
- Jae-Jun Kim
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
| | - Hyunho Kim
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
| | - Moonhyun Choi
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
| | - Ursula Winter
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
- Department of Radiology, Massachusetts General Hospital Boston MA 02114 USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital Boston MA 02114 USA +1 617 643 5679
- Department of Radiology, Massachusetts General Hospital Boston MA 02114 USA
| |
Collapse
|
5
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Mu X, Li J, Xiao S, Huang Y, Zhao S, Tian J. CRISPR/Cas12a-mediated DNA-AgNC label-free logical gate for multiple microRNAs' assay. Mikrochim Acta 2024; 191:376. [PMID: 38849560 DOI: 10.1007/s00604-024-06452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
CRISPR/Cas system has been widely applied in the assay of disease-related nucleic acids. However, it is still challenging to use CRISPR/Cas system to detect multiple nucleic acids at the same time. Herein, we combined the preponderance of DNA logic circuit, label-free, and CRISPR/Cas technology to construct a label-free "AND" logical gate for multiple microRNAs detection with high specificity and sensitivity. With the simultaneous input of miRNA-155 and miRNA-141, the logic gate starts, and the activation chain of Cas12a is destroyed; thus, the activity is inhibited and the fluorescence of the signal probe ssDNA-AgNCs is turned on. The detection limit of this method for simultaneous quantitative detection of double target is 84 fmol/L (S/N = 3). In this "AND" logic gate, it is only necessary for the design of a simple DNA hairpin probe, which is inexpensive and easy, and since this method involves only one signal output, the data processing is very simple. What is more important, in this strategy two types of microRNAs can be monitored simultaneously by only using CRISPR/Cas12a and a type of crRNA, which offers a new design concept for the exploitation of single CRISPR/Cas system for multiple nucleic acid assays.
Collapse
Affiliation(s)
- Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jinshen Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shixiu Xiao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
7
|
Lei X, Cao S, Liu T, Wu Y, Yu S. Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection. Talanta 2024; 271:125663. [PMID: 38232570 DOI: 10.1016/j.talanta.2024.125663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.
Collapse
Affiliation(s)
- Xueying Lei
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Shengnan Cao
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Tao Liu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Yongjun Wu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Songcheng Yu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China.
| |
Collapse
|
8
|
Cao H, Mao K, Yang J, Wu Q, Hu J, Zhang H. High-Throughput μPAD with Cascade Signal Amplification through Dual Enzymes for arsM in Paddy Soil. Anal Chem 2024; 96:6337-6346. [PMID: 38613479 DOI: 10.1021/acs.analchem.3c05958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (μPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiajia Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
9
|
Yu S, Lei X, Qu C. MicroRNA Sensors Based on CRISPR/Cas12a Technologies: Evolution From Indirect to Direct Detection. Crit Rev Anal Chem 2024:1-17. [PMID: 38489095 DOI: 10.1080/10408347.2024.2329229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
MicroRNA (miRNA) has emerged as a promising biomarker for disease diagnosis and a potential therapeutic targets for drug development. The detection of miRNA can serve as a noninvasive tool in diseases diagnosis and predicting diseases prognosis. CRISPR/Cas12a system has great potential in nucleic acid detection due to its high sensitivity and specificity, which has been developed to be a versatile tool for nucleic acid-based detection of targets in various fields. However, conversion from RNA to DNA with or without amplification operation is necessary for miRNA detection based on CRISPR/Cas12a system, because dsDNA containing PAM sequence or ssDNA is traditionally considered as the activator of Cas12a. Until recently, direct detection of miRNA by CRISPR/Cas12a system has been reported. In this review, we provide an overview of the evolution of biosensors based on CRISPR/Cas12a for miRNA detection from indirect to direct, which would be beneficial to the development of CRISPR/Cas12a-based sensors with better performance for direct detection of miRNA.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueying Lei
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
10
|
Sun S, Yang H, Wu Z, Zhang S, Xu J, Shi P. CRISPR/Cas systems combined with DNA nanostructures for biomedical applications. Chem Commun (Camb) 2024; 60:3098-3117. [PMID: 38406926 DOI: 10.1039/d4cc00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
DNA nanostructures are easy to design and construct, have good biocompatibility, and show great potential in biosensing and drug delivery. Numerous distinctive and versatile DNA nanostructures have been developed and explored for biomedical applications. In addition to DNA nanostructures that are completely assembled from DNA, composite DNA nanostructures obtained by combining DNA with other organic or inorganic materials are also widely used in related research. The CRISPR/Cas system has attracted great attention as a powerful gene editing technology and is also widely used in biomedical diagnosis. Many researchers are committed to exploring new possibilities by combining DNA nanostructures with CRISPR/Cas systems. These explorations provide support for the development of new detection methods and cargo delivery pathways, provide inspiration for improving relevant gene editing platforms, and further expand the application scope of DNA nanostructures and CRISPR/Cas systems. This paper mainly reviews the design principles and biomedical applications of CRISPR/Cas combined with DNA nanostructures based on the types of DNA nanostructures. Finally, the application status, challenges and development prospects of CRISPR/Cas combined with DNA nanostructures in detection and delivery are summarized. It is expected that this review will enable researchers to better understand the current state of the field and provide insights into the application of CRISPR/Cas systems and the development of DNA nanostructures.
Collapse
Affiliation(s)
- Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Haoqi Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Jingjuan Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P. R. China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|
11
|
Chen X, Huang C, Zhang J, Hu Q, Wang D, You Q, Guo Y, Chen H, Xu J, Hu M. Mini crRNA-mediated CRISPR/Cas12a system (MCM-CRISPR/Cas12a) and its application in RNA detection. Talanta 2024; 268:125350. [PMID: 37922816 DOI: 10.1016/j.talanta.2023.125350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Some non-coding RNAs are abnormally expressed during the occurrence and development of diseases, so it is necessary to develop analytical methods that can specifically and sensitively detect them. In typical CRISPR/Cas12a system, a complete crRNA that can recognize single-stranded or double-stranded DNA is necessary to activate its trans-cleavage activity, which limits its direct application in RNA detection. Here, we prospectively find that slicing the facilitated crRNA in the typical CRISPR/Cas12a system at a fitted site did not affect its trans-cleavage activity, and a mini crRNA-mediated CRISPR/Cas12a system (MCM-CRISPR/Cas12a) was proposed based on this. This system can detect non-coding RNA to pM-level (10 pM for miRNA-21). To expand the application of this system, we combined it with HCR and CHA to establish a detection platform for non-coding RNA. The results show that the proposed method can specifically detect RNA to fM-level (2.5 fM for miRNA-21, 8.98 fM for miR-128-3p, and 81.6 fM for lncRNA PACER). The spiked recovery rates of miRNA-21, miR-128-3p, and lncRNA PACER in normal human serum were in range from 104.7 to 109.4 %, indicating the proposed method owns good applicability. In general, this MCM-CRISPR/Cas12a system further breaks the limitations of the typical CRISPR/Cas12a system that cannot be directly used for non-coding RNA detection. Besides, its combination with HCR and CHA achieves highly sensitive detection of non-coding RNA.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Chaowang Huang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jing Zhang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Qiao Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Dan Wang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Qianyi You
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yawen Guo
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Huaping Chen
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jing Xu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China; Department of Health Management, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
12
|
Cao H, Mao K, Zhang H, Wu Q, Ju H, Feng X. Thermal stability and micrdose-based coupling CRISPR/Cas12a biosensor for amplification-free detection of hgcA gene in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168536. [PMID: 37977400 DOI: 10.1016/j.scitotenv.2023.168536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The lack of point-of-use (POU) methods hinders the utilization of the hgcA gene to rapidly evaluate methylmercury risks. CRISPR/Cas12a is a promising technology, but shortcomings such as low sensitivity, a strict reaction temperature and high background signal limit its further utilization. Here, a thermally stable microsystem-based CRISPR/Cas12a biosensor was constructed to achieve POU analysis for hgcA. First, three target gRNAs were designed to recognize hgcA. Then, a microsystem was developed to eliminate the background signal. Next, the effect of temperature on the activity of the Cas12a-gRNA complex was explored and its thermal stability was discovered. After that, coupling gRNA assay was introduced to improve sensitivity, exhibiting a limit of detection as low as 0.49 pM with a linear range of 0.98-125 pM, and a recovery rate between 90 and 110 % for hgcA. The biosensor was finally utilized to assess hgcA abundance in paddy soil, and high abundance of hgcA was found in these paddy soil samples. This study not only systematically explored the influence of temperature and microsystem on CRISPR/Cas12a, providing vital references for other novel CRISPR-based detection methods, but also applied the CRISPR-based analytical method to the field of environmental geochemistry for the first time, demonstrating enormous potential for POU detection in this field.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
13
|
Wu Y, Pei J, Li Y, Wang G, Li L, Liu J, Tian G. High-sensitive and rapid electrochemical detection of miRNA-31 in saliva using Cas12a-based 3D nano-harvester with improved trans-cleavage efficiency. Talanta 2024; 266:125066. [PMID: 37579676 DOI: 10.1016/j.talanta.2023.125066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Salivary miRNA-31 is a reliable diagnostic marker for early-stage oral squamous cell carcinoma (OSCC), but accurate detection of miRNA-31 in saliva samples is a challenge because of its low level and high sequence homology. The CRISPR/Cas12a system has the exceptional potential to enable simple nucleic acid analysis but suffers from low speed and sensitivity. To achieve rapid and high-sensitive detection of miRNA-31 using the CRISPR/Cas12a system, a Cas12a-based nano-harvester activated by a polymerase-driven DNA walker, named as dual 3D nanorobots, was developed. The target walked rapidly on the surface of DNA hairpin-modified magnetic nanoparticles driven by DNA polymerase, generating numerous double-strand DNA (dsDNA). Then, the Cas12a bound to the generated dsDNA for activating its trans-cleavage activity, forming 3D nano-harvester. Subsequently, the harvester cut and released methylene blue-labeled DNA hairpins immobilized on the sensing interface, leading to the change in electrochemical signal. We found that the trans-cleavage activity of the harvester was higher than the conventional CRISPR/Cas12a system. The developed dual 3D nanorobots could enable rapid (detection time within 60 min), high-sensitive (detection limit of femtomolar), and specific analysis of miRNA-31 in saliva samples. Thus, our established electrochemical biosensing strategy has great potential for early diagnosis of OSCC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingwen Pei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yi Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guobin Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
14
|
Alom KM, Seo YJ. Triple ligation-based formation of a G-quadruplex for simultaneous detection of multiple miRNAs. Analyst 2023; 148:4283-4290. [PMID: 37622213 DOI: 10.1039/d3an01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The simultaneous detection of multiple microRNAs (miRNA) is of great necessity but has not been extensively studied. This prompted our study, which involved the development of a triple ligation-based system for detecting three miRNAs at the same time. We designed a multi-ligation-padlock (MLP) probe that consists of three parts, each of which is complementary to two different miRNAs at the same time. In the presence of all three miRNAs, the probe becomes circularized, but in the absence of even one target, the probe remains linear. The first part of the MLP probe (MLP1) contains a T7 promoter part that can initiate RNA synthesis for any given target condition. However, it also includes a G-quadruplex complementary segment, which can only form a parallel RNA G-quadruplex through rolling circle transcription by the circularized template in the presence of all three targets. In this case, the application of our parallel G-quadruplex sensing fluorescent probe lutidine DESA (LutD) produces a strong signal. However, in the absence of any one of the targets, the RNA G-quadruplex cannot be formed and ultimately the LutD probe does not generate any signal. This difference in the signal intensity represents the presence or absence of all the target miRNAs. With our system, we were able to detect miRNA 21 at levels as low as 1.13 fM, miRNA 146a as low as 1.37 fM, and miRNA 25b as low as 1.51 fM within 45 minutes, confirming that our novel system can selectively and sensitively diagnose triple miRNAs.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
15
|
Li W, Wang W, Luo S, Chen S, Ji T, Li N, Pan W, Zhang X, Wang X, Li K, Zhang Y, Yan X. A sensitive and rapid electrochemical biosensor for sEV-miRNA detection based on domino-type localized catalytic hairpin assembly. J Nanobiotechnology 2023; 21:328. [PMID: 37689652 PMCID: PMC10492399 DOI: 10.1186/s12951-023-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Small extracellular-vesicule-associated microRNA (sEV-miRNA) is an important biomarker for cancer diagnosis. However, rapid and sensitive detection of low-abundance sEV-miRNA in clinical samples is challenging. Herein, a simple electrochemical biosensor that uses a DNA nanowire to localize catalytic hairpin assembly (CHA), also called domino-type localized catalytic hairpin assembly (DT-LCHA), has been proposed for sEV-miRNA1246 detection. The DT-LCHA offers triple amplification, (i). CHA system was localized in DNA nanowire, which shorten the distance between hairpin substrate, inducing the high collision efficiency of H1 and H2 and domino effect. Then, larger numbers of CHAs were triggered, capture probe bind DT-LCHA by exposed c sites. (ii) The DNA nanowire can load large number of electroactive substance RuHex as amplified electrochemical signal tags. (iii) multiple DT-LCHA was carried by the DNA nanowire, only one CHA was triggered, the DNA nanowire was trapped by the capture probe, which greatly improve the detection sensitivity, especially when the target concentration is extremely low. Owing to the triple signal amplification in this strategy, sEV-miRNA at a concentration of as low as 24.55 aM can be detected in 20 min with good specificity. The accuracy of the measurements was also confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, the platform showed good performance in discriminating healthy donors from patients with early gastric cancer (area under the curve [AUC]: 0.96) and was equally able to discriminate between benign gastric tumors and early cancers (AUC: 0.77). Thus, the platform has substantial potential in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, People's Republic of China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, People's Republic of China
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Tingting Ji
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ningcen Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weilun Pan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaojing Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ke Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Xiaohui Yan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
16
|
Liu Z, Quan L, Ma F, Yang M, Jiang X, Chen X. Determination of adenosine by CRISPR-Cas12a system based on duplexed aptamer and molecular beacon reporter linked to gold nanoparticles. Mikrochim Acta 2023; 190:173. [PMID: 37020072 PMCID: PMC10075494 DOI: 10.1007/s00604-023-05748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023]
Abstract
Adenosine as a potential tumor marker is of great value for clinical disease diagnosis. Since the CRISPR-cas12a system is only capable of recognizing nucleic acid targets we expanded the CRISPR-cas12a system to determine small molecules by designing a duplexed aptamer (DA) converting g-RNA recognition of adenosine to recognition of aptamer complementary DNA strands (ACD). To further improve the sensitivity of determination, we designed a molecule beacon (MB)/gold nanoparticle (AuNP)-based reporter, which has higher sensitivity than traditional ssDNA reporter. In addition, the AuNP-based reporter enables more efficient and fast determination. The determination of adenosine under 488-nm excitation can be realized within 7 min, which is more than 4 times faster than traditional ssDNA reporter. The linear determination range of the assay to adenosine was 0.5-100 μM with the determination limit of 15.67 nM. The assay was applied to recovery determination of adenosine in serum samples with satisfactory results. The recoveries were between 91 and 106% and the RSD values of different concertation were below 4.8%. This sensitive, highly selective, and stable sensing system is expected to play a role in the clinical determination of adenosine and other biomolecules.
Collapse
Affiliation(s)
- Zhenhua Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | | | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
| | - Xinyu Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Xiang Chen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410083, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
17
|
Zhang Q, Zhang X, Zou X, Ma F, Zhang CY. CRISPR/Cas-Based MicroRNA Biosensors. Chemistry 2023; 29:e202203412. [PMID: 36477884 DOI: 10.1002/chem.202203412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
As important post-transcriptional regulators, microRNAs (miRNAs) play irreplaceable roles in diverse cellular functions. Dysregulated miRNA expression is implicated in various diseases including cancers, and thus miRNAs have become the valuable biomarkers for disease monitoring. Recently, clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has shown great promise for the development of next-generation biosensors because of its precise localization capability, good fidelity, and high cleavage activity. Herein, we review recent advance in development of CRISPR/Cas-based biosensors for miRNA detection. We summarize the principles, features, and performance of these miRNA biosensors, and further highlight the remaining challenges and future directions.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University Institution, Nanjing, 211189, P.R. China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
18
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
19
|
Ultrasensitive visual detection of miRNA-143 using a CRISPR/Cas12a-based platform coupled with hyperbranched rolling circle amplification. Talanta 2023; 251:123784. [DOI: 10.1016/j.talanta.2022.123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
|
20
|
Green CM, Spangler J, Susumu K, Stenger DA, Medintz IL, Díaz SA. Quantum Dot-Based Molecular Beacons for Quantitative Detection of Nucleic Acids with CRISPR/Cas(N) Nucleases. ACS NANO 2022; 16:20693-20704. [PMID: 36378103 DOI: 10.1021/acsnano.2c07749] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Strategies utilizing the CRISPR/Cas nucleases Cas13 and Cas12 have shown great promise in the development of highly sensitive and rapid diagnostic assays for the detection of pathogenic nucleic acids. The most common approaches utilizing fluorophore-quencher molecular beacons require strand amplification strategies or highly sensitive optical setups to overcome the limitations of the readout. Here, we demonstrate a flexible strategy for assembling highly luminescent and colorimetric quantum dot-nucleic acid hairpin (QD-HP) molecular beacons for use in CRISPR/Cas diagnostics. This strategy utilizes a chimeric peptide-peptide nucleic acid (peptide-PNA) to conjugate fluorescently labeled DNA or RNA hairpins to ZnS-coated QDs. QDs are particularly promising alternatives for molecular beacons due to their greater brightness, strong UV absorbance with large emission offset, exceptional photostability, and potential for multiplexing due to their sharp emission peaks. Using Förster resonance energy transfer (FRET), we have developed ratiometric reporters capable of pM target detection (without nucleotide amplification) for both target DNA and RNA, and we further demonstrated their capabilities for multiplexing and camera-phone detection. The flexibility of this system is imparted by the dual functionality of the QD as both a FRET donor and a central nanoscaffold for arranging nucleic acids and fluorescent acceptors on its surface. This method also provides a generalized approach that could be applied for use in other CRISPR/Cas nuclease systems.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Joseph Spangler
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
- Jacobs Corporation, Hanover, Maryland21076, United States
| | - David A Stenger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C.20375, United States
| |
Collapse
|
21
|
Qin P, Chen P, Deng N, Tan L, Yin BC, Ye BC. Switching the Activity of CRISPR/Cas12a Using an Allosteric Inhibitory Aptamer for Biosensing. Anal Chem 2022; 94:15908-15914. [DOI: 10.1021/acs.analchem.2c04315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peipei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Pinru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Nan Deng
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
CRISPR-Cas12a-activated palindrome-catalytic hairpin assembly for ultrasensitive fluorescence detection of HIV-1 DNA. Anal Chim Acta 2022; 1227:340303. [DOI: 10.1016/j.aca.2022.340303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
|
23
|
Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep 2022; 49:11301-11311. [PMID: 35857175 PMCID: PMC9297709 DOI: 10.1007/s11033-022-07752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022]
Abstract
Emerging and relapsing infectious diseases pose a huge health threat to human health and a new challenge to global public health. Rapid, sensitive and simple diagnostic tools are keys to successful management of infectious patients and containment of disease transmission. In recent years, international research on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) has revolutionized our understanding of biology. The CRISPR-Cas system has the advantages of high specificity, high sensitivity, simple, rapid, low cost, and has begun to be used for molecular diagnosis and treatment of infectious diseases. In this paper, we described the biological principles, application fields and prospects of CRISPR-Cas system in the molecular diagnosis and treatment of infectious diseases, and compared it with existing molecular diagnosis methods, the advantages and disadvantages were summarized.
Collapse
Affiliation(s)
- Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China. .,International School of Public Health and One Health, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Wang Q, Zhang Z, Zhang L, Liu Y, Xie L, Ge S, Yu J. Photoswitchable CRISPR/Cas12a-Amplified and Co 3O 4@Au Nanoemitter Based Triple-Amplified Diagnostic Electrochemiluminescence Biosensor for Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32960-32969. [PMID: 35839124 DOI: 10.1021/acsami.2c08823] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a CRISPR/Cas12a initiated switchable ternary electrochemiluminescence (ECL) biosensor combined with a Co3O4@Au nanoemitter is presented for the in vitro monitoring of miRNA-141. Benefiting from the advantages of high-throughput cargo payload capability and superconductivity, three-dimensional reduced graphene oxide (3D-rGO) was designated as an introductory conducting stratum of a paper working electrode (PWE). With the collaborative participation of Co3O4@Au NPs, the transmutation of TPrA in the Ru(bpy)32+/TPrA system can be riotously expedited into exorbitant free radical ions TPrA•, which provoked the exaggeration of the ECL signal. Moreover, the programmable enzyme-free hybrid chain reaction (HCR) amplifier on the PWE surface accurately anchored the assembly of nucleic acid tandem and accomplished the secondary recursion of the signal. Impressively, the multifunctional CRISPR/Cas12a with nonspecific cis/trans-splitting decomposition manipulated the photoswitch of the "on-off" signal state that avoided the false-positive diagnosis. The presented multistrategy cooperative biosensor demonstrated extraordinary sensitivity and specificity, with a low detection limit of 3.3 fM (S/N = 3) in the concentration scope from 10 fM to 100 nM, which fully corresponded to the expectation. Overall, this innovative methodology paved a generous avenue for evaluating multifarious biotransformations and provided a tremendous impetus to the development of real-time diagnosis and clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Li Xie
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|