1
|
Liu C, Zhang H, Chen P, Wang M, Xia Z. A saccharides regulated fluorescence ratio sensing array for bacterial recognition based on lectin response. Talanta 2025; 285:127419. [PMID: 39708570 DOI: 10.1016/j.talanta.2024.127419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.
Collapse
Affiliation(s)
- Chunlan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Haijing Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Mobed A, Hasanzadeh M. Environmental protection based on the nanobiosensing of bacterial lipopolysaccharides (LPSs): material and method overview. RSC Adv 2022; 12:9704-9724. [PMID: 35424904 PMCID: PMC8959448 DOI: 10.1039/d1ra09393b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) or endotoxin control is critical for environmental and healthcare issues. LPSs are responsible for several infections, including septic and shock sepsis, and are found in water samples. Accurate and specific diagnosis of endotoxin is one of the most challenging issues in medical bacteriology. Enzyme-linked immunosorbent assay (ELISA), plating and culture-based methods, and Limulus amebocyte lysate (LAL) assay are the conventional techniques in quantifying LPS in research and medical laboratories. However, these methods have been restricted due to their disadvantages, such as low sensitivity and time-consuming and complicated procedures. Therefore, the development of new and advanced methods is demanding, particularly in the biological and medical fields. Biosensor technology is an innovative method that developed extensively in the past decade. Biosensors are classified based on the type of transducer and bioreceptor. So in this review, various types of biosensors, such as optical (fluorescence, SERS, FRET, and SPR), electrochemical, photoelectrochemical, and electrochemiluminescence, on the biosensing of LPs were investigated. Also, the critical role of advanced nanomaterials on the performance of the above-mentioned biosensors is discussed. In addition, the application of different labels on the efficient usage of biosensors for LPS is surveyed comprehensively. Also, various bio-elements (aptamer, DNA, miRNA, peptide, enzyme, antibody, etc.) on the structure of the LPS biosensor are investigated. Finally, bio-analytical parameters that affect the performance of LPS biosensors are surveyed.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
3
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
4
|
Abrantes-Coutinho VE, Santos AO, Moura RB, Pereira-Junior FN, Mascaro LH, Morais S, Oliveira TMBF. Systematic review on lectin-based electrochemical biosensors for clinically relevant carbohydrates and glycoconjugates. Colloids Surf B Biointerfaces 2021; 208:112148. [PMID: 34624598 DOI: 10.1016/j.colsurfb.2021.112148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Carbohydrates and glycoconjugates are involved in numerous natural and pathological metabolic processes, and the precise elucidation of their biochemical functions has been supported by smart technologies assembled with lectins, i.e., ubiquitous proteins of nonimmune origin with carbohydrate-specific domains. When lectins are anchored on suitable electrochemical transducers, sensitive and innovative bioanalytical tools (lectin-based biosensors) are produced, with the ability to screen target sugars at molecular levels. In addition to the remarkable electroanalytical sensitivity, these devices associate specificity, precision, stability, besides the possibility of miniaturization and portability, which are special features required for real-time and point-of-care measurements. The mentioned attributes can be improved by combining lectins with biocompatible 0-3D semiconductors derived from carbon, metal nanoparticles, polymers and their nanocomposites, or employing labeled biomolecules. This systematic review aims to substantiate and update information on the progress made with lectin-based biosensors designed for electroanalysis of clinically relevant carbohydrates and glycoconjugates (glycoproteins, pathogens and cancer biomarkers), highlighting their main detection principles and performance in highly complex biological milieus. Moreover, particular emphasis is given to the main advantages and limitations of the reported devices, as well as the new trends for the current demands. We believe that this review will support and encourage more cutting-edge research involving lectin-based electrochemical biosensors.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Rafael B Moura
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Lucia H Mascaro
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, 13565-905 São Carlos, SP, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
5
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
6
|
Sun L, Chen Y, Duan Y, Ma F. Electrogenerated Chemiluminescence Biosensor Based on Functionalized Two-Dimensional Metal-Organic Frameworks for Bacterial Detection and Antimicrobial Susceptibility Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38923-38930. [PMID: 34369161 DOI: 10.1021/acsami.1c11949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of antibiotic resistance has prompted the development of rapid antimicrobial susceptibility testing (AST) technologies to guide antibiotic prescription. A novel electrochemiluminescence (ECL) biosensor developed can quantitatively measure the binding between the lectin and lipopolysaccharide (LPS) on Gram-negative bacteria for bacterial determination and to characterize the antimicrobial activities of β-lactam and non-β-lactam antibiotics to normal and antibiotic-resistant bacteria. The biosensor utilizes ruthenium complex tagged concanavalin A (Ru-Con A) coated on NH2-MIL-53(Al) interface for LPS binding measurements. The decreased ECL signal obtained was directly proportional to increasing Escherichia coli (E. coli) BL21 concentrations. The sensitivity displayed logarithmic dependence in the range of (50-5.0) × 104 cells/mL, with a detection limit of 16 cells/mL. The minimum inhibitory concentration (MIC) values of antibiotics for normal E. coli BL21 were 0.02-0.2, 2-4, 0.002-0.02, and 0.2-1 mg/L for levofloxacin hydrochloride (LVX), tetracycline (TCY), imipenem (IPM), and cefpirome (CPO), respectively. The increased MIC values (8-16 and 4 mg/L for IMP and CPO, respectively) in New Delhi metallo-β-lactamase-1 expressing E. coli BL21 (NDM-1-E. coli BL21) indicated greater resistance to β-lactams in NDM-1-E. coli BL21 compared with normal E. coli BL21. Therefore, the changed ECL signal because of binding between LPS with the lectin has a relation with the type of antibiotic and bacterial strains, making the ECL biosensor promote clinical practicability and facilitate antibiotic stewardship.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yu Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yuhong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
7
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
8
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
9
|
Zhang XY, Li ZY, Zhang Y, Zang XQ, Ueno K, Misawa H, Sun K. Bacterial Concentration Detection using a PCB-based Contactless Conductivity Sensor. MICROMACHINES 2019; 10:E55. [PMID: 30646622 PMCID: PMC6356519 DOI: 10.3390/mi10010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023]
Abstract
Capacitively coupled contactless conductivity detection (C⁴D) is an improved approach to avoid the problems of labor-intensive, time-consuming and insufficient accuracy of plate count as well as the high-cost apparatus of flow cytometry (FCM) in bacterial counting. This article describes a novel electrode-integrated printed-circuit-board (PCB)-based C⁴D device, which supports the simple and safe exchange of capillaries and improves the sensitivity and repeatability of the contactless detection. Furthermore, no syringe pump is needed in the detection, it reduces the system size, and, more importantly, avoids the effect on the bacteria due to high pressure. The recovered bacteria after C⁴D detection at excitation of 25 Vpp and 60⁻120 kHz were analyzed by flow cytometry, and a survival rate higher than 96% was given. It was verified that C⁴D detection did not influence the bacterial viability. Moreover, bacteria concentrations from 10⁶ cells/mL to 10⁸ cells/mL were measured in a linear range, and relative standard deviation (RSD) is below 0.2%. In addition, the effects on bacteria and C⁴D from background solutions were discussed. In contrast to common methods used in most laboratories, this method may provide a simple solution to in situ detection of bacterial cultures.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhe-Yu Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiao-Qian Zang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kosei Ueno
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan.
- Department of Applied Chemistry & Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Chang A, Li HY, Chang IN, Chu YH. Affinity Ionic Liquids for Chemoselective Gas Sensing. Molecules 2018; 23:E2380. [PMID: 30231477 PMCID: PMC6225420 DOI: 10.3390/molecules23092380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/09/2018] [Accepted: 09/15/2018] [Indexed: 01/02/2023] Open
Abstract
Selective gas sensing is of great importance for applications in health, safety, military, industry and environment. Many man-made and naturally occurring volatile organic compounds (VOCs) can harmfully affect human health or cause impairment to the environment. Gas analysis based on different principles has been developed to convert gaseous analytes into readable output signals. However, gas sensors such as metal-oxide semiconductors suffer from high operating temperatures that are impractical and therefore have limited its applications. The cost-effective quartz crystal microbalance (QCM) device represents an excellent platform if sensitive, selective and versatile sensing materials were available. Recent advances in affinity ionic liquids (AILs) have led them to incorporation with QCM to be highly sensitive for real-time detection of target gases at ambient temperature. The tailorable functional groups in AIL structures allow for chemoselective reaction with target analytes for single digit parts-per-billion detection on mass-sensitive QCM. This structural diversity makes AILs promising for the creation of a library of chemical sensor arrays that could be designed to efficiently detect gas mixtures simultaneously as a potential electronic in future. This review first provides brief introduction to some conventional gas sensing technologies and then delivers the latest results on our development of chemoselective AIL-on-QCM methods.
Collapse
Affiliation(s)
- Albert Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| | - Hsin-Yi Li
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| | - I-Nan Chang
- ANT Technology Co., Ltd., 137, Section 1, Fushing South Road, Taipei 10666, Taiwan.
| | - Yen-Ho Chu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Minghsiung, Chiayi 62102, Taiwan.
| |
Collapse
|
11
|
Abstract
This review is devoted to the analytical application of carbohydrate-binding proteins called lectins. The nature of lectins and the regularities of their specificity with respect to simple sugars and complex carbohydrate-containing biomolecules are discussed. The main areas of the modern analytical application of lectins are described. Lectin-affinity chromatography, histo- and cytochemical approaches, lectin blotting, microarray, and biosensor technologies as well as microplate analysis are considered in detail. Data on the use of lectins for the detection of cells and microorganisms as well as the study of protein glycosylation are summarized. The large potential of lectins as components of analytical systems used for the identification of glycans and the characteristics of their structure are substantiated.
Collapse
Affiliation(s)
- O D Hendrickson
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| | - A V Zherdev
- a A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect , Moscow , Russia
| |
Collapse
|
12
|
Niyomdecha S, Limbut W, Numnuam A, Asawatreratanakul P, Kanatharana P, Thavarungkul P. Capacitive antibacterial susceptibility screening test with a simple renewable sensing surface. Biosens Bioelectron 2017; 96:84-88. [DOI: 10.1016/j.bios.2017.04.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
13
|
Hovhannisyan VA, Bazukyan IL, Gasparyan VK. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. Comparison of various approaches. Talanta 2017; 175:366-369. [PMID: 28842004 DOI: 10.1016/j.talanta.2017.07.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
C-type lectin from hen egg shell as a recognition ligand for detection of St. aureus was applied. Three approaches for detection of bacteria were used and the sensitivities of the assays were compared. Two of them included spherical and anisotropic silver nanoparticles sensitized by lectin. In these cases the optical changes as a result of interaction of sensitized nanoparticles with bacteria were measured. In the third approach hybrid system of CdSe quantum dots-anisotropic silver nanoparticles sensitized by lectin was applied. Here fluorescent changes as a result of resonance energy transfer between nanoparticles as consequence of their interaction with bacteria were measured. The data demonstrate that assays with spherical silver nanoparticles permit to detect St. aureus in the range of 6 × 104/mL-2 × 107/mL, anisotropic silver nanoparticles in the range of 2 × 105/mL-1 × 108/mL, CdSe-Ag hybrid system in the range of 6 × 103/mL-2 × 107/mL. The data demonstrate that hybrid system CdSe-Ag with resonance energy transfer provides the best sensitivity.
Collapse
Affiliation(s)
- Varduhi A Hovhannisyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia
| | | | - Vardan K Gasparyan
- Laboratory of Medical Biotechnology, Institute of Biochemistry, National Academy of Sciences, Yerevan 0014, Armenia.
| |
Collapse
|
14
|
Leonard H, Halachmi S, Ben-Dov N, Nativ O, Segal E. Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy. ACS NANO 2017; 11:6167-6177. [PMID: 28485961 DOI: 10.1021/acsnano.7b02217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
With global antimicrobial resistance becoming increasingly detrimental to society, improving current clinical antimicrobial susceptibility testing (AST) is crucial to allow physicians to initiate appropriate antibiotic treatment as early as possible, reducing not only mortality rates but also the emergence of resistant pathogens. In this work, we tackle the main bottlenecks in clinical AST by designing biofunctionalized silicon micropillar arrays to provide both a preferable solid-liquid interface for bacteria networking and a simultaneous transducing element that monitors the response of bacteria when exposed to chosen antibiotics in real time. We harness the intrinsic ability of the micropillar architectures to relay optical phase-shift reflectometric interference spectroscopic measurements (referred to as PRISM) and employ it as a platform for culture-free, label-free phenotypic AST. The responses of E. coli to various concentrations of five clinically relevant antibiotics are optically tracked by PRISM, allowing for the minimum inhibitory concentration (MIC) values to be determined and compared to both standard broth microdilution testing and clinic-based automated AST system readouts. Capture of bacteria within these microtopologies, followed by incubation of the cells with the appropriate antibiotic solution, yields rapid determinations of antibiotic susceptibility. This platform not only provides accurate MIC determinations in a rapid manner (total assay time of 2-3 h versus 8 h with automated AST systems) but can also be employed as an advantageous method to differentiate bacteriostatic and bactericidal antibiotics.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, ‡Department of Urology, Bnai Zion Medical Center, Faculty of Medicine, and §The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Sarel Halachmi
- Department of Biotechnology and Food Engineering, ‡Department of Urology, Bnai Zion Medical Center, Faculty of Medicine, and §The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Nadav Ben-Dov
- Department of Biotechnology and Food Engineering, ‡Department of Urology, Bnai Zion Medical Center, Faculty of Medicine, and §The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Ofer Nativ
- Department of Biotechnology and Food Engineering, ‡Department of Urology, Bnai Zion Medical Center, Faculty of Medicine, and §The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, ‡Department of Urology, Bnai Zion Medical Center, Faculty of Medicine, and §The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| |
Collapse
|
15
|
Rapid Waterborne Pathogen Detection with Mobile Electronics. SENSORS 2017; 17:s17061348. [PMID: 28598391 PMCID: PMC5492157 DOI: 10.3390/s17061348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022]
Abstract
Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal–oxide–semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.
Collapse
|
16
|
Jin Y, Xie Y, Wu K, Huang Y, Wang F, Zhao R. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8490-8497. [PMID: 28218519 DOI: 10.1021/acsami.6b15077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yunfeng Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
17
|
Rehman A, Zeng X. Monitoring the Cellular Binding Events with Quartz Crystal Microbalance (QCM) Biosensors. Methods Mol Biol 2017; 1572:313-326. [PMID: 28299697 DOI: 10.1007/978-1-4939-6911-1_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Quartz crystal microbalance (QCM) biosensors have been demonstrated as noninvasive and label-free tools for cell based measurements. However, the complexity of biofilms composed of cells with the associated liquid environments is preventive towards forming explicit relationship between the added mass and the change in the frequency output signal. Therefore, the protocols of interface design (surface chemistry, interaction mechanism, and data acquisition), data interpretation, and device fabrication, all need to be finely refined in order to make these biosensors prevail in real life. Especially in the sense of deriving correct inferences from binding events, the fluidic effects (mostly visible in the form of damping resistance of QCM) should be quantitatively excluded from binding measurements. Such strategies can then track even the cellular interactions which are the basis of many physiological functions of life and can be built into smart functional devices for point of care diagnostics. This chapter provides technical details regarding these strategies with a focus on experimental details and procedures of the measurements of anti CD-20 antibody (Rituximab) interactions with B-Lymphoma cancer cells using the QCM method. In addition to a detailed description of specific interactions, we provide mechanisms of data interpretation and device development having potential application to other techniques.
Collapse
Affiliation(s)
- Abdul Rehman
- Oakland University, 2200 N Squirrel Road, Rochester, MI, 48309, USA.,Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Xiangqun Zeng
- Oakland University, 2200 N Squirrel Road, Rochester, MI, 48309, USA.
| |
Collapse
|
18
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
19
|
Zeng X, Qu K, Rehman A. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions. Acc Chem Res 2016; 49:1624-33. [PMID: 27524389 DOI: 10.1021/acs.accounts.6b00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbohydrate-protein interactions occur through glycoproteins, glycolipids, or polysaccharides displayed on the cell surface with lectins. However, studying these interactions is challenging because of the complexity and heterogeneity of the cell surface, the inherent structural complexity of carbohydrates, and the typically weak affinities of the binding reactions between the lectins and monovalent carbohydrates. The lack of chromophores and fluorophores in carbohydrate structures often drives such investigations toward fluorescence labeling techniques, which usually require tedious and complex synthetic work to conjugate fluorescent tags with additional risk of altering the reaction dynamics. Probing these interactions directly on the cell surface is even more difficult since cells could be too fragile for labeling or labile dynamics could be affected by the labeled molecules that may interfere with the cellular activities, resulting in unwanted cell responses. In contrast, label-free biosensors allow real-time monitoring of carbohydrate-protein interactions in their natural states. A prerequisite, though, for this strategy to work is to mimic the coding information on potential interactions of cell surfaces onto different biosensing platforms, while the complementary binding process can be transduced into a useful signal noninvasively. Through carbohydrate self-assembled monolayers and glycopolymer scaffolds, the multivalency of the naturally existing simple and complex carbohydrates can be mimicked and exploited with label-free readouts (e.g., optical, acoustic, mechanical, electrochemical, and electrical sensors), yet such inquiries reflect only limited aspects of complicated biointeraction processes due to the unimodal transduction. In this Account, we illustrate that functionalized glycosylated conductive polymer scaffolds are the ideal multimodal biointerfaces that not only simplify the immobilization process for surface fabrication via electrochemical polymerization but also enable the simultaneous analysis of the binding events with orthogonal electrical, optical, or mass sensing label-free readouts. We established this approach using polyaniline and polythiophene as examples. Two general methods were demonstrated for glycosylated polymer fabrications (i.e., electropolymerization of monomer bearing α-mannoside residues or click chemistry based mannose conjugation to electrochemically preformed quinone fused polymer with potential to introduce different carbohydrate moieties and construct glycan arrays in a similar manner). Their conjugated π system extending over a large number of recurrent monomer units renders them sensitive optoelectronic materials. The carbohydrate-protein interactions on the side chain could disrupt the electrostatic, H-bonding, steric, or van der Waals interactions within or between polymers, leading to a change of conductivity or optical absorption of the conductive polymers. This will allow concurrent interrogation of these interactions with adjoining biological processes and mechanisms in multimodal fashion. Furthermore, the functionalized glycosylated conductive polymers can be designed and synthesized with controlled oxidation states, desired ionic dopants, and the imperative density and orientation of the sugar ligands that enable the assessment of differential receptor binding profiles of carbohydrate-protein interactions with much more detailed information and high accuracy. Finally, the glycosylated biosensing interfaces were successfully validated for their applications in Gram-negative bacterial detection, antibiotic resistance studies, and antimicrobial susceptibility assays, all based on inferring carbohydrate-protein interactions directly on cell surfaces, thus illustrating their potential uses in infectious disease research, clinical diagnostics, and environmental monitoring of harmful pathogens.
Collapse
Affiliation(s)
- Xiangqun Zeng
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Ke Qu
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Abdul Rehman
- Department
of Chemistry, Oakland University, Rochester, Michigan 48309, United States
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
20
|
Qu K, Zeng X. Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Wang B, Anzai JI. Recent Progress in Lectin-Based Biosensors. MATERIALS (BASEL, SWITZERLAND) 2015; 8:8590-8607. [PMID: 28793731 PMCID: PMC5458863 DOI: 10.3390/ma8125478] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022]
Abstract
This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
22
|
Bragazzi NL, Amicizia D, Panatto D, Tramalloni D, Valle I, Gasparini R. Quartz-Crystal Microbalance (QCM) for Public Health: An Overview of Its Applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:149-211. [PMID: 26572979 DOI: 10.1016/bs.apcsb.2015.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanobiotechnologies, from the convergence of nanotechnology and molecular biology and postgenomics medicine, play a major role in the field of public health. This overview summarizes the potentiality of piezoelectric sensors, and in particular, of quartz-crystal microbalance (QCM), a physical nanogram-sensitive device. QCM enables the rapid, real time, on-site detection of pathogens with an enormous burden in public health, such as influenza and other respiratory viruses, hepatitis B virus (HBV), and drug-resistant bacteria, among others. Further, it allows to detect food allergens, food-borne pathogens, such as Escherichia coli and Salmonella typhimurium, and food chemical contaminants, as well as water-borne microorganisms and environmental contaminants. Moreover, QCM holds promises in early cancer detection and screening of new antiblastic drugs. Applications for monitoring biohazards, for assuring homeland security, and preventing bioterrorism are also discussed.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Amicizia
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Daniela Tramalloni
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy
| | - Ivana Valle
- SSD "Popolazione a rischio," Health Prevention Department, Local Health Unit ASL3 Genovese, Genoa, Italy
| | - Roberto Gasparini
- Department of Health Sciences (DISSAL), Via Antonio Pastore 1, University of Genoa, Genoa, Italy.
| |
Collapse
|
23
|
Lin Y, Zhou Q, Lin Y, Tang D, Niessner R, Knopp D. Enzymatic Hydrolysate-Induced Displacement Reaction with Multifunctional Silica Beads Doped with Horseradish Peroxidase–Thionine Conjugate for Ultrasensitive Electrochemical Immunoassay. Anal Chem 2015; 87:8531-40. [DOI: 10.1021/acs.analchem.5b02253] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Youxiu Lin
- Key
Laboratory of Analysis and Detection for Food Safety (Ministry of
Education and Fujian Province), Institute of Nanomedicine and Nanobiosensing,
Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Qian Zhou
- Key
Laboratory of Analysis and Detection for Food Safety (Ministry of
Education and Fujian Province), Institute of Nanomedicine and Nanobiosensing,
Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Yuping Lin
- Key
Laboratory of Analysis and Detection for Food Safety (Ministry of
Education and Fujian Province), Institute of Nanomedicine and Nanobiosensing,
Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key
Laboratory of Analysis and Detection for Food Safety (Ministry of
Education and Fujian Province), Institute of Nanomedicine and Nanobiosensing,
Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Reinhard Niessner
- Chair
for Analytical Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München, Germany
| | - Dietmar Knopp
- Chair
for Analytical Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München, Germany
| |
Collapse
|