1
|
Xia S, Liang E, Xu L, Tan L, Guo X, Cheng K. Ultrasensitive Chemiluminescence Probes Designed from Covalent Inhibitors for SRAS-CoV-2 M pro Detection. Anal Chem 2024; 96:19641-19650. [PMID: 39574217 DOI: 10.1021/acs.analchem.4c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
In the postpandemic era, the emergence of "long COVID" from SARS-CoV-2 has brought ongoing negative impacts on individual health and society. The development of more efficient methods for drug screening and monitoring viral activity remains a critical need. The main protease (Mpro), due to its important role in the virus lifecycle, high conservation, and specificity, is considered an ideal biomarker for SARS-CoV-2. Herein, we have developed several chemiluminescence probes based on different substrates modified from covalent inhibitors targeted at Mpro. Among these, the best probe, MPCL-2, exhibits a rapid response (<20 min), an extremely low limit of detection (LoD; 0.11 nM), great selectivity, and chemical stability. After validating the probe's mechanism of action, MPCL-2 can also be used for real-time, in-situ imaging of enzymes in cells infected with the authentic virus and has the potential for real-time, in-situ Mpro imaging in vivo. Compared to other methods reported to date, the probe demonstrates superior performance and broader applicability, such as in drug screening or virus activity monitoring. Further, the unique design strategy for the substrate can be adopted to develop sensitive probes for other pathogens.
Collapse
Affiliation(s)
- Suping Xia
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Leisheng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Liyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaowen Guo
- Clinical Research Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
2
|
Padula D. A Computational Perspective on the Reactivity of π-spacers in Self-Immolative Elimination Reactions. Chem Asian J 2024; 19:e202400010. [PMID: 38407472 DOI: 10.1002/asia.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
The controlled release of chemicals, especially in drug delivery, is crucial, often employing "self-immolative" spacers to enhance reliability. These spacers separate the payload from the protecting group, ensuring a more controlled release. Over the years, design rules have been proposed to improve the elimination process's reaction rate by modifying spacers with electron-donating groups or reducing their aromaticity. The spacer design is critical for determining the range of functional groups released during this process. This study explores various strategies from the literature aimed at improving release rates, focusing on the electronic nature of the spacer, its aromaticity, the electronic nature of its substituents, and the leaving groups involved in the elimination reaction. Through computational analysis, I investigate activation free energies by identifying transition states for model reactions. My calculations align qualitatively with experimental results, demonstrating the feasibility and reliability of computationally pre-screening model self-immolative eliminations. This approach allows proposing optimal combinations of spacer and leaving group for achieving the highest possible release rate.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
3
|
Leonard RA, Rao VN, Bartlett A, Froggatt HM, Luftig MA, Heaton BE, Heaton NS. A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases. J Virol 2023; 97:e0059723. [PMID: 37578235 PMCID: PMC10506478 DOI: 10.1128/jvi.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple coronaviruses (CoVs) can cause respiratory diseases in humans. While prophylactic vaccines designed to prevent infection are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), incomplete vaccine efficacy, vaccine hesitancy, and the threat of other pathogenic CoVs for which vaccines do not exist have highlighted the need for effective antiviral therapies. While antiviral compounds targeting the viral polymerase and protease are already in clinical use, their sensitivity to potential resistance mutations as well as their breadth against the full range of human and preemergent CoVs remain incompletely defined. To begin to fill that gap in knowledge, we report here the development of an improved, noninfectious, cell-based fluorescent assay with high sensitivity and low background that reports on the activity of viral proteases, which are key drug targets. We demonstrate that the assay is compatible with not only the SARS-CoV-2 Mpro protein but also orthologues from a range of human and nonhuman CoVs as well as clinically reported SARS-CoV-2 drug-resistant Mpro variants. We then use this assay to define the breadth of activity of two clinically used protease inhibitors, nirmatrelvir and ensitrelvir. Continued use of this assay will help define the strengths and limitations of current therapies and may also facilitate the development of next-generation protease inhibitors that are broadly active against both currently circulating and preemergent CoVs. IMPORTANCE Coronaviruses (CoVs) are important human pathogens with the ability to cause global pandemics. Working in concert with vaccines, antivirals specifically limit viral disease in people who are actively infected. Antiviral compounds that target CoV proteases are already in clinical use; their efficacy against variant proteases and preemergent zoonotic CoVs, however, remains incompletely defined. Here, we report an improved, noninfectious, and highly sensitive fluorescent method of defining the sensitivity of CoV proteases to small molecule inhibitors. We use this approach to assay the activity of current antiviral therapies against clinically reported SARS-CoV-2 protease mutants and a panel of highly diverse CoV proteases. Additionally, we show this system is adaptable to other structurally nonrelated viral proteases. In the future, this assay can be used to not only better define the strengths and limitations of current therapies but also help develop new, broadly acting inhibitors that more broadly target viral families.
Collapse
Affiliation(s)
- Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vishwas N. Rao
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
CdTe QDs-sensitized TiO 2 nanocomposite for magnetic-assisted photoelectrochemical immunoassay of SARS-CoV-2 nucleocapsid protein. Bioelectrochemistry 2023; 150:108358. [PMID: 36580690 PMCID: PMC9783190 DOI: 10.1016/j.bioelechem.2022.108358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A sensitive, reliable, and cost-effective detection for SARS-CoV-2 was urgently needed due to the rapid spread of COVID-19. Here, a "signal-on" magnetic-assisted PEC immunosensor was constructed for the quantitative detection of SARS-CoV-2 nucleocapsid (N) protein based on Z-scheme heterojunction. Fe3O4@SiO2@Au was used to connect the capture antibody to act as a capture probe (Fe3O4@SiO2@Au/Ab1). It can extract target analytes selectively in complex samples and multiple electrode rinsing and assembly steps were avoided effectively. CdTe QDs sensitized TiO2 coated on the surface of SiO2 spheres to form Z-scheme heterojunction (SiO2@TiO2@CdTe QDs), which broadened the optical absorption range and inhibited the quick recombination of photogenerated electron/hole of the composite. With fascinating photoelectric conversion performance, SiO2@TiO2@CdTe QDs were utilized as a signal label, thus further realizing signal amplification. The migration mechanism of photogenerated electrons was further deduced by active material quenching experiment and electron spin resonance (ESR) measurement. The elaborated immunosensor can detect SARS-CoV-2 N protein in the linear range of 0.005-50 ng mL-1 with a low detection limit of 1.8 pg mL-1 (S/N = 3). The immunosensor displays extraordinary sensitivity, strong anti-interference, and high reproducibility in detecting SARS-CoV-2 N protein, which envisages its potential application in the clinical diagnosis of COVID-19.
Collapse
|
5
|
Li J, Wang L, Luo X, Xia Y, Xie Y, Liu Y, Tan W. Dual-Parameter Recognition-Directed Design of the Activatable Fluorescence Probe for Precise Imaging of Cellular Senescence. Anal Chem 2023; 95:3996-4004. [PMID: 36795559 DOI: 10.1021/acs.analchem.2c04223] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Specific imaging of cellular senescence emerges as a promising strategy for early diagnosis and treatment of various age-related diseases. The currently available imaging probes are routinely designed by targeting a single senescence-related marker. However, the inherently high heterogeneity of senescence makes them inaccessible to achieve specific and accurate detection of broad-spectrum cellular senescence. Here, we report the design of a dual-parameter recognition fluorescent probe for precise imaging of cellular senescence. This probe remains silent in non-senescent cells, yet produces bright fluorescence after sequential responses to two senescence-associated markers, namely, SA-β-gal and MAO-A. In-depth studies reveal that this probe allows for high-contrast imaging of senescence, independent of the cell source or stress type. More impressively, such dual-parameter recognition design further allows it to distinguish senescence-associated SA-β-gal/MAO-A from cancer-related β-gal/MAO-A, compared to commercial or previous single-marker detection probes. This study offers a valuable molecular tool for imaging cellular senescence, which is expected to significantly expand the basic studies on senescence and facilitate advances of senescence-related disease theranostics.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiyuan Luo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Du J, Xiang D, Liu F, Wang L, Li H, Gong L, Fan X. Hijacking the self-replicating machine of bacteriophage for PCR-based cascade signal amplification in detecting SARS-CoV-2 viral marker protein in serum. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 374:132780. [PMID: 36267643 PMCID: PMC9560943 DOI: 10.1016/j.snb.2022.132780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this work, the nucleic acid detection of SARS-Cov-2 is extended to protein markers of the virus, utilizing bacteriophage. Specifically, the phage display technique enables the main protease of SARS-Cov-2 to control the self-replication of m13 phage, so that the presence of the viral protease can be amplified by phage replication as the first round of signal amplification. Then, the genome of replicated phage can be detected using polymer chain reaction (PCR), as the second round of signal amplification. Based on these two types of well-established biotechnology, the proposed method shows satisfactory sensitivity and robustness in the direct serum detection of the viral protease. These results may point to clinical application in the near future.
Collapse
Affiliation(s)
- Jialei Du
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Daili Xiang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Fushan Liu
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Leichen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Hao Li
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Liu Gong
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| |
Collapse
|