1
|
Li X, Zheng X, Yuan Y, Deng J, Su L, Xu K. A review of research progress on COF-based biosensors in pathogen detection. Anal Chim Acta 2025; 1342:343605. [PMID: 39919853 DOI: 10.1016/j.aca.2024.343605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Despite the availability of various detection tools, the rapid identification and accurate detection of pathogens remain a major challenge in public health management. Covalent organic frameworks (COFs), which are crystalline conjugated organic polymers with considerable application potential, offer unique advantages in several fields owing to their highly ordered structure, large specific surface area, stable chemical properties, and tunable pore microenvironment. In recent years, with the rapid development of biosensing technology, COF application in the field of pathogen detection has attracted extensive attention. Herein, the properties, applications, and synthesis methods of COFs are briefly described, and the application types and basic principles of COFs in building an efficient and sensitive pathogen detection platform are emphatically discussed. Overall, we analyze the current challenges associated with COF-based biosensors in pathogen detection and look forward to their broad application prospects in biomedicine and public health in future.
Collapse
Affiliation(s)
- Xiang Li
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Xi Zheng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Yanhui Yuan
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Jiahui Deng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Liang Su
- Changsha Center for Disease Control and Prevention, Changsha, 410004, Hunan, PR China.
| | - Kun Xu
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Bai B, Jing X, Yu L, Zhang J, Bo T, Liu H, Gu Y, Yang Y. Bimetallic lanthanide metal-organic framework supported ratiometric molecularly imprinted fluorescence sensor: An innovation for selective and visual detection of dimethyl phthalate. Food Chem 2025; 476:143373. [PMID: 39983473 DOI: 10.1016/j.foodchem.2025.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Dimethyl phthalate (DMP) is a prototypical member of the phthalic acid ester class of plasticizers that may remain in food, posing a considerable risk to both food safety and human health. An innovative ratiometric fluorescence sensor (MIPs@BL-MOF) was constructed by incorporating bimetallic lanthanide terbium/europium metal-organic framework (BL-MOF) into molecularly imprinted polymers (MIPs) for the rapid selective and visual detection of DMP. In this work, BL-MOF prepared by the 'post-mixing' strategy was intelligently incorporated in the MIPs layer, giving the sensor the ability of rapid mass transfer, efficient binding, excellent anti-interference, and high selectivity. Based on the photoelectron transfer mechanism, high-affinity detection of DMP was realized by MIPs@BL-MOF with a good linear fitting (R2 = 0.9944) and theoretical detection limit of 3.29 nmol L-1 in the range of 1.0 × 10-8-1.0 × 10-3 mol L-1. More importantly, a portable visual sensing platform integrated by the MIPs@BL-MOF sensor and smartphone was successfully applied to DMP detection. Accordingly, the MIPs@BL-MOF-based ratiometric fluorescence sensing platform with desirable specificity, sensitivity, and portability holds great potential for the rapid and visual detection of plasticizers for ensuring environmental and food safety.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Yidan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1188-1195. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
4
|
Luo Z, Zhu S, Xue H, Yang W, Zhang F, Xu F, Lin W, Wang H, Chen X. Manipulating p-π Resonance through Methoxy Group Engineering in Covalent Organic Frameworks for an Efficient Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202420217. [PMID: 39714598 DOI: 10.1002/anie.202420217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Kinetic factors frequently emerge as the primary constraints in photocatalysis, exerting a critical influence on the efficacy of polymeric photocatalysts. The diverse conjugation systems within covalent organic frameworks (COFs) can significantly impact photon absorption, energy level structures, charge separation and migration kinetics. Consequently, these limitations often manifest as unsatisfactory kinetic behavior, which adversely affects the photocatalytic activity of COFs. To address these challenges, we propose a methoxy (-OMe) molecular engineering strategy designed to enhance charge carrier kinetics and mitigate mass transfer resistance. Through strategic modulation of the position and quantity of -OMe units, we can effectively manipulate the p-π conjugation, thereby enhancing charge separation and migration. Moreover, COFs enriched with -OMe moieties exhibit enhanced mass transfer dynamics due to the hydrophilic nature of methoxy groups, which facilitate the diffusion of reactants and products within the porous structure. This approach is hypothesized to drive an efficient photocatalytic hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zhipeng Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shipeng Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Huanglan Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wanxiang Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fengtao Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Advanced Carbon-Based Functional Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Mekkeparambath V, Sreejaya MM, M S, K HK, Anil Kumar L, M KP, Venkatesh Y, Gangopadhyay M. Covalent Organic Framework as Selective Fluorescence Sensors for Cancer Inducing Volatile Organic Compounds. Chembiochem 2025; 26:e202400784. [PMID: 39607949 DOI: 10.1002/cbic.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Certain volatile organic compounds (VOCs), such as formaldehyde, acetone, and ethanol, are overexpressed in some terminal diseases like cancer, diabetes, Alzheimer's, etc. Therefore, high-precision detection and quantification of VOCs is imperative for early diagnosis of such detrimental diseases. Non-invasive and accurate fluorescence-based detection of such analytes has garnered widespread attention. The inherent luminescent properties of covalent organic frameworks (COFs), resulting from their extensive π-conjugation, have made them suitable for sensing applications. Structural tunability and strong covalent linkers facilitate sensing by COFs. Appropriate choices of linker and skeletal units of the COF can help detect various biologically important analytes selectively. The most common linkers used in this regard is the imine linker, which can undergo excellent hydrogen bonding with different protic VOCs e. g., ethanol, methanol, etc. Besides imine detection, hydrogen bonding also proved useful for detection of aldehydes. Suitable combinations of donors and acceptors enable the COFs to have specific charge transfer interactions with many electron-rich and electron-poor VOCs. In this review, we have highlighted the syntheses of selective COFs incorporating linkers designed for sensing cancer-inducing VOCs. A detailed discussion of the interaction mechanisms between COFs and these VOCs is provided, along with examples from recent literature in this field.
Collapse
Affiliation(s)
- Vaishnavi Mekkeparambath
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - M M Sreejaya
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Sreelekshmi M
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Harikrishnan K K
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lina Anil Kumar
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Kalyani P M
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Yarra Venkatesh
- Department of Chemistry Institution University of Pennsylvania Address 2 Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Moumita Gangopadhyay
- Department Chemistry, Institution Amrita Vishwa Vidyapeetham Address 1 Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala 690525, India
| |
Collapse
|
6
|
Guo L, Gong L, Yang Y, Huang Z, Liu X, Luo F. Rational Construction of Cyanide-Functionalized D-A-π-D Covalent Organic Framework for Highly Efficient Overall H 2O 2 Photosynthesis from Air and Water. Angew Chem Int Ed Engl 2025; 64:e202414658. [PMID: 39317686 DOI: 10.1002/anie.202414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Sacrificial-agent-free overall photosynthesis of H2O2 from water and air represents currently a promising route to reform the industrial anthraquinone production manner, but, still blocks by the requirement of pure O2 feedstock, due to the insufficient oxygen supply from water under air. Herein, we report a rational molecule design on COFs (covalent organic frameworks) equiped with cyanide-functionalized D-A-π-D system for highly efficient overall H2O2 production from air and water through photocatalytic oxygen reduction reactions (ORR) and water oxidation reaction (WOR). Without using any sacrificial agent, the as-synthesized D-A-π-D COF is found to enable a H2O2 production rate as high as 4742 μmol h-1 g-1 from water and air and an O2 utilization and conversion rate up to 88 %, exceeding the other D-A-π-A COF by respectively 1.9- and 1.3-fold. Such high performance is attributed to the tuned electronic structure and prolonged charge lifetime facilitated by the unique D-A-π-D structure and cyanide groups. This work highlights a fundamental molecule design on advanced photocatalytic COFs with complicated D-A system for low-cost and massive H2O2 production.
Collapse
Affiliation(s)
- Liecheng Guo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Lele Gong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Yuting Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Zhecheng Huang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Xing Liu
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Luo
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
7
|
Gordo‐Lozano M, Martínez‐Fernández M, Paitandi RP, Martínez JI, Segura JL, Seki S. Boosting Photoconductivity by Increasing the Structural Complexity of Multivariate Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406211. [PMID: 39564700 PMCID: PMC11753490 DOI: 10.1002/smll.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/18/2024] [Indexed: 11/21/2024]
Abstract
The assessment of the photoconductivity of Donor-Acceptor (D-A) ordered bulk heterojunctions is gaining attention for the development of innovative organic semiconductors in optoelectronics. Here, the synthesis of pyrene-based (D) Covalent Organic Frameworks, achieve through a multivariate reaction involving two distinct acceptors is reported (A). The products are characterized using powder x-ray diffraction, N2 sorption isotherms, electronic microscopy, and in silico calculations, among other techniques. These characterizations reveal that the multicomponent synthesis enables the modification of properties (e.g., bandgap) of the framework while preserving its structural features, such as crystallinity and porosity. The ordered D-A arrays position these materials as promising candidates for photoconductive semiconductors, particularly regarding the variation in the composition of isotopological frameworks. Photoconductivity experiments demonstrate a volcano-type correlation with respect to the A moiety content, with the optimal value reaching 7.9 × 10-5 cm2 V-1 s-1 for the bare NIP25%-COF. This study illustrates how introducing diverse acceptor units through multivariate synthesis can enhance the photoconductivity of these materials via "defect" engineering, without sacrificing their crystalline or porous characteristics and avoiding the need for de novo synthesis.
Collapse
Affiliation(s)
- Marta Gordo‐Lozano
- Facultad de CC. QuímicasUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | | | | | - José I. Martínez
- Departamento de Sistemas de Baja DimensionalidadInstituto de Ciencia de Materiales de Madrid (ICMM‐CSIC)Madrid28049Spain
| | - José L. Segura
- Facultad de CC. QuímicasUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | - Shu Seki
- Graduate School of EngineeringKyoto UniversityNishikyo‐kuKyoto615–8510Japan
| |
Collapse
|
8
|
Song J, Gong R, Song S, Abbas G, Ma Y, Li Y. The value of electrochemical ratiometry in immunosensing: A systematic study. Biosens Bioelectron 2025; 267:116817. [PMID: 39368847 DOI: 10.1016/j.bios.2024.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Reluctant reproducibility and accuracy make electrochemical immunosensors suffering from high possibility of false negative/positive results, and it is the main obstacle that hinders them into an eligible alternative technology to the gold-standard method. It has been demonstrated sporadically previously that ratiometry helps deal with this issue but to what extent this could be beneficial and why it could fulfill is yet to be explored. In this study, to the best of our knowledge, for the first time, we have attempted to answer these questions through comprehensive experiments. For this purpose, labeled and label-free electrochemical immunosensors for SARS-CoV-2 pseudovirus quantification are constructed as a model electrochemical immunosensor. Conventional and ratiometric immunosensors are prepared by using electrochemically synthesized graphene modified electrodes coupled with various electrochemical probe pairs. It was found that the electrocatalyst modification at the electrode interface makes the predominant contribution to immunosensor sensitivity, while appropriate ratiometry provided electrochemical immunosensors with significantly enhanced reproducibility, accuracy, as well as sensing stability. Further, the experiments confirmed that the improvement in sensor performance achieved by ratiometry is primarily through overcoming the inherent errors and dynamic variations of the base electrode. It is also demonstrated electrochemical immunosensors made thereof could easily rival the performances of the gold-standard PCR method, in the view of immunoassay diagnosis. Therefore, it is of great promise to evolve electrochemical immunosensors into an eligible substitute technique towards the prevalent nucleic acid detection method in point-of-care testing (POCT), with the aid of electrochemical ratiometry.
Collapse
Affiliation(s)
- Jin Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Rui Gong
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518107, China
| | - Shibo Song
- Endoscopy Center, Peking University First Hospital, Beijing, 100034, China
| | - Ghulam Abbas
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yiwei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
9
|
Li H, Liu X, Feng X, Guo X, Xu Z, Wang Y. Rapid assessment of acetophenone using an anti-interfering triple-emission Ln 3+-functionalized HOF@MOF sensor. Talanta 2024; 280:126718. [PMID: 39154436 DOI: 10.1016/j.talanta.2024.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The development of high-performance sensors for rapidly detecting acetylacetone (AP) in water samples is necessary because its release into the environment can result in many vital problems for human health and environment. Herein, we first designed a hybrid by integrating HOF with ZIF-8 through a sequential growth strategy. By separately introducing blue-emitting SiQDs and green- and red-emitting Tb3+ and Eu3+ into ZIF-8 and HOF, the resultant ZIF-8@SiQDs@HOF@Eu3+@Tb3+ comprised three emission peaks at 484, 545 and 620 nm, all of which could be employed as switch-off responsive peaks to low concentrations of AP with a detection limit of 0.79 ppm. However, in environments with high concentrations of AP, a turn-on signal at 484 nm was observed. Thereupon, the ratiometric fluorescence intensity of the ternary emission varied within different concentration ranges, accompanied by the fluorescence color evolution from red to salmon to plum to purple to final blue. Moreover, a portable sensing film was fabricated for rapid warning, sensitive and visual determination of AP in complicated environments. Therefore, this triple-emission sensor with wide color variations and strong anti-interference advantages could promote further research to improve the selectivity, sensitivity and inherent self-correction of multimodal fluorescence detection and the ease of sensing operation.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoqin Feng
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyuan Guo
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Provincial Research Center for Early Warning and Emergency Engineering of Combusstion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
10
|
Chen Q, Li S, Tu X, Zhang X. Skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. Biosens Bioelectron 2024; 263:116606. [PMID: 39089190 DOI: 10.1016/j.bios.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The pH of human sweat is highly related with a variety of diseases, whereas the monitoring of sweat pH still remains challenging for ordinary families. In this study, we developed a novel dual-emission Tb-MOF using DPA as the ligand and further designed and constructed a skin-attachable Tb-MOF ratio fluorescent sensor for real-time detection of human sweat pH. With the increased concentration of H+, the interaction of H+ with carbonyl organic ligand leads to the collapse of the Tb-MOF crystal structure, resulting in the interruption of antenna effect, and correspondingly increasing the emission of the ligand at 380 nm and decreasing the emission of the central ion Tb3+ at 544 nm. This Tb-MOF nanoprobe has a good linear response in the pH range of 4.12-7.05 (R2 = 0.9914) with excellent anti-interference ability. Based on the merits of fast pH response and high sensitivity, the nanoprobe was further used to prepare flexible wearable sensor. The wearable sensor can detect pH in the linear range of 3.50-6.70, which covers the pH range of normal human sweat (4.50-6.50). Subsequently, the storage stability and detection accuracy of the sensors were evaluated. Finally, the sensor has been successfully applied for the detection of pH in actual sweat samples from 21 volunteer and the real-time monitoring of pH variation during movement processing. This skin-attachable Tb-MOF sensor, with the advantages of low cost, visible color change and long shelf-life, is appealing for sweat pH monitoring especially for ordinary families.
Collapse
Affiliation(s)
- Qiulin Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Sheng Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xiaoyan Tu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
11
|
Fan YJ, Dong JX, Liu T, Chang YQ, Zhao YS, Li YL, Zhang SM, Cao SY, Su M, Shen SG, Gao ZF. Heterometallic Eu/Zn-MOF-based ratiometric sensing platform: Highly sensitive fluorescence / second-order scattering identification of tetracycline analogs and its molecular informatization applications. Anal Chim Acta 2024; 1319:342980. [PMID: 39122289 DOI: 10.1016/j.aca.2024.342980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
The traditional preparation method of ratiometric probes faces challenges such as cumbersome preparation and low sensitivity. Thus, there is an urgent need to provide a simple method of preparing a highly sensitive ratiometric probe. Here, Eu3+-doped zinc-based organic framework (Eu/Zn-MOF) was prepared through hydrothermal method for the detection of tetracycline analogs (TCs). Under the same excitation conditions, the probe can simultaneously display valuable fluorescence and second-order scattering signals. The developed probe enabled specific identification and fast detection (1 min) of TCs, including tetracycline, oxytetracycline, doxycycline, and chlortetracycline. The linear detection ranges of tetracycline, oxytetracycline, doxycycline and chlortetracycline were respectively 100 nM - 200 μM, 100 nM - 200 μM, 98 nM - 195 μM, and 97 nM - 291 μM, and the corresponding detection limits were respectively 15.79 nM, 20.83 nM, 15.31 nM, and 28.30 nM. The developed sensor was successfully applied to detect TCs in real samples, and the recovery rate was from 92.54 % to 109.69 % and the relative standard deviation was from 0.04 % to 2.97 %. Moreover, the heterometallic Eu/Zn-MOF was designed as a ratiometric neuron for Boolean logic computing and information encryption based on the specific identification of TCs. As a proof of concept, molecular steganography was successfully employed to encode, store, and conceal information by transforming the specific identification patterns of Eu/Zn-MOF into binary strings. This study is anticipated to advance the application of metal-organic frameworks in logic detection and information security, and bridging the gap between molecular sensors and the realm of information.
Collapse
Affiliation(s)
- Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Tan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yan Qing Chang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Song Yun Cao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
12
|
Yue JY, Luo JX, Pan ZX, Zhang RZ, Yang P, Xu Q, Tang B. Regulating the Topology of Covalent Organic Frameworks for Boosting Overall H 2O 2 Photogeneration. Angew Chem Int Ed Engl 2024; 63:e202405763. [PMID: 38607321 DOI: 10.1002/anie.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Photocatalytic oxygen reduction reactions and water oxidation reactions are extremely promising green approaches for massive H2O2 production. Nonetheless, constructing effective photocatalysts for H2O2 generation is critical and still challenging. Since the network topology has significant impacts on the electronic properties of two dimensional (2D) polymers, herein, for the first time, we regulated the H2O2 photosynthetic activity of 2D covalent organic frameworks (COFs) by topology. Through designing the linking sites of the monomers, we synthesized a pair of novel COFs with similar chemical components on the backbones but distinct topologies. Without sacrificial agents, TBD-COF with cpt topology exhibited superior H2O2 photoproduction performance (6085 and 5448 μmol g-1 h-1 in O2 and air) than TBC-COF with hcb topology through the O2-O2⋅--H2O2, O2-O2⋅--O2 1-H2O2, and H2O-H2O2 three paths. Further experimental and theoretical investigations confirmed that during the H2O2 photosynthetic process, the charge carrier separation efficiency, O2⋅- generation and conversion, and the energy barrier of the rate determination steps in the three channels, related to the formation of *OOH, *O2 1, and *OH, can be well tuned by the topology of COFs. The current study enlightens the fabrication of high-performance photocatalysts for H2O2 production by topological structure modulation.
Collapse
Affiliation(s)
- Jie-Yu Yue
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jing-Xian Luo
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zi-Xian Pan
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Rui-Zhi Zhang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Peng Yang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Bo Tang
- Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266200, P. R. China
| |
Collapse
|
13
|
Wang L, Xu S, Chen J, Li R, Chen Q, Chen X. Ratiometric fluorescence method comprising carbon dots and rhodamine 6G encapsulated in metal-organic framework microcubes for curcumin detection. Mikrochim Acta 2024; 191:337. [PMID: 38777890 DOI: 10.1007/s00604-024-06430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
A ratiometric fluorescence method comprising carbon dots (CDs) and rhodamine 6G (Rh-6G) encapsulated in the microcubes of metal-organic framework (MOF-5) is introduced for the sensitive detection of curcumin (Cur) in condiments. CDs@MOF-5@Rh-6G, synthesized by the adsorption of Rh-6G on MOF-5 embedded with CDs, showed two distinct emission peaks at 435 and 560 nm under excitation at 335 nm, and could be used for Cur detection by ratiometric fluorescence. In the presence of Cur, the fluorescence of the CDs at 435 nm (F435) was quenched by Cur owing to internal filtering and dynamic quenching effects, whereas the emission of Rh-6G at 560 nm (F560) remained unchanged (335 nm is the excitation wavelength, 435 and 560 nm are the emission wavelengths, in which F435/F560 values are used as the output results). Under optimal conditions, a linear relationship was observed between the Cur concentration (in the range 0.1-5 μmol/L) and F435/F560 value for CDs@MOF-5@Rh-6G, with a detection limit of 15 nmol/L. Notably, the proposed method could accurately detect Cur in mustard, curry, and red pepper powders. Therefore, this study could improve the quality control of food and facilitate the development of sensitive ratiometric fluorescence probes.
Collapse
Affiliation(s)
- Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shifen Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jing Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Rundong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
14
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Zheng X, Qiu W, Cui J, Liu H, Zhao Y, Zhang J, Zhang Z, Zhao Y. Donor-Acceptor Interactions Enhanced Colorimetric Sensors for Both Acid and Base Vapor Based on Two-Dimensional Covalent Organic Frameworks. Chemistry 2024; 30:e202303004. [PMID: 38189555 DOI: 10.1002/chem.202303004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 01/09/2024]
Abstract
Due to the high surface area and uniform porosity of covalent organic frameworks (COFs), they exhibit superior properties in capturing and detecting even trace amounts of gases in the air. However, the COFs materials that possess dual detected functionality are still less reported. Here, an imine-based COF containing thiophene as a donor and triazine as an acceptor to form spatial-distribution-defined D-A structures was prepared. D-A system between thiophene and triazine facilitates the charge transfer process during the protonation process of the imine and the triazine units. The obtained COF exhibits simultaneous sensing ability toward both acidic and alkaline vapors with obvious colorimetric sensing functionality.
Collapse
Affiliation(s)
- Xuhan Zheng
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenqi Qiu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jialin Cui
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Hui Liu
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yunzheng Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Jianming Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Zhenxiu Zhang
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Yingjie Zhao
- College of Polymer and Engineering, Qingdao University of Science and Technology, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| |
Collapse
|
16
|
Yue JY, Pan ZX, Song LP, Yu WJ, Zheng H, Wang JC, Yang P, Tang B. Mixed-Linkage Donor-Acceptor Covalent Organic Framework as a Turn-On Fluorescent Sensor for Aliphatic Amines. Anal Chem 2023; 95:17400-17406. [PMID: 37967038 DOI: 10.1021/acs.analchem.3c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Amine determination is crucial to our daily life, including the prevention of pollution, the treatment of certain disorders, and the evaluation of food quality. Herein, a mixed-linkage donor-acceptor covalent organic framework (named DSE-COF) was first constructed by the polymerization between 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (DTA) and 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dianiline (SEZ). DSE-COF displayed superior turn-on fluorescent responses to primary, secondary, and tertiary aliphatic amines, such as cadaverine, isopropylamine, sec-butylamine, cyclohexylamine, hexamethylenediamine, di-n-butylamine, and triethylamine in absolute acetonitrile than other organic species. Further experiments and theoretical calculations demonstrated that the combination of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) effects between the DSE-COF and aliphatic amines resulted in enhanced fluorescence. Credibly, DSE-COF can quantitatively detect cadaverine content in actual pork samples with satisfactory results. In addition, DSE-COF-based test papers could rapidly monitor cadaverine from real pork samples, manifesting the potential application of COFs in food quality inspection.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Jiang Yu
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Hong Zheng
- Key Laboratory of Supervising Technology for Meat and Meat Products for State Market Regulation, Shandong Institute for Food and Drug Control, Jinan 250101, P. R. China
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P. R. China
| |
Collapse
|
17
|
Gao J, Ouyang J, Shen J, Wei Y, Wang C. Multivariate covalent organic frameworks guided carboxyl functionalized magnetic adsorbent for enrichment of fluoroquinolones in milk prior to high performance liquid chromatographic analysis. J Chromatogr A 2023; 1706:464283. [PMID: 37562103 DOI: 10.1016/j.chroma.2023.464283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Herein, we prepared a carboxyl functionalized magnetic covalent organic framework (Fe3O4@iCOF-COOH) by combining multivariate synthetic strategy with post-synthetic modification. It was used as an adsorbent for magnetic solid phase extraction (MSPE) of six fluoroquinolones (FQs), and showed good absorption performance at neutral pH. Carboxyl groups are found to be crucial for the adsorption of fluoroquinolones. The adsorption mechanism was primarily attributed to strong hydrogen bonding, π-π interaction as well as potential hydrophobic effect. The optimal extraction conditions are sample pH at 6.0, adsorbent dosage of 3 mg, eluent of 1.0 mL methanol solution containing 7.5% ammonia, and extraction/desorption time of 30 min. Under the optimized conditions, the Fe3O4@iCOF-COOH was used as an adsorbent for MSPE of FQs in milk, an analytical method was established by combining with high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The limits of detection (LODs) and limit of quantification (LOQs) were 1.24-4.58 ng⋅mL-1 and 4.12-15.3 ng⋅mL-1, respectively. The recoveries of target FQs in spiked milk were 68.4-105%. This work provides a new way to prepare covalent organic framework based adsorbents for solid phase extraction, and can be readily extended to other type of adsorbents.
Collapse
Affiliation(s)
- Jingnan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jinya Ouyang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
18
|
Shan Z, Wu M, Liu T, Wang J, Chen C, Li S, Su J, Zhang G. Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433068 DOI: 10.1021/acsami.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Covalent organic frameworks (COFs) are polymer networks with a precise structure and permanent porosity, making them an attractive platform for the detection of volatile analytes due to their chemical stability and accessible active sites. In this study, based on electron-rich N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine moiety, two 2D COFs with different topological structures and stacking models were designed by the strategy of spatial effect. The conductivity of the AB-stacked COF-NUST-20 was an order of magnitude higher than that of the AA-stacked COF-NUST-30. With the protonation of the imine bond, both COFs exhibited a strong, rapid, and reversible visible color change in response to corrosive HCl vapor. In addition, the AB-stacked COF-NUST-20, which facilitates both interlayer and intralayer charge transfer, shows better sensing performance. These findings demonstrate the usefulness of all-aromatic 2D COFs as real-time responsive chemosensors and provide insight into the design of sensing materials with high sensitivity.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Tongtong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Congjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Shufan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Ma TT, Yang C, Qian HL, Ma P, Liu T, Yan XP. Trifluoromethyl-Functionalized 2D Covalent Organic Framework for High-Resolution Separation of Isomers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37367939 DOI: 10.1021/acsami.3c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Development of novel functional materials for effective isomer separation is of great significance in environmental science, chemical industry, and life science due to the different functions of isomers. However, the similar physicochemical properties of isomers make their separation greatly challenging. Here, we report the fabrication of trifluoromethyl-functionalized 2D covalent organic framework (COF) TpTFMB with 2,2'-bis(trifluoromethyl)benzidine (TFMB) and 1,3,5-triformylphloroglucinol (Tp) for the separation of isomers. TpTFMB was in situ-grown on the inner surface of a capillary for the high-resolution separation of isomers. The introduction of hydroxyl and trifluoromethyl functional groups with uniform distribution in 2D COFs is a powerful tactic to endow TpTFMB with various functions such as hydrogen bonding, dipole interaction, and steric effect. The prepared TpTFMB capillary column enabled the baseline separation of positional isomers such as ethylbenzene and xylene, chlorotoluene, carbon chain isomers such as butylbenzene and ethyl butanoate, and cis-trans isomers 1,3-dichloropropene. The hydrogen-bonding, dipole, and π-π interactions as well as the structure of COF significantly contribute to the isomer separation. This work provides a new strategy for designing functional 2D COFs for the efficient separation of isomers.
Collapse
Affiliation(s)
- Tian-Tian Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|