1
|
Gantz M, Mathis SV, Nintzel FEH, Lio P, Hollfelder F. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering. Faraday Discuss 2024; 252:89-114. [PMID: 39133073 PMCID: PMC11318516 DOI: 10.1039/d4fd00065j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.
Collapse
Affiliation(s)
- Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Simon V Mathis
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Friederike E H Nintzel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pietro Lio
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
2
|
Jain A, Teshima M, Buryska T, Romeis D, Haslbeck M, Döring M, Sieber V, Stavrakis S, de Mello A. High-Throughput Absorbance-Activated Droplet Sorting for Engineering Aldehyde Dehydrogenases. Angew Chem Int Ed Engl 2024:e202409610. [PMID: 39087463 DOI: 10.1002/anie.202409610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51 % improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zürich, Switzerland
| | - Mariko Teshima
- Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zürich, Switzerland
| | - Dennis Romeis
- Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Magdalena Haslbeck
- Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Manuel Döring
- Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315, Straubing, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia, 4072, Queensland, Australia
- SynBioFoundry@TUM, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zürich, Switzerland
| | - Andrew de Mello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Thomsen PT, Nielsen SR, Borodina I. Recent advances in engineering microorganisms for the production of natural food colorants. Curr Opin Chem Biol 2024; 81:102477. [PMID: 38878611 DOI: 10.1016/j.cbpa.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024]
Abstract
Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.
Collapse
Affiliation(s)
- Philip Tinggaard Thomsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Susanne Roenfeldt Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
4
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
5
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
6
|
Wulandari DA, Tsuru K, Minamihata K, Wakabayashi R, Egami G, Kawabe Y, Kamihira M, Goto M, Kamiya N. Design and validation of functionalized redox-responsive hydrogel beads for high-throughput screening of antibody-secreting mammalian cells. J Biosci Bioeng 2024; 138:89-95. [PMID: 38644063 DOI: 10.1016/j.jbiosc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Antibody drugs play a vital role in diagnostics and therapy. However, producing antibodies from mammalian cells is challenging owing to cellular heterogeneity, which can be addressed by applying droplet-based microfluidic platforms for high-throughput screening (HTS). Here, we designed an integrated system based on disulfide-bonded redox-responsive hydrogel beads (redox-HBs), which were prepared through enzymatic hydrogelation, to compartmentalize, screen, select, retrieve, and recover selected Chinese hamster ovary (CHO) cells secreting high levels of antibodies. Moreover, redox-HBs were functionalized with protein G as an antibody-binding module to capture antibodies secreted from encapsulated cells. As proof-of-concept, cells co-producing immunoglobulin G (IgG) as the antibody and green fluorescent protein (GFP) as the reporter molecule, denoted as CHO(IgG/GFP), were encapsulated into functionalized redox-HBs. Additionally, antibody-secreting cells were labeled with protein L-conjugated horseradish peroxidase using a tyramide amplification system, enabling fluorescence staining of the antibody captured inside the beads. Redox-HBs were then applied to fluorescence-activated droplet sorting, and selected redox-HBs were degraded by reducing the disulfide bonds to recover the target cells. The results indicated the potential of the developed HTS platform for selecting a single cell viable for biopharmaceutical production.
Collapse
Affiliation(s)
- Diah Anggraini Wulandari
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyosuke Tsuru
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Go Egami
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
7
|
Jain A, Stavrakis S, deMello A. Droplet-based microfluidics and enzyme evolution. Curr Opin Biotechnol 2024; 87:103097. [PMID: 38430713 DOI: 10.1016/j.copbio.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Enzymes are widely used as catalysts in the chemical and pharmaceutical industries. While successful in many situations, they must usually be adapted to operate efficiently under nonnatural conditions. Enzyme engineering allows the creation of novel enzymes that are stable at elevated temperatures or have higher activities and selectivities. Current enzyme engineering techniques require the production and testing of enzyme variant libraries to identify members with desired attributes. Unfortunately, traditional screening methods cannot screen such large mutagenesis libraries in a robust and timely manner. Droplet-based microfluidic systems can produce, process, and sort picoliter droplets at kilohertz rates and have emerged as powerful tools for library screening and thus enzyme engineering. We describe how droplet-based microfluidics has been used to advance directed evolution.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Staskiewicz K, Dabrowska-Zawada M, Kozon L, Olszewska Z, Drewniak L, Kaminski TS. Droplet microfluidic system for high throughput and passive selection of bacteria producing biosurfactants. LAB ON A CHIP 2024; 24:1947-1956. [PMID: 38436364 DOI: 10.1039/d3lc00656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Traditional methods for the enrichment of microorganisms rely on growth in a selective liquid medium or on an agar plate, followed by tedious characterization. Droplet microfluidic techniques have been recently used to cultivate microorganisms and preserve enriched bacterial taxonomic diversity. However, new methods are needed to select droplets comprising not only growing microorganisms but also those exhibiting specific properties, such as the production of value-added compounds. We describe here a droplet microfluidic screening technique for the functional selection of biosurfactant-producing microorganisms, which are of great interest in the bioremediation and biotechnology industries. Single bacterial cells are first encapsulated into picoliter droplets for clonal cultivation and then passively sorted at high throughput based on changes in interfacial tension in individual droplets. Our method expands droplet-based microbial enrichment with a novel approach that reduces the time and resources needed for the selection of surfactant-producing bacteria.
Collapse
Affiliation(s)
- Klaudia Staskiewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Dabrowska-Zawada
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Lukasz Kozon
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Olszewska
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Tomasz S Kaminski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
9
|
Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y. Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosens Bioelectron 2024; 248:115972. [PMID: 38171222 DOI: 10.1016/j.bios.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.
Collapse
Affiliation(s)
- Wenxin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ting Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Lu Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
10
|
He Y, Qiao Y, Ding L, Cheng T, Tu J. Recent advances in droplet sequential monitoring methods for droplet sorting. BIOMICROFLUIDICS 2023; 17:061501. [PMID: 37969470 PMCID: PMC10645479 DOI: 10.1063/5.0173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Droplet microfluidics is an attractive technology to run parallel experiments with high throughput and scalability while maintaining the heterogeneous features of individual samples or reactions. Droplet sorting is utilized to collect the desired droplets based on droplet characterization and in-droplet content evaluation. A proper monitoring method is critical in this process, which governs the accuracy and maximum frequency of droplet handling. Until now, numerous monitoring methods have been integrated in the microfluidic devices for identifying droplets, such as optical spectroscopy, mass spectroscopy, electrochemical monitoring, and nuclear magnetic resonance spectroscopy. In this review, we summarize the features of various monitoring methods integrated into droplet sorting workflow and discuss their suitable condition and potential obstacles in use. We aim to provide a systematic introduction and an application guide for choosing and building a droplet monitoring platform.
Collapse
Affiliation(s)
- Yukun He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianguang Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Payne EM, Murray BE, Penabad LI, Abbate E, Kennedy RT. Mass-Activated Droplet Sorting for the Selection of Lysine-Producing Escherichia coli. Anal Chem 2023; 95:15716-15724. [PMID: 37820298 PMCID: PMC11025463 DOI: 10.1021/acs.analchem.3c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Synthetic biology relies on engineering cells to have desirable properties, such as the production of select chemicals. A bottleneck in engineering methods is often the need to screen and sort variant libraries for potential activity. Droplet microfluidics is a method for high-throughput sample preparation and analysis which has the potential to improve the engineering of cells, but a limitation has been the reliance on fluorescent analysis. Here, we show the ability to select cell variants grown in 20 nL droplets at 0.5 samples/s using mass-activated droplet sorting (MADS), a method for selecting droplets based on the signal intensity measured by electrospray ionization mass spectrometry (ESI-MS). Escherichia coli variants producing lysine were used to evaluate the applicability of MADS for synthetic biology. E. coli were shown to be effectively grown in droplets, and the lysine produced by these cells was detectable using ESI-MS. Sorting of lysine-producing cells based on the MS signal was shown, yielding 96-98% purity for high-producing variants in the selected pool. Using this technique, cells were recovered after screening, enabling downstream validation via phenotyping. The presented method is translatable to whole-cell engineering for biocatalyst production.
Collapse
Affiliation(s)
- Emory M. Payne
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Bridget E. Murray
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Laura I. Penabad
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| | - Eric Abbate
- Applications Development, Inscripta Inc., Pleasanton, CA 94588
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103
| |
Collapse
|
12
|
Kayirangwa Y, Mohibullah M, Easley CJ. Droplet-based μChopper device with a 3D-printed pneumatic valving layer and a simple photometer for absorbance based fructosamine quantification in human serum. Analyst 2023; 148:4810-4819. [PMID: 37605899 PMCID: PMC10530610 DOI: 10.1039/d3an01149f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The development of microfluidic systems for biological assays presents challenges, particularly in adapting traditional optical absorbance assays to smaller volumes or to microfluidic formats. This often requires assay modification or translation to a fluorescence version, which can be impractical. To address this issue, our group has developed the μChopper device, which uses microfluidic droplet formation as a surrogate for an optical beam chopper, allowing for lock-in analysis and improved limits of detection with both absorbance and fluorescence optics without modifying the optical path length. Here, we have adapted the μChopper to low-cost optics using a light-emitting diode (LED) source and photodiode detector, and we have fabricated the pnuematically valved devices entirely by 3D printing instead of traditional photolithography. Using a hybrid device structure, fluidic channels were made in polydimethylsiloxane (PDMS) by moulding onto a 3D-printed master then bonding to a prefabricated thin layer, and the pneumatic layer was directly made of 3D-printed resin. This hybrid structure allowed an optical slit to be fabricated directly under fluidic channels, with the LED interfaced closely above the channel. Vacuum-operated, normally closed valves provided precise temporal control of droplet formation from 0.6 to 2.0 Hz. The system was validated against the standard plate reader format using a colorimetric fructosamine assay and by quantifying fructosamine in human serum from normal and diabetic patients, where strong correlation was shown. Showing a standard benefit of microfluidics in analysis, the device required 6.4-fold less serum volume for each assay. This μChopper device and lower cost optical system should be applicable to various absorbance based assays in low volumes, and the reliance on inexpensive 3D printers makes it more accessible to users without cleanroom facilities.
Collapse
Affiliation(s)
- Yvette Kayirangwa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | - Md Mohibullah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
13
|
Zhang Y, Lin Y, Hong X, Di C, Xin Y, Wang X, Qi S, Liu BF, Zhang Z, Du W. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Anal Bioanal Chem 2023; 415:5311-5322. [PMID: 37392212 DOI: 10.1007/s00216-023-04806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.
Collapse
Affiliation(s)
- Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuelai Xin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinru Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuhong Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
14
|
Ladeveze S, Zurek PJ, Kaminski TS, Emond S, Hollfelder F. Versatile Product Detection via Coupled Assays for Ultrahigh-Throughput Screening of Carbohydrate-Active Enzymes in Microfluidic Droplets. ACS Catal 2023; 13:10232-10243. [PMID: 37560191 PMCID: PMC10407846 DOI: 10.1021/acscatal.3c01609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/06/2023] [Indexed: 08/11/2023]
Abstract
Enzyme discovery and directed evolution are the two major contemporary approaches for the improvement of industrial processes by biocatalysis in various fields. Customization of catalysts for improvement of single enzyme reactions or de novo reaction development is often complex and tedious. The success of screening campaigns relies on the fraction of sequence space that can be sampled, whether for evolving a particular enzyme or screening metagenomes. Ultrahigh-throughput screening (uHTS) based on in vitro compartmentalization in water-in-oil emulsion of picoliter droplets generated in microfluidic systems allows screening rates >1 kHz (or >107 per day). Screening for carbohydrate-active enzymes (CAZymes) catalyzing biotechnologically valuable reactions in this format presents an additional challenge because the released carbohydrates are difficult to monitor in high throughput. Activated substrates with large optically active hydrophobic leaving groups provide a generic optical readout, but the molecular recognition properties of sugars will be altered by the incorporation of such fluoro- or chromophores and their typically higher reactivity, as leaving groups with lowered pKa values compared to native substrates make the observation of promiscuous reactions more likely. To overcome these issues, we designed microdroplet assays in which optically inactive carbohydrate products are made visible by specific cascades: the primary reaction of an unlabeled substrate leads to an optical signal downstream. Successfully implementing such assays at the picoliter droplet scale allowed us to detect glucose, xylose, glucuronic acid, and arabinose as final products of complex oligosaccharide degradation by glycoside hydrolases by absorbance measurements. Enabling the use of uHTS for screening CAZyme reactions that have been thus far elusive will chart a route toward faster and easier development of specific and efficient biocatalysts for biovalorization, directing enzyme discovery by challenging catalysts for reaction with natural rather than model substrates.
Collapse
Affiliation(s)
| | - Paul J. Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB21GA, U.K.
| |
Collapse
|
15
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
16
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|