Lu N, Wang X, Wang Y, Du Y, Gao Q, Zhang H. Establishment of enzyme-linked immunosorbent assay for aristolochic acid.
Toxicon 2024;
244:107771. [PMID:
38795849 DOI:
10.1016/j.toxicon.2024.107771]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
In recent years, the nephrotoxicity and carcinogenicity of aristolochic acid have attracted worldwide attention, and the traditional Chinese medicine containing this ingredient has been banned in many places, affecting the TCM industry. To meet this challenge, researchers have developed various detection methods, such as high-performance liquid chromatography, gas chromatography-mass spectrometry and thin-layer chromatography. A rapid detection method must therefore be developed to ensure safety. A polyclonal antibody capable of recognizing aristolochic acid was prepared, and an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established to detect the amount of aristolochic acid in the sample to be measured. Methods Using 1-(4-chlorophenyl) cyclobutylamine as a hapten, immunogens and coating antigens were obtained by coupling with bovine serum albumin (BSA) and chicken ovalbumin (OVA) using the active ester method. UV scanning confirmed the successful coupling of the conjugate, and New Zealand white rabbits were immunized. The obtained antibody serum was screened for the best antibody by ic-ELISA detection. Use the chessboard method to determine three optimal combinations of original coating concentration and antibody dilution ratio, establish a standard curve for each combination to obtain the best combination, and establish a rapid detection method. Finally, the standard aristolochic acid A was added to the purchased apple vinegar and canned coffee for recycling experiments to verify the detection method.By changing the antigen antibody concentration, the antibody showed the highest sensitivity to aristolochic acid standard at the original coating, 1000-fold dilution, IC50 of 24.88 ng/mL, limit of detection IC10 of 3.19 ng/mL, and detection range IC20-IC80 of 6.81-90.91 ng/mL. The recovery experiments under this conditions yielded a recovery rate of 92%-105%, within reasonable limits, indicating the success of the ELISA rapid detection method. Conclusion The enzyme-linked immunoassay method established in this paper can quickly detect the content of aristolochic acid in the sample to be tested, and the antibody prepared by this method has good broad-spectrum and can detect other aristolochic acid, such as aristolochic acid A, aristolochic acid B, aristolochic acid C, and aristolochic acid D.
Collapse