1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Jin Y, Wang J, Tang R, Jiang Y, Xi D. Nucleic Acid-Based Biological Nanopore Sensing Strategies for Tumor Marker Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21327-21340. [PMID: 39356337 DOI: 10.1021/acs.langmuir.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Cancer, which is characterized by high mortality rates, poses a significant threat to global human health. Early diagnosis is of paramount importance in managing cancer, and tumor markers have emerged as crucial indicators for achieving this goal. The advent of precision medicine has further emphasized the need for the effective detection of these markers. However, traditional detection methods are hampered by numerous limitations. In recent years, nanopore technology has emerged as a promising alternative, due to its unique physical and chemical properties, which facilitate rapid, label-free, and amplification-free detection. This Review focuses on the direct detection of tumor markers through nucleic acid analysis and indirect detection mediated by nucleic acids and facilitated by biological nanopores. Furthermore, it also discusses the challenges and prospects of applying biological nanopore sensing technology in early cancer diagnosis, underscoring its potential to revolutionize tumor marker detection.
Collapse
Affiliation(s)
- Yameng Jin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Junxiao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Ruping Tang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| |
Collapse
|
3
|
Smith A, Larsen TRB, Zimmerman HK, Virolainen SJ, Meyer JJ, Keranen Burden LM, Burden DL. Design and Construction of a Multi-Tiered Minimal Actin Cortex for Structural Support in Lipid Bilayer Applications. ACS APPLIED BIO MATERIALS 2024; 7:1936-1946. [PMID: 38427377 PMCID: PMC10951949 DOI: 10.1021/acsabm.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Artificial lipid bilayers have revolutionized biochemical and biophysical research by providing a versatile interface to study aspects of cell membranes and membrane-bound processes in a controlled environment. Artificial bilayers also play a central role in numerous biosensing applications, form the foundational interface for liposomal drug delivery, and provide a vital structure for the development of synthetic cells. But unlike the envelope in many living cells, artificial bilayers can be mechanically fragile. Here, we develop prototype scaffolds for artificial bilayers made from multiple chemically linked tiers of actin filaments that can be bonded to lipid headgroups. We call the interlinked and layered assembly a multiple minimal actin cortex (multi-MAC). Construction of multi-MACs has the potential to significantly increase the bilayer's resistance to applied stress while retaining many desirable physical and chemical properties that are characteristic of lipid bilayers. Furthermore, the linking chemistry of multi-MACs is generalizable and can be applied almost anywhere lipid bilayers are important. This work describes a filament-by-filament approach to multi-MAC assembly that produces distinct 2D and 3D architectures. The nature of the structure depends on a combination of the underlying chemical conditions. Using fluorescence imaging techniques in model planar bilayers, we explore how multi-MACs vary with electrostatic charge, assembly time, ionic strength, and type of chemical linker. We also assess how the presence of a multi-MAC alters the underlying lateral diffusion of lipids and investigate the ability of multi-MACs to withstand exposure to shear stress.
Collapse
Affiliation(s)
- Amanda
J. Smith
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Theodore R. B. Larsen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Harmony K. Zimmerman
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Samuel J. Virolainen
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Joshua J. Meyer
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Lisa M. Keranen Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| | - Daniel L. Burden
- Chemistry Department, Wheaton College, 501 College Ave., Wheaton, Illinois 60187, United States
| |
Collapse
|