Yao T, Kong L, Liu Y, Li H, Yuan R, Chai Y. Highly Efficient Quadruped DNA Walker Guided by Ordered DNA Tracks for Rapid and Ultrasensitive Electrochemical Detection of miRNA-21.
Anal Chem 2022;
94:12256-12262. [PMID:
35996894 DOI:
10.1021/acs.analchem.2c03083]
[Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, a long period liner DNA tandem (Lr-DNT) was intelligently designed as DNA track for quadruped DNA walker (q-walker) to run in an orderly and efficient manner, which could be applied to construct an electrochemical biosensor for rapid and ultrasensitive detection of microRNA-21 (miRNA-21). Impressively, benefiting from the orderliness and equidistance of Lr-DNT, the q-walker could be endowed with a high controllability, directionality as well as a quite short reaction time down to 20 min compared with those of traditional DNA walkers walked on the stochastic tracks. Once the target miRNA-21 interacted with the locked q-walker, the q-walker could be activated to expeditiously cleave Lr-DNT for releasing amounts of signal probes ferrocene (Fc) with the assistance of the Nt.BbvCI enzyme. This way, the developed q-walker could not only readily overcome the problem of low reaction efficiency but also address the drawback of time consumption in a previous strategy. As a proof of concept, the prepared biosensor could accomplish sensitive detection of target miRNA-21 with a detection limit down to 31 aM. As a result, this tactic gave impetus to design high-performance sensing platform with ultimate application in clinical sample analysis and nucleic acid based cancer diagnostics.
Collapse