1
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
2
|
Xie Y, Chai P, Till NA, Hemberger H, Lebedenko CG, Porat J, Watkins CP, Caldwell RM, George BM, Perr J, Bertozzi CR, Garcia BA, Flynn RA. The modified RNA base acp 3U is an attachment site for N-glycans in glycoRNA. Cell 2024; 187:5228-5237.e12. [PMID: 39173631 DOI: 10.1016/j.cell.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acp3U) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nicholas A Till
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Christopher P Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Reese M Caldwell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Benson M George
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Porat J, Watkins CP, Jin C, Xie X, Tan X, Lebedenko CG, Hemberger H, Shin W, Chai P, Collins JJ, Garcia BA, Bojar D, Flynn RA. O-glycosylation contributes to mammalian glycoRNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610074. [PMID: 39257776 PMCID: PMC11384000 DOI: 10.1101/2024.08.28.610074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
There is an increasing appreciation for the role of cell surface glycans in modulating interactions with extracellular ligands and participating in intercellular communication. We recently reported the existence of sialoglycoRNAs, where mammalian small RNAs are covalently linked to N-glycans through the modified base acp3U and trafficked to the cell surface. However, little is currently known about the role for O-glycosylation, another major class of carbohydrate polymer modifications. Here, we use parallel genetic, enzymatic, and mass spectrometry approaches to demonstrate that O-linked glycan biosynthesis is responsible for the majority of sialoglycoRNA levels. By examining the O-glycans associated with RNA from cell lines and colon organoids we find known and previously unreported O-linked glycan structures. Further, we find that O-linked glycans released from small RNA from organoids derived from ulcerative colitis patients exhibit higher levels of sialylation than glycans from healthy organoids. Together, our work provides flexible tools to interrogate O-linked glycoRNAs (O-glycoRNA) and suggests that they may be modulated in human disease.
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Christopher P. Watkins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xixuan Xie
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiao Tan
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotta G. Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Helena Hemberger
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Woojung Shin
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - James J. Collins
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ryan A. Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, USA
| |
Collapse
|
4
|
Yue S, Wang X, Wang L, Li J, Zhou Y, Chen Y, Zhou Z, Yang X, Shi X, Gao S, Wen Z, Zhu X, Wang Y, Yang S. MOTAI: A Novel Method for the Study of O-GalNAcylation and Complex O-Glycosylation in Cancer. Anal Chem 2024; 96:11137-11145. [PMID: 38953491 PMCID: PMC11257061 DOI: 10.1021/acs.analchem.3c05018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The Tn antigen, an immature truncated O-glycosylation, is a promising biomarker for cancer detection and diagnosis. However, reliable methods for analyzing O-GalNAcylation and complex O-glycosylation are lacking. Here, we develop a novel method, MOTAI, for the sequential analysis of O-glycosylation using different O-glycoproteases. MOTAI conjugates glycopeptides on a solid support and releases different types of O-glycosylation through sequential enzymatic digestion by O-glycoproteases, including OpeRATOR and IMPa. Because OpeRATOR has less activity on O-GalNAcylation, MOTAI enriches O-GalNAcylation for subsequent analysis. We demonstrate the effectiveness of MOTAI by analyzing fetuin O-glycosylation and Jurkat cell lines. We then apply MOTAI to analyze colorectal cancer and benign colorectal polyps. We identify 32 Tn/sTn-glycoproteins and 43 T/sT-glycoproteins that are significantly increased in tumor tissues. Gene Ontology analysis reveals that most of these proteins are ECM proteins involved in the adhesion process of the intercellular matrix. Additionally, the protein disulfide isomerase CRELD2 has a significant difference in Tn expression, and the abnormally glycosylated T345 and S349 O-glycosylation sites in cancer group samples may promote the secretion of CRELD2 and ultimately tumorigenesis through ECM reshaping. In summary, MOTAI provides a powerful new tool for the in-depth analysis of O-GalNAcylation and complex O-glycosylation. It also reveals the upregulation of Tn/sTn-glycoproteins in colorectal cancer, which may provide new insights into cancer biology and biomarker discovery.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
| | - Lei Wang
- Protein
Metrics LLC, Room 201-01,
Building A, Novasiot, 58 Xiangke Road, Zhangjiang, Shanghai 201203, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yufeng Zhou
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Yan Chen
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou 215004, China
| | - Xiaofeng Shi
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Song Gao
- Jiangsu Key
Laboratory of Marine Biological Resources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongmin Wen
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaojun Zhu
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yan Wang
- Mass
Spectrometry Facility, National Institute of Dental and Craniofacial
Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Health
Management Center, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
5
|
Kageler L, Perr J, Flynn RA. Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology. Cell Chem Biol 2024; 31:1132-1144. [PMID: 38772372 PMCID: PMC11193615 DOI: 10.1016/j.chembiol.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Proximity is a fundamental concept in chemistry and biology, referring to the convergence of molecules to facilitate new molecular interactions or reactions. Hybrid biopolymers like glycosylphosphatidylinositol (GPI)-anchored proteins, ubiquitinated proteins, glycosylated RNAs (glycoRNAs), and RNAylated proteins exemplify this by covalent bonding of moieties that are often orthogonally active. Hybrid molecules like glycoRNAs are localized to new physical spaces, generating new interfaces for biological functions. To fully investigate the compositional and spatial features of molecules like glycoRNAs, flexible genetic and chemical tools that encompass different encoding and targeting biopolymers are required. Here we discuss concepts of molecular proximity and explore newer proximity labeling technologies that facilitate applications in RNA biology, cell surface biology, and the interface therein with a particular focus on glycoRNA biology. We review the advantages and disadvantages of methods pertaining to cell surface RNA identification and provide insights into the vast opportunities for method development in this area.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kang Y, Zhang Q, Xu S, Yu Y. The alteration and role of glycoconjugates in Alzheimer's disease. Front Aging Neurosci 2024; 16:1398641. [PMID: 38946780 PMCID: PMC11212478 DOI: 10.3389/fnagi.2024.1398641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by abnormal protein deposition. With an alarming 30 million people affected worldwide, AD poses a significant public health concern. While inhibiting key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 and γ-secretase or enhancing amyloid-β clearance, has been considered the reasonable strategy for AD treatment, their efficacy has been compromised by ineffectiveness. Furthermore, our understanding of AD pathogenesis remains incomplete. Normal aging is associated with a decline in glucose uptake in the brain, a process exacerbated in patients with AD, leading to significant impairment of a critical post-translational modification: glycosylation. Glycosylation, a finely regulated mechanism of intracellular secondary protein processing, plays a pivotal role in regulating essential functions such as synaptogenesis, neurogenesis, axon guidance, as well as learning and memory within the central nervous system. Advanced glycomic analysis has unveiled that abnormal glycosylation of key AD-related proteins closely correlates with the onset and progression of the disease. In this context, we aimed to delve into the intricate role and underlying mechanisms of glycosylation in the etiopathology and pathogenesis of AD. By highlighting the potential of targeting glycosylation as a promising and alternative therapeutic avenue for managing AD, we strive to contribute to the advancement of treatment strategies for this debilitating condition.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Zhang
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Liu H, Li X, Ren Y, Yang Y, Chen Y, Ju H. In Situ Visualization of RNA-Specific Sialylation on Living Cell Membranes to Explore N-Glycosylation Sites. J Am Chem Soc 2024; 146:8780-8786. [PMID: 38497732 DOI: 10.1021/jacs.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The small RNAs on living cell membranes were recently found to be N-glycosylated and terminated with sialic acids, although the glycosylation sites and potential functions remain unclear. Herein, we designed a second-generation hierarchical coding strategy (HieCo 2) for in situ visualization of cell surface RNA-specific sialylation. After covalently binding DNA codes to sialic acids and then binding a DNA code to a target RNA via sequence specificity, cascade decoding processes were performed with subsequent signal amplification that enabled sensitive in situ visualization of low-abundance Y5 RNA-specific sialic acids on living cell membranes. The proposed strategy unveils the number of glycosylation sites on a single RNA and reveals the binding preference of glycosylated RNAs to different sialic acid binding-immunoglobulin lectin-type receptors, demonstrating a new route for exploration of the glycosylated RNA-related biological and pathological processes.
Collapse
Affiliation(s)
- Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemei Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yi Ren
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Michael FS, Hamouda MB, Stupak J, Li J, Pearson A, Sauvageau J. Identification of glycosylated nucleosides in small synthetic glyco-RNAs. Chembiochem 2024; 25:e202300784. [PMID: 38116890 DOI: 10.1002/cbic.202300784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Recently, the post-transcriptional modification of RNA with N-glycans was reported, changing the paradigm that RNAs are not commonly N-glycosylated. Moreover, glycan modifications of RNA are investigated for therapeutic targeting purposes. But the glyco-RNA field is in its infancy with many challenges to overcome. One question is how to accurately characterize glycosylated RNA constructs. Thus, we generated glycosylated forms of Y5 RNA mimics, a short non-coding RNA. The simple glycans lactose and sialyllactose were attached to the RNA backbone using azide-alkyne cycloadditions. Using nuclease digestion followed by LC-MS, we confirmed the presence of the glycosylated nucleosides, and characterized the chemical linkage. Next, we probed if glycosylation would affect the cellular response to Y5 RNA. We treated human foreskin fibroblasts in culture with the generated compounds. Key transcripts in the innate immune response were quantified by RT-qPCR. We found that under our experimental conditions, exposure of cells to the Y5 RNA did not trigger an interferon response, and glycosylation of this RNA did not have an impact. Thus, we have identified a successful approach to chemically characterize synthetic glyco-RNAs, which will be critical for further studies to elucidate how the presence of complex glycans on RNA affects the cellular response.
Collapse
Affiliation(s)
- Frank St Michael
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Maha Ben Hamouda
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Jacek Stupak
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Jianjun Li
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| | - Angela Pearson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Janelle Sauvageau
- Human Health Therapeutics, National Research Council, 100 Sussex Dr., K1N 5A2, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Liu Z, Wu Z, Zhou Y, Xia J, Zhang W, Gao S, Li S, Lu Z, Zhang X, Yang S. Hydrophilic Peptide and Glycopeptide as Immobilized Sorbents for Glycosylation Analysis. Anal Chem 2024; 96:1498-1505. [PMID: 38216336 DOI: 10.1021/acs.analchem.3c03944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment in shot-gun glycoproteomics to enhance the glycopeptide signal and minimize the ionization competition of peptides. In this work, we have developed a novel hydrophilic material (glycoHILIC) based on glycopeptides and peptides to provide hydrophilic properties. GlycoHILIC was synthesized by oxidizing cotton and then reacting the resulting aldehyde with the N-terminus of the glycopeptide or peptide by reductive amination. Due to the large amount of hydrophilic carbohydrates and hydrophilic amino acids contained in glycopeptides, glycoHILIC showed significantly better enrichment of glycopeptides than cotton itself. Our results demonstrate that glycoHILIC has high selectivity, a low detection limit, and good stability. Over 257 unique N-linked glycosylation sites in 1477 intact N-glycopeptides from 146 glycoproteins were identified from 1 μL of human serum using glycoHILIC. Serum analysis of pancreatic cancer patients found that 38 N-glycopeptides among 21 glycoproteins changed significantly, of which 7 N-glycopeptides increased and 31 N-glycopeptides decreased. These results demonstrate that glycoHILIC can be used for glycopeptide enrichment and analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yufeng Zhou
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|