1
|
Yao Q, Liu L, Cai Z, Meng M, Luo S, Gong J. Visual and photoelectrochemical analysis of antibiotic resistance genes enabled by surface-engineered ZIF-8@Au cascade nanozymes. Biosens Bioelectron 2024; 261:116470. [PMID: 38852322 DOI: 10.1016/j.bios.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The aggravation of antibiotic resistance genes (ARGs) in the environment has posed a significant global health crisis. Accurate evaluation of ARGs levels in a facile manner is a pressing issue for environmental surveillance. Here, we demonstrate a unique dumbbell-shaped cascade nanozyme for visual/photoelectrochemical (PEC) dual-mode detection of ARGs. Gold nanoparticles (AuNPs) with tunable exposed facets are controllably anchored onto ZIF-8 dodecahedrons, exhibiting glucose oxidase (GOx)-like (ZIF-8@Au/G) and peroxidase (POD)-like (ZIF-8@Au/P) activities. Upon the occurrence of ARGs, an asymmetric cascade-amplified "dumbbell" configuration is spontaneously generated via target-induced DNA hybridization, comprising GOx-like ZIF-8@Au/G with capture DNA on one side and POD-like ZIF-8@Au/P with signal DNA on the opposite side. Such a cascade nano-system can efficiently oxidize colorless 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) into its green oxidation state and synergistically decompose H2O2, realizing colorimetric/PEC dual-mode ARGs detection with a detection limit of 0.112 nM. The applicability of the present bioassay is validated through measuring ARGs in real sludge samples. This work suggests the possibility to rationally design task-specific nanozymes and develop target-responsive nano-cascade assays for environmental monitoring.
Collapse
Affiliation(s)
- Qingfeng Yao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Lijuan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zheng Cai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Mingxia Meng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shuyue Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
2
|
Zhan C, Zhang J, Hao J, Liu Z, Hu C. Scalable drop-casting construction of light-addressable photoelectrochemical biosensor on laser-induced graphene electrode arrays for high-throughput drug screening. Biosens Bioelectron 2024; 261:116497. [PMID: 38878700 DOI: 10.1016/j.bios.2024.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
A drop-casting method for the scalable construction of a solar cell-type light-addressable photoelectrochemical (PEC) sensor on commercial phenol resin (PR) plates is reported. The sensor was fabricated by laser writing of addressable laser-induced graphene (LIG) electrode arrays on PR plates with ring-disc dual-electrode cell configurations using a 405 nm laser machine. Beneficial from the good hydrophilicity of PR-based LIG and the excellent film formation of bismuth sulfide nanorods (Bi2S3 NRs), uniform Bi2S3 photovoltaic films can be reproducibly deposited onto the LIG disc photoanode array via drop casting modification, which show a sensitive photocurrent response toward thiocholine (TCl) when the ring cathode array was coated with Ag/AgCl. An acetylcholinesterase (AChE)-based PEC biosensor was therefore constructed by a similar drop-casting modification method. The resulting biosensor exhibits good sensitivity toward an AChE inhibitor, i.e., galantamine hydrobromide (GH), with a calibration range of 10-300 μM and a detection limit of 7.33 μM (S/N = 3). Moreover, the biosensor possesses good storage stability, which can achieve the high-throughput screening of AChE inhibitor drugs from traditional Chinese medicines (TCMs). The present work thus demonstrates the promising application of LIG technology in constructing light-addressable PEC sensing devices with high performance and low cost.
Collapse
Affiliation(s)
- Chen Zhan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiahui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junxing Hao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China.
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Li X, Chen G, Li Y, Wang Y, Huang W, Lai G. Multiplex Signal Transduction and Output at Single Recognition Interface of Multiplexed Photoelectrochemical Sensors. Anal Chem 2024; 96:8147-8159. [PMID: 38568863 DOI: 10.1021/acs.analchem.3c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guixiang Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yishuang Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
4
|
Chen H, Zheng S, Zhang Y, Tang Q, Zhang R, Chen Y, Wu M, Liu L. Visual Detection of LPS at the Femtomolar Level Based on Click Chemistry-Induced Gold Nanoparticles Electrokinetic Accumulation. Anal Chem 2024; 96:6995-7004. [PMID: 38666367 DOI: 10.1021/acs.analchem.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.
Collapse
Affiliation(s)
- Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiquan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yitong Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Runhui Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Meiming Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Liu L, Yao Q, Jiang F, Cai Z, Meng M, Sun H, Zhang L, Gong J. Ultrasensitive Dual-Mode Visual/Photoelectrochemical Bioassay for Antibiotic Resistance Genes through Incorporating Rolling Circle Amplicons into a Tailored Nanoassembly. Anal Chem 2024. [PMID: 38329298 DOI: 10.1021/acs.analchem.3c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As emerging contaminants in the environment, antibiotic resistance genes (ARGs) have aroused a global health crisis and posed a serious threat to ecological safety and human health. Thus, efficient and accurate onsite detection of ARGs is crucial for environmental surveillance. Here, we presented a colorimetric-photoelectrochemical (PEC) dual-mode bioassay for simultaneous detection of multiple ARGs by smartly incorporating rolling circle amplification (RCA) into a stimuli-responsive DNA nanoassembly, using the tetracycline resistance genes tetA and tetC as models. The tailored DNA nanoassembly containing RCA amplicons hybridized with specific signal probes: CuO nanoflowers-anchored signal DNA1 and HgO nanoparticles-anchored signal DNA2, respectively. Upon exposure to an acidic stimulus, numerous Cu2+ and Hg2+ were released, serving as the reporting agent of colorimetric/PEC dual-mode assay. The released Cu2+ and Hg2+ induced localized surface plasmon resonance shifts in Au nanorods and triangular Ag nanoplates through an etching process, respectively, enabling visual analysis of ARGs with distinguishing color changes. Meanwhile, numerous Cu2+ and Hg2+ triggered the amplified PEC variations via reacting with the photoactive layers of CuS/CdS and ZnS, respectively. Thus, a rapid and ultrasensitive colorimetric/PEC dual-mode detection of multiple ARGs was achieved with the detection limit down to 17.2 aM. Furthermore, such dual-mode bioassay could discriminate single-base mismatch and successfully determine ARGs in E. coli plasmids and sludge samples, holding great promise for point-of-care genetic diagnostics.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qingfeng Yao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fang Jiang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zheng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mingxia Meng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongwei Sun
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Wei S, Tang Q, Hu X, Ouyang W, Shao H, Li J, Yan H, Chen Y, Liu L. Rapid, Ultrasensitive, and Visual Detection of Pathogens Based on Cation Dye-Triggered Gold Nanoparticle Electrokinetic Agglutination Analysis. ACS Sens 2024; 9:325-336. [PMID: 38214583 DOI: 10.1021/acssensors.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Rapid prescribing of the right antibiotic is the key to treat infectious diseases and decelerate the challenge of bacterial antibiotic resistance. Herein, by targeting the 16S rRNA of bacteria, we developed a cation dye-triggered electrokinetic gold nanoparticle (AuNP) agglutination (CD-TEAA) method, which is rapid, visual, ultrasensitive, culture-independent, and low in cost. The limit of detection (LOD) is as low as 1 CFU mL-1 Escherichia coli. The infection identifications of aseptic fluid samples (n = 11) and urine samples with a clinically suspected urinary tract infection (UTI, n = 78) were accomplished within 50 and 30 min for each sample, respectively. The antimicrobial susceptibility testing (AST) of UTI urine samples was achieved within 2.5 h. In ROC analysis of urine, the sensitivity and specificity were 100 and 96% for infection identification, and 100 and 98% for AST, respectively. Moreover, the overall cost of materials for each test is about US$0.69. Therefore, the CD-TEAA method is a superior approach to existing, time-consuming, and expensive methods, especially in less developed areas.
Collapse
Affiliation(s)
- Siqi Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Tang Q, Li Z, Li J, Chen H, Yan H, Deng J, Liu L. PCR-Free, Label-Free, and Centrifugation-Free Diagnosis of Multiplex Antibiotic Resistance Genes by Combining mDNA-Au@Fe 3O 4 from Heating Dry and DNA Concatamers with G-Triplex. Anal Chem 2024; 96:292-300. [PMID: 38141016 DOI: 10.1021/acs.analchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Accurate identification of antibiotic resistance genes (ARGs) is crucial for improving treatment and controlling the spread of antibiotic-resistant bacteria (ARB). Herein, a novel PCR-free, centrifugation-free, and label-free magnetic fluorescent biosensor (MFB) was developed by combining polyA-medium DNA-polyT (mDNA, which contained a partial sequence of a target DNA), gold nanoparticle (AuNP)-anchored magnetic nanoparticle (Au@Fe3O4), complementary strand DNA (CS) of the target DNA, DNA concatamer with G-triplex (G3), and thioflavin T (ThT). Thereinto, Au@Fe3O4 nanoparticles were first capped by mDNA strands within 20 min using a simple hot drying method, and then CS was added and hybridized with mDNA on Au@Fe3O4. Second, a DNA concatamer was used to bind with CS on Au@Fe3O4. When an ARG was present in the sample, the CS would recognize it and release the DNA concatamer into solution by a toehold-mediated strand displacement reaction. Finally, under magnetic separation, the free DNA concatamers with G3 were taken out easily and bound with ThT, resulting in strong fluorescence signals. The fluorescence intensity of ThT was positively correlated with the concentration of the ARG. The whole analysis was accomplished within 1.5 h using 96-well plates. Remarkably, our MFB was universal; eight ARGs were detected by replacing the corresponding mDNA and CS in this study. To verify the practicability of our method, 12 clinically isolated strains were analyzed. The results of the MFB method were in good agreement with those of the quantitative real-time PCR method with an area under the curve of 0.92 (95% confidence interval: 0.8479 to 0.9932), sensitivity of 92.00%, and specificity of 91.55%. Above all, the MFB assay established here is simple, low-cost, and universal and has great potential for applications in the identification of ARGs.
Collapse
Affiliation(s)
- Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Liu L, Zou Y, Xia T, Zhang J, Xiong M, Long L, Wang K, Hao N. A double-quenching paperclip ECL biosensing platform for ultrasensitive detection of antibiotic resistance genes (mecA) based on Ti 3C 2 MXene-Au NPs as a coreactant accelerator. Biosens Bioelectron 2023; 240:115651. [PMID: 37666010 DOI: 10.1016/j.bios.2023.115651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
The global spread of environmental biological pollutants, such as antibiotic-resistant bacteria and their antibiotic resistance genes (ARGs), has emerged as a critical public health concern. It is imperative to address this pressing issue due to its potential implications for public health. Herein, a DNA paperclip probe with double-quenching function of target cyclic cleavage was proposed, and an electrochemiluminescence (ECL) biosensing platform was constructed using Ti3C2 MXene in-situ reduction growth of Au NPs (TCM-Au) as a coreactant accelerator, and applied to the sensitive detection of ARGs. Thanks to the excellent catalytic performance, large surface area and Au-S affinity of TCM-Au, the ECL performance of CdS QDs have been significantly improved. By cleverly utilizing the negative charge of the paperclip nucleic acid probe and its modification group, double-quenching of the ECL signal was achieved. This innovative approach, combined with target cyclic amplification, facilitated specific and sensitive detection of the mecA gene. This biosensing platform manifested highly selective and sensitive determination of mecA genes in the range of 10 fM to 100 nM and a low detection limit of 2.7 fM. The credible detectability and anti-interference were demonstrated in Yangtze river and Aeration tank outlet, indicating its promising application toward pollution monitoring of ARGs.
Collapse
Affiliation(s)
- Liqi Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tiantian Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jiadong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
9
|
Li X, Li Y, Wang Y, Liang P, Lai G. Distance-Regulated Photoelectrochemical Sensor "Signal-On" and "Signal-Off" Transitions for the Multiplexed Detection of Viruses Exposed in the Aquatic Environment. Anal Chem 2023; 95:13922-13931. [PMID: 37671934 DOI: 10.1021/acs.analchem.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Photochemical (PEC) sensors were severely limited for multiplex detection applications due to the cross interference between multiplex signals at the single recognition interface. In this work, a distance-regulated PEC sensor was developed for multiplex detection by using an i-Motif sequence with conformational transformation activity as the signal transduction unit. Through dynamic regulation of the spatial distance between the end site of the functional sequence and the electrode material, the photogenerated electrons on the surface of the sensor were directionally transferred. Thus, a PEC sensor with "signal-on" and "signal-off" dual signal output modes was developed for simultaneous detection of multitarget molecules. Combining isothermal nucleic acid amplification, the PEC sensor constructed in this work was successfully applied to the detection of two virus (Norovirus and Rotavirus) nucleic acid sequences. Under the optimal condition, this bioassay protocol exhibits a linear range of 0.01-100 nM for both viruses with detection limits of 0.72 and 0.53 pM, respectively. In this study, a stimulus-mediated distance regulation strategy successfully addressed the transduction of multiplex detection signals at the single recognition interface of the PEC sensor. It is expected that the technical barriers to multiplex detection of PEC sensors will be overcome and the application of PEC sensing technology will be expanded in the field of environmental analysis.
Collapse
Affiliation(s)
- Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yishuang Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yuxin Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| |
Collapse
|
10
|
Chen N, Gong C, Zhao H. Dual-channel fluorescence detection of antibiotic resistance genes based on DNA-templated silver nanoclusters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163559. [PMID: 37080301 DOI: 10.1016/j.scitotenv.2023.163559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The aqueous environment is an ideal site for the generation and transmission of antibiotic resistance genes (ARGs), and has become a sink for multiple ARGs. Detection of multiple ARGs in one-pot by a simple method is essential to control the spread of antibiotic resistance. Herein, we developed a novel fluorescence sensing strategy based on chameleon DNA-templated silver nanoclusters (AgNCs) to achieve simultaneous detection of two ARGs (tet-A and sul-1). A DNA fluorescent probe with AgNCs stabilized at both termini and another DNA probe carried enhancer sequences were designed. The hybridization of the target ARGs and probes can form an infinitely extended linear DNA structure containing multi-branched AgNCs beacons, and the chameleon AgNCs approach the fluorescence enhancer sequence, thereby realizing the transduction and amplification of green and red fluorescence signals. Through this strategy, we successfully achieved highly specific detection of two ARGs with the LOD of 0.45 nM for tet-A and 0.32 nM for sul-1. In addition, the strategy still had good applicability in the detection of actual samples containing complex components. In this study, fluorescent DNA-AgNCs were applied to the rapid, enzyme-free and reliable detection of ARGs for the first time. The excellent performance of the simultaneous detection of two ARGs displayed that this method can be used to simultaneously analyze different types of ARGs, indicating its great potential in rapid screening and quantitative detection of ARGs in various environmental medias.
Collapse
Affiliation(s)
- Nahong Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|