1
|
Jordan JS, Harper CC, Zhang F, Kofman E, Li M, Sathiyamoorthy K, Zaragoza JP, Fayadat-Dilman L, Williams ER. Charge Detection Mass Spectrometry Reveals Conformational Heterogeneity in Megadalton-Sized Monoclonal Antibody Aggregates. J Am Chem Soc 2024; 146:23297-23305. [PMID: 39110484 DOI: 10.1021/jacs.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Mandy Li
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Jan Paulo Zaragoza
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
2
|
Lutomski CA, El-Baba TJ, Clemmer DE, Jarrold MF. Thermal Remodeling of Human HDL Particles Reveals Diverse Subspecies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2002-2007. [PMID: 39051481 PMCID: PMC11311237 DOI: 10.1021/jasms.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
High-density lipoproteins (HDL) are micelle-like particles consisting of a core of triglycerides and cholesteryl esters surrounded by a shell of phospholipid, cholesterol, and apolipoproteins. HDL is considered "good" cholesterol, and its concentration in plasma is used clinically in assessing cardiovascular health. However, these particles vary in structure, composition, and therefore function, and thus can be resolved into subpopulations, some of which have specific cardioprotective properties. Mass measurements of HDL by charge detection mass spectrometry (CD-MS) previously revealed seven distinct subpopulations which could be delineated by mass and charge [Lutomski, C. A. et al. Anal. Chem. 2018]. Here, we investigate the thermal stabilities of these subpopulations; upon heating, the particles within each subpopulation undergo structural rearrangements with distinct transition temperatures. In addition, we find evidence for many new families of structures within each subpopulation; at least 15 subspecies of HDL are resolved. These subspecies vary in size, charge, and thermal stability. While this suggests that these new subspecies have unique molecular compositions, we cannot rule out the possibility that we have found evidence for new structural forms within the known subpopulations. The ability to resolve new subspecies of HDL particles may be important in understanding and delineating the role of unique particles in cardiovascular health and disease.
Collapse
Affiliation(s)
- Corinne A. Lutomski
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Tarick J. El-Baba
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Martin F. Jarrold
- Department
of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Harper CC, Jordan JS, Papanu S, Williams ER. Characterization of Mass, Diameter, Density, and Surface Properties of Colloidal Nanoparticles Enabled by Charge Detection Mass Spectrometry. ACS NANO 2024; 18:17806-17814. [PMID: 38913932 DOI: 10.1021/acsnano.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A variety of scattering-based, microscopy-based, and mobility-based methods are frequently used to probe the size distributions of colloidal nanoparticles with transmission electron microscopy (TEM) often considered to be the "gold standard". Charge detection mass spectrometry (CDMS) is an alternative method for nanoparticle characterization that can rapidly measure the mass and charge of individual nanoparticle ions with high accuracy. Two low polydispersity, ∼100 nm diameter nanoparticle size standards with different compositions (polymethyl methacrylate/polystyrene copolymer and 100% polystyrene) were characterized using both TEM and CDMS to explore the merits and complementary aspects of both methods. Mass and diameter distributions are rapidly obtained from CDMS measurements of thousands of individual ions of known spherical shape, requiring less time than TEM sample preparation and image analysis. TEM image-to-image variations resulted in a ∼1-2 nm range in the determined mean diameters whereas the CDMS mass precision of ∼1% in these experiments leads to a diameter uncertainty of just 0.3 nm. For the 100% polystyrene nanoparticles with known density, the CDMS and TEM particle diameter distributions were in excellent agreement. For the copolymer nanoparticles with unknown density, the diameter from TEM measurements combined with the mass from CDMS measurements enabled an accurate measurement of nanoparticle density. Differing extents of charging for the two nanoparticle standards measured by CDMS show that charging is sensitive to nanoparticle surface properties. A mixture of the two samples was separated based on their different extents of charging despite having overlapping mass distributions centered at 341.5 and 331.0 MDa.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Steven Papanu
- Colloidal Metrics Corporation, 2520 Wyandotte Street Suite F, Mountain View, California 94083-2381, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
4
|
Jarrold MF. Single-Ion Mass Spectrometry for Heterogeneous and High Molecular Weight Samples. J Am Chem Soc 2024; 146:5749-5758. [PMID: 38394699 DOI: 10.1021/jacs.3c08139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
In charge detection mass spectrometry (CD-MS) the mass of each individual ion is determined from the measurement of its mass to charge ratio (m/z) and charge. Performing this measurement for thousands of ions allows mass distributions to be measured for heterogeneous and high mass samples that cannot be analyzed by conventional mass spectrometry (MS). CD-MS opens the door to accurate mass measurements for samples into the giga-Dalton regime, vastly expanding the reach of MS and allowing mass distributions to be determined for viruses, gene therapies, and vaccines. Following the success of CD-MS, single-ion mass measurements have recently been performed on an Orbitrap. CD-MS and Orbitrap individual ion mass spectrometry (I2MS) are described. Illustrative examples are provided, and the prospects for higher resolution measurements discussed. In the case of CD-MS, computer simulations indicate that much higher resolving powers are within reach. The ability to perform high-resolution CD-MS analysis of heterogeneous samples will be enabling and disruptive in top-down MS as high-resolution m/z and accurate charge measurements will allow very complex m/z spectra to be unraveled.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47401, United States
| |
Collapse
|
5
|
McPartlan MS, Harper CC, Hanozin E, Williams ER. Ion emission from 1-10 MDa salt clusters: individual charge state resolution with charge detection mass spectrometry. Analyst 2024; 149:735-744. [PMID: 38189568 DOI: 10.1039/d3an01913f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Salt cluster ions produced by electrospray ionization are used for mass calibration and fundamental investigations into cluster stability and charge separation processes. However, previous studies have been limited to relatively small clusters owing to the heterogeneity associated with large, multiply-charged clusters that leads to unresolved signals in conventional m/z spectra. Here, charge detection mass spectrometry is used to measure both the mass and charge distributions of positively charged clusters of KCl, CaCl2, and LaCl3 with masses between ∼1 and 10 MDa by dynamically measuring the energy per charge, m/z, charge, and mass of simultaneously trapped individual ions throughout a 1 s trapping time. The extent of remaining hydration on the clusters, determined from the change in the frequency of ion motion with time as a result of residual water loss, follows the order KCl < CaCl2 < LaCl3, and is significantly lower than that of a pure water nanodrop, consistent with tighter water binding to the more highly charged cations in these clusters. The number of ion emission events from these clusters also follows this same trend, indicating that water at the cluster surface facilitates charge loss. A new frequency-based method to determine the magnitude of the charge loss resulting from individual ion emission events clearly resolves losses of +1 and +2 ions. Achieving this individual charge state resolution for ion emission events is an important advance in obtaining information about the late stages of bare gaseous ions formation. Future experiments on more hydrated clusters are expected to lead to a better understanding of ion formation in electrospray ionization.
Collapse
Affiliation(s)
- Matthew S McPartlan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Emeline Hanozin
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
6
|
Harper CC, Miller ZM, Williams ER. Combined Multiharmonic Frequency Analysis for Improved Dynamic Energy Measurements and Accuracy in Charge Detection Mass Spectrometry. Anal Chem 2023; 95:16659-16667. [PMID: 37917546 DOI: 10.1021/acs.analchem.3c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The ability to determine ion energies in electrostatic ion-trap-based charge detection mass spectrometry (CDMS) experiments is important for the accurate measurement of individual ion m/z, charge, and mass. Dynamic energy measurements throughout the time an ion is trapped take advantage of the relationship between ion energy and the harmonic amplitude ratio (HAR) composed from the fundamental and second harmonic amplitudes in the Fourier transform of the ion signal. This method eliminates the need for energy-filtering optics in CDMS and makes it possible to measure energy lost in collisions and changes in ion masses due to dissociation. However, the accuracy of the energy measurement depends on the signal-to-noise ratio (S/N) of the amplitudes used to determine the HAR. Here, a major improvement to this HAR-based dynamic energy measurement method is achieved using HARs composed of higher-order harmonics in addition to the fundamental and second harmonic to determine ion energies. This combined harmonic amplitude ratios for precision energy refinement (CHARPER) method is applied to the analysis of a 103 nm polystyrene nanoparticle ion (359.7 MDa, m/z = 308,300) and the energy resolution (3140) and effective mass resolution (730) achieved are the best yet demonstrated in electrostatic ion-trap-based CDMS. The CHARPER method applied to an ensemble of several thousand adeno-associated virus ion signals also results in higher mass resolution compared to the basic HAR method, making it possible to resolve additional features in the composite mass histogram.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zachary M Miller
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|