1
|
Su P, McGee JP, Hollas MAR, Fellers RT, Durbin KR, Greer JB, Early BP, Yip PF, Zabrouskov V, Srzentić K, Senko MW, Compton PD, Kelleher NL, Kafader JO. Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers. Nat Protoc 2025:10.1038/s41596-024-01091-y. [PMID: 39747675 DOI: 10.1038/s41596-024-01091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/11/2024] [Indexed: 01/04/2025]
Abstract
Individual ion mass spectrometry (I2MS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, I2MS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. I2MS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution. A mass distribution or 'profile' can be created for any desired sample regardless of composition or heterogeneity. To assist in reducing I2MS analysis to practice, we developed this workflow for data acquisition and subsequent data analysis, which includes (i) protein sample preparation, (ii) attenuation of ion signals to obtain individual ions, (iii) the creation of a charge-calibration curve from standard proteins with known charge states and finally (iv) producing a meaningful mass spectral output from a complex or unknown sample by using the STORIboard software. This protocol is suitable for users with prior experience in mass spectrometry and bioanalytical chemistry. First, the analysis of protein standards in native and denaturing mode is presented, setting the foundation for the analysis of complex mixtures that are intractable via traditional mass spectrometry techniques. Examples of complex mixtures included here demonstrate the relevant analysis of an intact human monoclonal antibody and its intricate glycosylation patterns.
Collapse
Affiliation(s)
- Pei Su
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - John P McGee
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- ImmPro, Inc., Evanston, IL, USA
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Michael A R Hollas
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kenneth R Durbin
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Proteinaceous, Inc., Evanston, IL, USA
| | - Joseph B Greer
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Bryan P Early
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ping F Yip
- Thermo Fisher Scientific, San Jose, CA, USA
| | | | | | | | - Philip D Compton
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Integrated Protein Technologies, Evanston, IL, USA
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Jared O Kafader
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering and the Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Sanders JD, Owen ON, Tran BH, Mosqueira JL, Marty MT. Coupling Online Size Exclusion Chromatography with Charge Detection-Mass Spectrometry Using Hadamard Transform Multiplexing. Anal Chem 2024; 96:16743-16749. [PMID: 39393347 DOI: 10.1021/acs.analchem.4c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Charge detection mass spectrometry (CD-MS) is a powerful technique for the analysis of large, heterogeneous biomolecules. By directly measuring the charge states of individual ions, CD-MS can measure the masses from spectra where conventional deconvolution approaches fail due to the lack of isotopic resolution or distinguishable charge states. However, CD-MS is inherently slow because hundreds or thousands of spectra need to be collected to produce adequate ion statistics. The slower speed of CD-MS complicates efforts to couple it with online separation techniques, which limit the number of spectra that can be acquired during a chromatographic peak. Here, we present the application of Hadamard transform multiplexing to online size exclusion chromatography (SEC) coupled with Orbitrap CD-MS, with a goal of using SEC for separating complex mixtures prior to CD-MS analysis. We developed a microcontroller to deliver pulsed injections from a large sample loop onto a SEC for online CD-MS analysis. Data showed a series of peaks spaced according to the pseudorandom injection sequence, which were demultiplexed with a Hadamard transform algorithm. The demultiplexed data revealed improved CD-MS signals while preserving retention time information. This multiplexing approach provides a general solution to the inherent incompatibilities of online separations and CD-MS detection that will enable a range of applications.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey L Mosqueira
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Sanders JD, Owen ON, Tran BH, Juetten KJ, Marty MT. UniChromCD for Demultiplexing Time-Resolved Charge Detection-Mass Spectrometry Data. Anal Chem 2024; 96:15014-15022. [PMID: 39225436 DOI: 10.1021/acs.analchem.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Charge detection mass spectrometry (CD-MS) enables characterization of large, heterogeneous analytes through the analysis of individual ion signals. Because hundreds to thousands of scans must be acquired to produce adequate ion statistics, CD-MS generally requires long analysis times. The slow acquisition speed of CD-MS complicates efforts to couple it with time-dispersive techniques, such as chromatography and ion mobility, because it is not always possible to acquire enough scans from a single sample injection to generate sufficient ion statistics. Multiplexing methods based on Hadamard and Fourier transforms offer an attractive solution to this problem by improving the duty cycle of the separation while preserving retention/drift time information. However, integrating multiplexing with CD-MS data processing is complex. Here, we present UniChromCD, a new module in the open-source UniDec package that incorporates CD-MS time-domain data processing with demultiplexing tools. Following a detailed description of the algorithm, we demonstrate its capabilities using two multiplexed CD-MS workflows: Hadamard-transform size-exclusion chromatography and Fourier-transform ion mobility. Overall, UniChromCD provides a user-friendly interface for analysis and visualization of time-resolved CD-MS data.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Zemaitis KJ, Fulcher JM, Kumar R, Degnan DJ, Lewis LA, Liao YC, Veličković M, Williams SM, Moore RJ, Bramer LM, Veličković D, Zhu Y, Zhou M, Paša-Tolić L. Spatial top-down proteomics for the functional characterization of human kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580062. [PMID: 38405958 PMCID: PMC10888776 DOI: 10.1101/2024.02.13.580062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. Results Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. Conclusions We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Where of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) where discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.
Collapse
Affiliation(s)
- Kevin J. Zemaitis
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - James M. Fulcher
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Rashmi Kumar
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - David J. Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Logan A. Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Yen-Chen Liao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Sarah M. Williams
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Lisa M. Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| |
Collapse
|
5
|
Cotham VC, Wang S, Li N. An Online Native Mass Spectrometry Approach for Fast, Sensitive, and Quantitative Assessment of Adeno-Associated Virus Capsid Content Ratios. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1567-1575. [PMID: 38888112 PMCID: PMC11228988 DOI: 10.1021/jasms.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Adeno-associated viruses (AAVs) have emerged as a leading platform for in vivo therapeutic gene delivery and offer tremendous potential in the treatment and prevention of human disease. The fast-paced development of this growing class of therapeutics, coupled with their intrinsic structural complexity, places a high demand on analytical methods capable of efficiently monitoring product quality to ensure safety and efficacy, as well as to support manufacturing and process optimization. Importantly, the presence and relative abundance of both empty and partially filled AAV capsid subpopulations are of principal concern, as these represent the most common product-related impurities in AAV manufacturing and have a direct impact on therapeutic potential. For this reason, the capsid content, or ratio of empty and partial capsids to those packaged with the full-length therapeutic genome, has been identified by regulatory agencies as a critical quality attribute (CQA) that must be carefully controlled to meet clinical specifications. Established analytical methods for the quantitation of capsid content ratios often suffer from long turnaround times, low throughput, and high sample demands that are not well-suited to the narrow timelines and limited sample availability typical of process development. In this study, we present an integrated online native mass spectrometry platform that aims to minimize sample handling and maximize throughput and robustness for rapid and sensitive quantitation of AAV capsid content ratios. The primary advantages of this platform for AAV analysis include the ability to perform online buffer exchange under low flow conditions to maintain sample stability with minimal sample dilution, as well as the ability to achieve online charge reduction via dopant-modified desolvation gas. By exploiting the latter, enhanced spectral resolution of signals arising from empty, partial, and full AAV capsids was accomplished in the m/z domain to facilitate improved spectral interpretation and quantitation that correlated well with the industry standard analytical ultracentrifugation (AUC) method for capsid content ratio determination. The utility of this approach was further demonstrated in several applications, including the rapid and universal screening of different AAV serotypes, evaluation of capsid content for in-process samples, and the monitoring of capsid stability when subjected to thermal stress conditions.
Collapse
Affiliation(s)
- Victoria C Cotham
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
6
|
Yin V, Deslignière E, Mokiem N, Gazi I, Lood R, de Haas CJC, Rooijakkers SHM, Heck AJR. Not All Arms of IgM Are Equal: Following Hinge-Directed Cleavage by Online Native SEC-Orbitrap-Based CDMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1320-1329. [PMID: 38767111 PMCID: PMC11157650 DOI: 10.1021/jasms.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Immunoglobulins M (IgM) are key natural antibodies produced initially in humoral immune response. Due to their large molecular weights and extensive glycosylation loads, IgMs represent a challenging target for conventional mass analysis. Charge detection mass spectrometry (CDMS) may provide a unique approach to tackle heterogeneous IgM assemblies, although this technique can be quite laborious and technically challenging. Here, we describe the use of online size exclusion chromatography (SEC) to automate buffer exchange and sample introduction, and demonstrate its adaptability with Orbitrap-based CDMS. We discuss optimal experimental parameters for online SEC-CDMS experiments, including ion activation, choice of column, and resolution. Using this approach, CDMS histograms containing hundreds of individual ion signals can be obtained in as little as 5 min from single injections of <1 μg of sample. To demonstrate the unique utility of online SEC-CDMS, we performed real-time kinetic monitoring of pentameric IgM digestion by the protease IgMBRAZOR, which cleaves specifically in the hinge region of IgM. Several digestion intermediates corresponding to processive losses of F(ab')2 subunits could be mass-resolved and identified by SEC-CDMS. Interestingly, we find that for the J-chain linked IgM pentamer, cleavage of one of the F(ab')2 subunits is much slower than the other four F(ab')2 subunits, which we attribute to the symmetry-breaking interactions of the J-chain within the pentameric IgM structure. The online SEC-CDMS methodologies described here open new avenues into the higher throughput automated analysis of heterogeneous, high-mass protein assemblies by CDMS.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Evolène Deslignière
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Nadia Mokiem
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Inge Gazi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Rolf Lood
- Genovis
AB, Scheelevägen
2, 223 63 Lund, Sweden
| | - Carla J. C. de Haas
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department
of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
8
|
Guapo F, Füssl F, Strasser L, Bones J. Mass spectrometry friendly pH-gradient anion exchange chromatography for the separation of full and empty adeno-associated virus (AAV) capsids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5788-5792. [PMID: 37870407 DOI: 10.1039/d3ay01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The proportion of full and empty capsids represents a critical quality attribute of adeno-associated virus (AAV)-based therapeutics. In this study, pH-gradient anion exchange chromatography was utilized for the separation of full and empty capsid species. The developed method allowed for applicability to multiple AAV serotypes and facilitated subsequent mass spectrometric detection of intact AAVs. This is the first study demonstrating generic applicability as well as mass spectrometric compatibility, allowing for a more sophisticated analysis of AAV-based gene therapy and paving the way for future developments in the field.
Collapse
Affiliation(s)
- Felipe Guapo
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.
| | - Florian Füssl
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.
| | - Lisa Strasser
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland.
- School of Chemical Engineering and Bioprocessing, University College of Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|