1
|
Song Q, Shan X, Jiang D, Wang W, Dai G. 2D Zn-based metal-organic framework as an efficient electrochemiluminescence emitter: A novel inner filter effect-based ECL biosensor for trace detection of bisphenol A. Anal Chim Acta 2025; 1335:343416. [PMID: 39643326 DOI: 10.1016/j.aca.2024.343416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
The potential hazards of bisphenol A (BPA) to the environment have become a global concern. Herein, 2D Zn-based metal-organic framework nanosheet (2D Zn-MOF) and MnCO3 nanocomposite (Zn-MOF-MnCO3), an efficient electrochemiluminescence (ECL) probe was first synthesized and constructed for trace detection of BPA. Owing to the elimination of the aggregation-induced quenching (ACQ) effect of polycyclic aromatic hydrocarbons (PAHs), the leaf-like Zn-MOF exhibited a satisfactory ECL signal. The MnCO3, which has excellent biocompatibility, showed excellent ECL efficiency in the presence of K2S2O8. With the covalent binding of Zn-MOF and MnCO3, we demonstrated that the ECL intensity and stability of Zn-MOF-MnCO3 improved significantly. In addition, the inner filter effect (IFE) of Fe3O4-NH2 NPs toward Zn-MOF-MnCO3 had been confirmed to be the ECL quenching mechanism. Based on above strategies, the proposed ECL-IFE biosensor exhibited a trace detection ability of BPA in a wide linear range (10 fM ∼ 10 μM) with a low detection limit (4.2 fM). Further in-depth study confirmed the excellent repeatability, selectivity, and stability of sensors, which provided a fresh sensing platform for trace detection of BPA in the environment.
Collapse
Affiliation(s)
- Qingyuan Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China; School of Safety Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Guohong Dai
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Fang Y, Yang H, Hou Y, Li W, Shen Y, Liu S, Zhang Y. Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides. Nat Commun 2024; 15:3597. [PMID: 38678039 PMCID: PMC11519465 DOI: 10.1038/s41467-024-48011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.
Collapse
Affiliation(s)
- Yanfeng Fang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Hong Yang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuhua Hou
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Wang Li
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Research Center for Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Nanjing, 211189, China.
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Zheng J, Zhang W, Huang Y, Shao J, Khan MS, Chi Y. Encapsulation of Pure Water-Stable Perovskite Nanocrystals (PNCs) into Biological Environment-Stable PNCs for Cell Imaging. Inorg Chem 2024; 63:5623-5633. [PMID: 38471143 DOI: 10.1021/acs.inorgchem.3c04620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Recently emerging perovskite nanocrystals (PNCs) are very attractive fluorescence nanomaterials due to their very narrow emission peak, tunable wavelength, and extremely high quantum yield, but their chemosensing, biosensing and bioimaging applications suffer from the poor stability of ordinary PNCs in aqueous media, especially in biological matrices. Recently developed water-stable 2D CsPb2Br5-encapsulated 3D CsPbBr3 PNCs (i.e., CsPbBr3/CsPb2Br5 PNCs) show extremely stable light emission in pure water, but their fluorescence is seriously quenched in aqueous media containing biological molecules due to their chemical reactions. In this work, we used a facile method to encapsulate pure water-stable CsPbBr3/CsPb2Br5 PNCs in water with SiO2 and polyethylene glycol hexadecyl ether (Brij58) into a new kind of biological environment-stable PNCs (CsPbBr3/CsPb2Br5@SiO2-Brij58). The synthesis of the target PNCs can be accomplished in a fast, easy, and green way. The obtained CsPbBr3/CsPb2Br5@SiO2-Brij58 PNCs maintain strong fluorescence emission for a long time, all in pH 7.4 PBS, BSA, and minimum essential medium, exhibiting excellent biological environment stability. Moreover, the developed biological environment-stable PNCs show good biocompatibility and have been successfully used in cell imaging. Overall, the work provides an easy, low-cost, and efficient application of PNCs in bioimaging.
Collapse
Affiliation(s)
- Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Malik Saddam Khan
- Department of Chemistry, Kohsar University Murree, Murree, Punjab 47150, Pakistan
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
5
|
Li Y, Cui Z, Shi L, Shan J, Zhang W, Wang Y, Ji Y, Zhang D, Wang J. Perovskite Nanocrystals: Superior Luminogens for Food Quality Detection Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4493-4517. [PMID: 38382051 DOI: 10.1021/acs.jafc.3c06660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
With the global limited food resources receiving grievous damage from frequent climate changes and ascending global food demand resulting from increasing population growth, perovskite nanocrystals with distinctive photoelectric properties have emerged as attractive and prospective luminogens for the exploitation of rapid, easy operation, low cost, highly accurate, excellently sensitive, and good selective biosensors to detect foodborne hazards in food practices. Perovskite nanocrystals have demonstrated supreme advantages in luminescent biosensing for food products due to their high photoluminescence (PL) quantum yield, narrow full width at half-maximum PL, tunable PL in the entire visible spectrum, easy preparation, and various modification strategies compared with conventional semiconductors. Herein, we have carried out a comprehensive discussion concerning perovskite nanocrystals as luminogens in the application of high-performance biosensing of foodborne hazards for food products, including a brief introduction of perovskite nanocrystals, perovskite nanocrystal-based biosensors, and their application in different categories of food products. Finally, the challenges and opportunities faced by perovskite nanocrystals as superior luminogens were proposed to promote their practicality in the future food supply.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Yue Y, Zou X, Liu L, Liu X, Zhang B, Zhao B, Chen M, Fu Y, Zhang Y, Niu L. Cyanuric Acid-Functionalized Perovskite Nanocrystals toward Low Interface Impedance, High Environmental Stability, and Superior Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7531-7542. [PMID: 38291590 DOI: 10.1021/acsami.3c13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Perovskite nanocrystals (PNs) have received much attention as luminescence materials in the field of electrochemiluminescence (ECL). However, as one key factor for determining the optoelectronic properties of the surface state of PNs, the surface passivation layer of PNs has enormous difficulty in simultaneously meeting the requirements of high ECL efficiency, conductivity, and stability. Herein, an effective surface modification strategy with cyanuric acid (CA) is used to solve such issue. As confirmed, the CA molecules are chemically anchored onto the surface of PNs via the Lewis interaction between π electrons of the triazine ring and the empty orbit of Pb2+. Benefiting from the above interaction, the electrochemical impedance of PNs is decreased greatly without the loss of light-emitting efficiency. Moreover, the stability of PNs under O2 exposure is improved by almost sixfold. These improvements are confirmed to be beneficial for enhancing the ECL behaviors of PNs under electrochemical operation. Upon cathode ECL driving conditions in aqueous media, the ECL intensity and efficiency of PNs are increased to 200 and 170%, respectively. This work provides a new modification strategy to holistically improve the ECL performance of PNs, which is instructive to exploring robust perovskite nanomaterials for electrochemical applications.
Collapse
Affiliation(s)
- Yifei Yue
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Xingzi Zou
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Xuejing Liu
- Key Laboratory on Resources Chemicals and Material of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Baohua Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China
| | - Bolin Zhao
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Mei Chen
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuxuan Fu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Yuwei Zhang
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| | - Li Niu
- School of Civil Engineering c/o Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
7
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
8
|
Wang S, Wei Z, Xu Q, Yu L, Xiao Y. Trinity Strategy: Enabling Perovskite as Hydrophilic and Efficient Fluorescent Nanozyme for Constructing Biomarker Reporting Platform. ACS NANO 2024; 18:1084-1097. [PMID: 38149588 DOI: 10.1021/acsnano.3c10548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Water instability and sensing homogeneity are the Achilles' heel of CsPbX3 NPs in biological fluids application. This work reports the preparation of Mn2+:CsPbCl3@SiO2 yolk-shell nanoparticles (YSNPs) in aqueous solutions created through the integration of ligand, surface, and crystal engineering strategies. The SN2 reaction between 4-chlorobutyric acid (CBA) and oleylamine (OAm) yields a zwitterionic ligand that facilitates the dispersion of YSNPs in water, while the robust SiO2 shell enhances their overall stability. Besides, Mn2+ doping in YSNPs not only introduces a second emission center but also enables potential postsynthetic designability, leading to the switching from YSNPs to MnO2@YSNPs with excellent oxidase (OXD)-like activity. Theoretical calculations reveal that electron transfer from CsPbCl3 to in situ MnO2 and the adsorption-desorption process of 3,3',5,5'-tetramethylbenzidine (TMB) synergistically amplify the OXD-like activity. In the presence of ascorbic acid (AA), Mn4+ in MnO2@YSNPs (fluorescent nanozyme) is reduced to Mn2+ and dissociated, thereby inhibiting the OXD-like activity and triggering fluorescence "turn-on/off", i.e., dual-mode recognition. Finally, a biomarker reporting platform based on MnO2@YSNPs fluorescent nanozyme is constructed with AA as the reporter molecule, and the accurate detection of human serum alkaline phosphatase (ALP) is realized, demonstrating the vast potential of perovskites in biosensing.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
9
|
Wu S, Liu S, Wang Z, Chen Y, Zhao G. Comprehensive analysis of bisphenol analogues in complex water using a group-targeting aptamer engineered by base mutation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132427. [PMID: 37672991 DOI: 10.1016/j.jhazmat.2023.132427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Bisphenol analogues (BPs) are typical environmental hormones with endocrine-disrupting effects and reproductive toxicity requiring analysis and monitoring in complex aquatic environments. However, the presence of various co-existing contaminants makes the accurate determination of total BPs difficult. To address this challenge, there is a strong need to obtain a group-targeting binder to specifically detect a class of BPs. In this work, for the first time we have identified the group-targeting BPs-aptamer with similar affinities for multiple structurally and qualitatively similar BPs. Base mutations were introduced into an aptamer specific to bisphenol A (BPA) and utilized molecular docking calculations to identify a group-targeting aptamer capable of binding BPs, including BPA, bisphenol B (BPB), bisphenol E (BPE) and bisphenol F (BPF) with binding constants in the range of 2.0 × 106 ∼ 2.7 × 106 / M. In addition, an electrochemical aptamer-based sensor (aptasensor) was constructed for highly sensitive and comprehensive analysis of a class of BPs. This aptasensor demonstrated remarkable anti-interference performance against co-existing contaminants at concentrations up to 100-fold and achieved an impressive detection limit of 6.7 pM. This innovative approach of engineering a group-targeting BPs-aptamer is important for the comprehensive analysis of BPs, providing insights into identification and monitoring a class of pollutants.
Collapse
Affiliation(s)
- Siqi Wu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Siyao Liu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
10
|
Jiang M, Wang M, Song X, Lai W, Zhao C, Li J, Wei Z, Hong C. Dual-functional Nanomaterials Polyo-phenylenediamine and Ru-Au Complement Each Other to Construct an Electrochemical and Electrochemiluminescent Dual-Mode Aptamer Sensor for Sensitive Detection of Alternariol. Anal Chem 2023; 95:12459-12469. [PMID: 37566460 DOI: 10.1021/acs.analchem.3c02119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
To sensitively monitor trace amounts of alternariol (AOH) in fruits, a dual-mode aptamer sensor utilizing the dual-function nanomaterial PoPD/Ru-Au was developed. This sensor provides both electrochemical (EC) and electrochemiluminescence (ECL) signals, which can greatly avoid the potential false positive of the traditional single signal, thus enhancing the accuracy and reliability of detection results. Polyo-phenylenediamine (PoPD), known for its favorable EC response, can also assist in enhancing the ECL behavior of Ru-Au. Furthermore, Ru-Au demonstrates excellent ECL performance and effectively activates K2S2O8 to amplify the EC response of PoPD. The complementary effect of the two can effectively amplify the final detection signal. Additionally, the PoPD/Ru-Au nanomaterial exhibits excellent electrical conductivity, further enhancing the EC and ECL response signals. The experimental results demonstrate that the EC detection range of AOH was 0.01-100 ng/mL, while the ECL detection range was 0.001-100 ng/mL, both exhibiting a satisfactory linear relationship. Therefore, the mutual verification of the detection results can be highly realized, and the purpose of avoiding wrong detection can be achieved.
Collapse
Affiliation(s)
- Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xuetong Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemistry and Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi 832003, Xinjiang, China
| |
Collapse
|
11
|
Zhao W, Zhang J, Kong F, Ye T. Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances. Polymers (Basel) 2023; 15:2873. [PMID: 37447518 DOI: 10.3390/polym15132873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Halide perovskite nanocrystals (PNCs) are a new kind of luminescent material for fluorescent probes. Compared with traditional nanosized luminescent materials, PNCs have better optical properties, such as high fluorescence quantum yield, tunable band gap, low size dependence, narrow emission bandwidth, and so on. Therefore, they have broad application prospects as fluorescent probes in the detection of agriculture- and food-related hazardous substances. In this paper, the structure and basic properties of PNCs are briefly described. The water stabilization methods, such as polymer surface coating, ion doping, surface passivation, etc.; are summarized. The recent advances of PNCs such as fluorescent probes for detecting hazardous substances in the field of agricultural and food are reviewed, and the detection effect and mechanism are discussed and analyzed. Finally, the problems and solutions faced by PNCs as fluorescent probes in agriculture and food were summarized and prospected. It is expected to provide a reference for further application of PNCs as fluorescent probes in agriculture and food.
Collapse
Affiliation(s)
- Wei Zhao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fanjun Kong
- Harbin Technician College, Harbin 150500, China
| | - Tengling Ye
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|