1
|
Jia TT, Guo D, Meng X, Du H, Qin F, Chen J, Niu H. Development of a fast fluorescent probe for sensitive detection of glutathione in 100 % aqueous solution and its applications in real samples, oxidative stress model and ferroptosis model. Food Chem 2025; 463:141073. [PMID: 39241422 DOI: 10.1016/j.foodchem.2024.141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Glutathione (GSH) plays a crucial role in several physiological processes, including anti-oxidation and heavy metal detoxification. GSH is produced endogenously in the human body and can also be obtained through diet. The development of fast, highly sensitive, and multi-application fluorescent probes remains a challenging task. In this study, we have designed and synthesized a coumarin-based fluorescent probe (NFRF) for the sensitive and rapid detection of GSH in 100 % aqueous solution. By loading probe NFRF on the filter paper, the real-time visual detection of GSH is achieved in both daylight and fluorescence modes, providing a convenient, economical and rapid on-site detection tool. Probe NFRF could be used for the detection of GSH in real samples, with recoveries rates of 81.74 %-115.12 %. Notably, the probe imaged changes in GSH concentrations in oxidative stress environments and during ferroptosis. This work provides a prospective method for GSH detection in food and complex biological systems.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Dandan Guo
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Xin Meng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Hetuan Du
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China
| | - Fangyuan Qin
- Institute of Ophthalmology, Henan, Provincial People's Hospital, Zhengzhou, 450003, PR China.
| | - Junliang Chen
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| | - Huawei Niu
- College of Food and Bioengineering, Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang, 471000, PR China.
| |
Collapse
|
2
|
Zhao B, Liu J, Zhu C, Cheng X. Chitosan-naphthalimide probes for dual channel recognition of HClO and H 2S in cells and their application in photodynamic therapy. Int J Biol Macromol 2024; 281:136517. [PMID: 39426764 DOI: 10.1016/j.ijbiomac.2024.136517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The combination of bio-imaging with photodynamic therapy (PDT) to accomplish theranostics is promising in cancer treatment. Three chitosan-naphthalimide probes were studied in this work. 4-(5-Bromothiophen-2-yl)-1,8-naphthalic anhydride was first synthesized, and then reacted with chitosan to obtain the macromolecules (CS-N-Br). The recognition group thiomorpholine or its derivatives were introduced into CS-N-Br to obtain nano-probes (CS-N-ML, CS-N-BSZ, CS-N-FSQ) eventually. The studies revealed that CS-N-ML and CS-N-FSQ exhibit high selectivity and can specifically recognize HClO and H2S. CS-N-ML and CS-N-FSQ can perform exogenous and endogenous confocal imaging of HClO and H2S in cells also. CS-N-ML's ability to target lysosomes positions indicated it could act as a lysosome-specific probe. It was discovered that the probes generate superoxide anions (O2•-) via a Type I mechanism. This discovery endows the probes with high photosensitizing activity even under hypoxic conditions. There is a positive correlation between the extent of the conjugated system and the photosensitivity of the probes, indicating that an enhanced conjugation leads to increased photosensitivity. Upon light irradiation, the probes generate ROS within HeLa cells. These results suggested that these probes can achieve theranostics for diseases associated with abnormal levels of HClO and H2S.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Caiqiong Zhu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
3
|
Yang Z, Wang Z, Peng Y, Yang H, Wang Q, Jia X, Liu X. A zero-background fluorescent probe for sensing and imaging of glutathione via the "covalent-assembly" approach. Org Biomol Chem 2024; 22:8024-8031. [PMID: 39258411 DOI: 10.1039/d4ob01181c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Developing selective and sensitive fluorescent probes for the detection of glutathione (GSH) concentration and intracellular distribution is of great significance for early diagnosis and treatment of diseases such as liver injury and cancer since GSH plays irreplaceable roles in regulating intracellular redox homeostasis. Herein, we present a new fluorescent probe that can be specifically activated by GSH through the conjugate addition and hydrolysis induced covalent-assembly approach for achieving zero-background interference fluorescence off-on sensing. Besides, the probe exhibited prominent selectivity and sensitivity, a low detection limit and cytotoxicity, thus successfully realizing specific real-time monitoring and tracking of GSH levels in living cells. As a consequence, this work might provide a potentially promising candidate for validating the function of GSH in various physiological and pathological processes, which is beneficial for early diagnosis and therapeutics of related diseases.
Collapse
Affiliation(s)
- Zheng Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| | - Zhiyao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Ying Peng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Hao Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Qian Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China.
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710012, P. R. China
| |
Collapse
|
4
|
Wang Y, Li Y, Cao J, Yang X, Huang J, Huang M, Gu S. Research Progress of Fluorescent Probes for Detection of Glutathione (GSH): Fluorophore, Photophysical Properties, Biological Applications. Molecules 2024; 29:4333. [PMID: 39339330 PMCID: PMC11434280 DOI: 10.3390/molecules29184333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular biothiols, including cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play a critical role in many physiological and pathological processes. Among them, GSH is the most abundant non-protein mercaptan (1-10 mM) in cells, and the change in GSH concentration level is closely related to the occurrence of many diseases, such as Parkinson's disease, Alzheimer's disease, and neurological diseases. Fluorescent probes have attracted much attention due to their advantages of high specificity, high sensitivity, high selectivity, low cost, and high quantum yield. Methods that use optical probes for selective detection of GSH in vitro and in vivo are in high demand. In this paper, we reviewed the most recent five years of research on fluorescence probes for the detection of GSH, including the specific detection of GSH, dual-channel identification of GSH and other substances, and the detection of GSH and other biothiols. According to the type of fluorophore, we classified GSH fluorescent probes into eight classes, including BODIPY, 1,8-Naphthalimide, coumarin, xanthene, rhodamine, cyanine, benzothiazoles, and others. In addition, we roundly discuss the synthesis, detection mechanism, photophysical properties, and biological applications of fluorescent probes. We hope that this review will inspire the exploration of new fluorescent probes for GSH and other related analyses.
Collapse
Affiliation(s)
- Yao Wang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Yanfei Li
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jinbo Cao
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 511400, China
| | - Xiyan Yang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Jiaxiang Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Mingyue Huang
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| | - Shaobin Gu
- Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.C.); (X.Y.); (J.H.); (M.H.)
| |
Collapse
|
5
|
Zhao J, Li X, Ma T, Chang B, Zhang B, Fang J. Glutathione-triggered prodrugs: Design strategies, potential applications, and perspectives. Med Res Rev 2024; 44:1013-1054. [PMID: 38140851 DOI: 10.1002/med.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.
Collapse
Affiliation(s)
- Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Bingbing Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Ou J, Tao H, Bao Q, Dai Y, Wang Q, Chen Q, Feng Y, Meng X. Investigating Oxidative Stress Associated with Myocardial Fibrosis by High-Fidelity Visualization and Accurate Evaluation of Mitochondrial GSH Levels. Anal Chem 2024; 96:4232-4241. [PMID: 38421725 DOI: 10.1021/acs.analchem.3c05603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Myocardial fibrosis is frequently accompanied by elevated levels of oxidative stress. Mitochondrial glutathione (mGSH), an essential biomolecule for maintaining redox homeostasis in mitochondria, could serve as an effective indicator for investigating the oxidative stress associated with myocardial fibrosis. In this study, a ratiometric fluorescent probe named Mito-NS6, capable of being anchored in mitochondria and reversibly responding to GSH with an appropriate dissociation equilibrium constant, was rationally designed and utilized to visualize and evaluate the changes of mGSH levels caused by oxidative stress in myocardial fibrosis. Benefiting from the good performance of Mito-NS6, we successfully achieved the quantification of mGSH in cardiac fibroblasts using a confocal laser-scanning microscope, revealing that salvianolic acid B (SalB) can act as an effective drug to alleviate myocardial fibrosis through depressing oxidative stress. Moreover, we employed ratio fluorescence imaging to track the fluctuation in GSH levels within a mice model of myocardial fibrosis induced by isoproterenol and found that myocardial fibrosis caused a higher oxidative stress level in myocardial tissue as well as heart organs. These results provide a novel point of view for the diagnosis and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Jiale Ou
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Quan Bao
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Yuejia Dai
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qi Chen
- Department of Anesthesiology and Perioperative Medicine & Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| | - Yan Feng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangming Meng
- School of Chemistry and Chemical Engineering & Institutes of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials & Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
7
|
Sun X, Jiang Q, Zhang Y, Su J, Liu W, Lv J, Yang F, Shu W. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers. Eur J Med Chem 2024; 267:116195. [PMID: 38330868 DOI: 10.1016/j.ejmech.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The clinical symptoms of PD are usually related to motor symptoms, including postural instability, rigidity, bradykinesia, and resting tremors. At present, the pathology of PD is not yet clear. Therefore, revealing the underlying pathological mechanism of PD is of great significance. A variety of bioactive molecules are produced during the onset of Parkinson's, and these bioactive molecules may be a key factor in the development of Parkinson's. The emerging fluorescence imaging technology has good sensitivity and high signal-to-noise ratio, making it possible to deeply understand the pathogenesis of PD through these bioactive molecules. Currently, fluorescent probes targeting PD biomarkers are widely developed and applied. This article categorizes and summarizes fluorescent probes based on different PD biomarkers, systematically introduces their applications in the pathological process of PD, and finally briefly elaborates on the challenges and prospects of these probes. We hope that this review will provide in-depth reference insights for designing fluorescent probes, and contribute to study of the pathogenesis and clinical treatment of PD.
Collapse
Affiliation(s)
- Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wenqu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
8
|
Xing Y, Zhu S, Li J, Li W, Wang Z, Shi YE. Detection and discrimination of glutathione among biological thiols based on oxalyl dihydrazide decorated sulfur nanodots. Chem Commun (Camb) 2024; 60:2760-2763. [PMID: 38353165 DOI: 10.1039/d4cc00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The quantitative detection and discrimination of glutathione (GSH) were achieved based on oxalyl dihydrazide (ODH) decorated sulfur nanodots. ODH resulted in the aggregation and fluorescence quenching of the sulfur nanodots, and GSH selectively triggered fluorescence recovery through forming stronger hydrogen bonds with ODH than other biological thiols.
Collapse
Affiliation(s)
- Yifei Xing
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.
| | - Sha Zhu
- Sanitary Inspection Department of Zibo Center for Disease Control and Prevention, Zibo, Shandong 255026, China
| | - Jiayue Li
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Wei Li
- College of Pharmaceutical Science, Hebei University, Baoding, 071002, P. R. China
| | - Zhenguang Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.
| | - Yu-E Shi
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
9
|
Huang M, Zhang Y, Liu X. The mechanism of cuproptosis in Parkinson's disease. Ageing Res Rev 2024; 95:102214. [PMID: 38311254 DOI: 10.1016/j.arr.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with an increased morbidity. The pathogenesis PD has not been fully elucidated, and whatever mechanism is involved, it ultimately leads to dopamine (DA) neuronal apoptosis. Cuproptosis is a novel form of cell death. Its morphology, biochemical properties, and mechanism of action differ from known forms of cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Copper binds to the lipoylated components of the tricarboxylic acid cycle, causing proteotoxic stress that ultimately leads to cellular cuproptosis. PD has biochemical features such as mitochondrial dysfunction and decreased levels of copper and glutathione in brain regions. This is closely related to the cuproptosis mechanism. However, the specific link between the pathogenesis of PD and cuproptosis is unclear. Herein, we summarizes cuproptosis as the cause of DA neuronal death in PD, and the relationship between cuproptosis and the PD pathogenesis. This article provides a research basis for targeted cuproptosis for PD.
Collapse
Affiliation(s)
- Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
10
|
Shao Y, Zhao Z, An J, Hao C, Kang M, Rong X, Zhao H, Feng H. Preparation of surface molecular imprinting fluorescent sensor based on magnetic porous silica for sensitive and selective determination of catechol. Mikrochim Acta 2024; 191:156. [PMID: 38407632 DOI: 10.1007/s00604-024-06244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
A magnetic fluorescent molecularly imprinted sensor was successfully prepared and implemented to determine catechol (CT). Fe3O4 nanoparticles were synthesized by the solvothermal technique and mesoporous Fe3O4@SiO2@mSiO2 imprinted carriers were prepared by coating nonporous and mesoporous SiO2 shells on the surface of the Fe3O4 subsequently. The magnetic surface molecularly imprinted fluorescent sensor was created after the magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane to introduce double bonds on the surface of the carries and the polymerization was carried out in the presence of CT and fluorescent monomers. The magnetic mesoporous carriers were modified with γ-methacryloxyl propyl trimethoxy silane and double bonds were introduced on the surface of the carriers. After CT binding with the molecularly imprinted polymers (MIPs), the fluorescent intensity of the molecularly imprinted polymers (Ex = 400 nm, Em = 523 nm) increased significantly. The fluorescent intensity ratio (F/F0) of the sensor demonstrated a favorable linear correlation with the concentration of CT between 5 and 50 μM with a detection limit of 0.025 μM. Furthermore, the sensor was successfully applied to determine CT in actual samples with recoveries of 96.4-105% and relative standard deviations were lower than 3.5%. The results indicated that the research of our present work provided an efficient approach for swiftly and accurately determining organic pollutant in water.
Collapse
Affiliation(s)
- Yanming Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China.
| | - Zhizhen Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Jun An
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Caifeng Hao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Mengyi Kang
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Xuan Rong
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Huanhuan Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Huanran Feng
- Interdisciplinary Research Center of Smart Sensors, Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Shaanxi, 710126, People's Republic of China
| |
Collapse
|
11
|
Ramachandran Nair V, Sandeep K, Shanthil M, Dhanya S, Archana A, Vibin M, Divyalakshmi H. Simple and Cost-Effective Quantum Dot Chemodosimeter for Visual Detection of Biothiols in Human Blood Serum. ACS OMEGA 2024; 9:6588-6594. [PMID: 38371793 PMCID: PMC10870302 DOI: 10.1021/acsomega.3c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
An emission "turn-off" chemodosimeter for the naked-eye detection of biothiols using silica-overcoated cadmium selenide quantum dots is developed. Hole scavenging by the thiol group of cysteine, homocysteine, or glutathione on interaction with quantum dots resulted in an instant and permanent emission quenching under physiologically relevant conditions. Also, the emission suppression is so specific that thiols and substituted thiols (methionine and cystine) can easily be distinguished. A pilot experiment for the visual detection of serum thiols in human blood was also conducted. Densitometry analysis proved the potential of this system as a new methodology in clinical chemistry and research laboratories for routine blood and urine analyses using a simple procedure. This method enables one to visually distinguish biothiols and oxidized biothiols, whose ratio plays a crucial role in maintaining "redox thiol status" in the blood.
Collapse
Affiliation(s)
- Vinayakan Ramachandran Nair
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
- Chemical
Sciences and Technology Division, National
Institute for Interdisciplinary Science and Technology (NIIST-CSIR), Thiruvananthapuram 695019, Kerala, India
| | - Kulangara Sandeep
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Madhavan Shanthil
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Santhakumar Dhanya
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| | - Aravind Archana
- Department
of Chemistry, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - Muthunayagam Vibin
- Department
of Biochemistry, St. Albert’s College
(Autonomous), Mahatma Gandhi University, Ernakulam 682018, Kerala, India
| | - Hareendran Divyalakshmi
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| |
Collapse
|
12
|
Wan QH, Gu M, Shi WJ, Tang YX, Lu Y, Xu C, Chen XS, Wu XT, Gao L, Han DX, Niu L. Meso-aryltellurium-BODIPY-based fluorescence turn-on probe for selective, sensitive and fast glutathione sensing in HepG2 cells. Talanta 2024; 267:125251. [PMID: 37776804 DOI: 10.1016/j.talanta.2023.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Glutathione (GSH) as one most abundant thiol, acts as important roles in regulating cellular redox activities, and various diseases are closely related with its abnormal levels. Thus, monitoring intracellular GSH levels is essential for understanding cellular metabolism of many related diseases. In this work, we firstly reported a new fluorescence turn-on sensor, which was capable of selectively, sensitively and rapid sensing GSH over other thiols, especially cysteine and homocysteine in solutions and living cells. A meso-aryltellurium boron dipyrromethene (BODIPY) was firstly designed and synthesized, which showed silenced emission due to an efficient photoinduced electron transfer (PET) process from electron-rich Te to BODIPY, and then upon exposure to GSH, the meso-Te-C bond could be rapidly cleaved by the thiol group of GSH, thus resulting in an obvious fluorescence "turn-on" phenomenon through inhibition of the PET effect. This probe exhibited excellent selectivity and sensitivity towards GSH with a short response time of 2 min, showing a remarkable fluorescence enhancement observed at 541 nm with a large fluorescence quantum yield increase from nearly 0 to 0.73 upon excitation at 500 nm in PBS/CH3CN (9/1, v/v). The detection limit towards GSH was further calculated to be 1.7 nM by the linear fluorescence change at 541 nm in the GSH-concentration ranging from 0 to 4 μM. Furthermore, its sensing mechanism was validated by using mass spectrometry, confirming the rapid cleavage of the Te-C bond by GSH. Finally, cell imaging experiments demonstrated that this probe could successfully detect GSH in living cells, highlighting its potential for rapid and sensitive detection of intracellular GSH level changes. Therefore, a new meso-aryltellurium-BODIPY fluorescence turn-on sensor was firstly developed, which could selectively, sensitively and fast detect cellular GSH over other thiols based on the rapid cleavage of the meso Te-C bond.
Collapse
Affiliation(s)
- Qing-Hui Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Yu-Xin Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Yin Lu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Chang Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiao-Shan Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xin-Tong Wu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Dong-Xue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| |
Collapse
|
13
|
Diao S, Liu Y, Guo Z, Xu Z, Shen J, Zhou W, Xie C, Fan Q. Prolonging Treatment Window of Photodynamic Therapy with Self-Amplified H 2 O 2 -Activated Photodynamic/Chemo Combination Therapeutic Nanomedicines. Adv Healthc Mater 2023; 12:e2301732. [PMID: 37548967 DOI: 10.1002/adhm.202301732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach to cancer therapy. However, the relatively short tumor retention time of photosensitizers (PSs) makes it difficult to catch the optimal treatment time and restricts multiple PDT within a single injection. In this study, a tumor-specific phototheranostic nanomedicine (DPPa NP) is developed for photodynamic/chemo combination therapy with a prolonged PDT treatment window. DPPa NP is prepared via encapsulating a hydrophobic oxidized bovine serum albumin (BSA-SOH)-conjugatable PS DPPa with amphiphilic H2 O2 -activatable chlorambucil (CL) prodrug mPEG-TK-CL. The released CL under H2 O2 treatment can not only kill tumor cells but also upregulate reactive oxygen species levels within tumor cells, leading to the almost full release of cargoes. The released DPPa may conjugate with overexpressed BSA-SOH, which results in the recovery of the fluorescence signal and photodynamic effect. More importantly, such conjugation transfers DPPa from a small molecule PS into a macromolecular PS with a long tumor retention time and treatment window of PDT, which enables multiple PDT. This study thus provides an effective strategy to prolong the treatment window of PDT and enables tumor-specific fluorescence imaging-guided combination therapy.
Collapse
Affiliation(s)
- Shanchao Diao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yaxin Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zixin Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhiwei Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jinlong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chen Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
14
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
15
|
Xie W, Jiang J, Shu D, Zhang Y, Yang S, Zhang K. Recent Progress in the Rational Design of Biothiol-Responsive Fluorescent Probes. Molecules 2023; 28:molecules28104252. [PMID: 37241992 DOI: 10.3390/molecules28104252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Biothiols such as cysteine, homocysteine, and glutathione play significant roles in important biological activities, and their abnormal concentrations have been found to be closely associated with certain diseases, making their detection a critical task. To this end, fluorescent probes have become increasingly popular due to their numerous advantages, including easy handling, desirable spatiotemporal resolution, high sensitivity, fast response, and favorable biocompatibility. As a result, intensive research has been conducted to create fluorescent probes for the detection and imaging of biothiols. This brief review summarizes recent advances in the field of biothiol-responsive fluorescent probes, with an emphasis on rational probe design, including the reaction mechanism, discriminating detection, reversible detection, and specific detection. Furthermore, the challenges and prospects of fluorescence probes for biothiols are also outlined.
Collapse
Affiliation(s)
- Wenzhi Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jinyu Jiang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Dunji Shu
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yanjun Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|