1
|
Rudnicki K, Powałka E, Marciniak K, Poltorak L. Ready-to-use polymeric films used as the electrified liquid-liquid interface supports. Talanta 2025; 285:127256. [PMID: 39616752 DOI: 10.1016/j.talanta.2024.127256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/23/2025]
Abstract
In this work, we have tested two commercially available polymeric films: one with natural porosity (polyvinylidene difluoride - PVDF) and the other modified to include micropores (ethylene-vinyl acetate - EVA) created through needle puncturing. Subsequently, these films were successfully employed for the miniaturization of the electrified liquid-liquid interface formed between water and 1,2-dichloroethane solutions. The geometry of the membranes was assessed with confocal microscopy, the aqueous phase wettability was evaluated with a drop-shape analyzer whereas their ability to support the electrified liquid-liquid interfaces was followed with ion transfer voltammetry. Finally, the resulting platforms were applied to the electroanalytical detection of 2-phenylethylamine.
Collapse
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland.
| | - Emilia Powałka
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Karolina Marciniak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| | - Lukasz Poltorak
- University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interfaces Team, Tamka 12, Lodz 91-403, Poland
| |
Collapse
|
2
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
3
|
Shanmugavel A, Rene ER, Balakrishnan SP, Krishnakumar N, Jose SP. Heavy metal ion sensing strategies using fluorophores for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 260:119544. [PMID: 38969312 DOI: 10.1016/j.envres.2024.119544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The main aim of this review is to provide a holistic summary of the latest advances within the research area focusing on the detection of heavy metal ion pollution, particularly the sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as good specificity, reversibility, and sensitivity. Further, this review also explores the advantages of various nanomaterials employed in sensing heavy metal ions. In this regard, exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems, and to identify the fate of heavy metal ions in the natural environment.
Collapse
Affiliation(s)
- Abinaya Shanmugavel
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands
| | | | | | - Sujin P Jose
- School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
4
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
5
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
6
|
Efficient detection of glucose by graphene-based non-enzymatic sensing material based on carbon dot. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Chen R, Xu K, Shen M. Avocado oil, coconut oil, walnut oil as true oil phase for ion transfer at nanoscale liquid/liquid interfaces. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Suárez-Herrera MF, Scanlon MD. Quantitative Analysis of Redox-Inactive Ions by AC Voltammetry at a Polarized Interface between Two Immiscible Electrolyte Solutions. Anal Chem 2020; 92:10521-10530. [PMID: 32608226 DOI: 10.1021/acs.analchem.0c01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interface between two immiscible electrolyte solutions (ITIES) is ideally suited to detect redox-inactive ions by their ion transfer. Such electroanalysis, based on the Nernst-Donnan equation, has been predominantly performed using amperometry, cyclic voltammetry, or differential pulse voltammetry. Here, we introduce a new electroanalytical method based on alternating-current (AC) voltammetry with inherent advantages over traditional approaches such as avoidance of positive feedback iR compensation, a major issue for liquid|liquid electrochemical cells containing resistive organic media and interfacial areas in the cm2 and mm2 range. A theoretical background outlining the generation of the analytical signal is provided and based on extracting the component that depends on the Warburg impedance from the total impedance. The quantitative detection of a series of model redox-inactive tetraalkylammonium cations is demonstrated, with evidence provided of the transient adsorption of these cations at the interface during the course of ion transfer. Since ion transfer is diffusion-limited, by changing the voltage excitation frequency during AC voltammetry, the intensity of the Faradaic response can be enhanced at low frequencies (1 Hz) or made to disappear completely at higher frequencies (99 Hz). The latter produces an AC voltammogram equivalent to a "blank" measurement in the absence of analyte and is ideal for background subtraction. Therefore, major opportunities exist for the sensitive detection of ionic analyte when a "blank" measurement in the absence of analyte is impossible. This approach is particularly useful to deconvolute signals related to reversible electrochemical reactions from those due to irreversible processes, which do not give AC signals.
Collapse
Affiliation(s)
- Marco F Suárez-Herrera
- Departamento De Química, Facultad De Ciencias, Universidad Nacional De Colombia, Cra 30 # 45-03, Edificio 451, Bogotá, Colombia
| | - Micheál D Scanlon
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| |
Collapse
|
10
|
Laborda E, Olmos J, Serna C, Millán-Barrios E, Molina A. Unravelling the effects of non-target ions in two polarizable interface systems: A general analytical theory. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Holzinger A, Neusser G, Austen BJJ, Gamero-Quijano A, Herzog G, Arrigan DWM, Ziegler A, Walther P, Kranz C. Investigation of modified nanopore arrays using FIB/SEM tomography. Faraday Discuss 2018; 210:113-130. [DOI: 10.1039/c8fd00019k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FIB/SEM tomography and energy dispersive X-ray (EDX) spectroscopy are employed to study the interface between two immiscible electrolyte solutions at nanopore arrays, which were electrochemically modified by silica.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Benjamin J. J. Austen
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Alonso Gamero-Quijano
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Damien W. M. Arrigan
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Andreas Ziegler
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Paul Walther
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
12
|
Xie L, Huang X, Lin X, Su B. Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Stockmann TJ, Guterman R, Ragogna PJ, Ding Z. Trends in Hydrophilicity/Lipophilicity of Phosphonium Ionic Liquids As Determined by Ion-Transfer Electrochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12966-12974. [PMID: 27951694 DOI: 10.1021/acs.langmuir.6b03031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) have become valuable new materials for a broad spectrum of applications including additives or components for new hydrophobic/hydrophilic polymer coatings. However, fundamental information surrounding IL molecular properties is still lacking. With this in mind, the microinterface between two immiscible electrolytic solutions (micro-ITIES), for example, water|1,2-dichloroethane, has been used to evaluate the hydrophobicity/lipophilicity of 10 alkylphosphonium ILs. By varying the architecture around the phosphonium core, chemical differences were induced, changing the lipophilicity/hydrophilicity of the cations. Ion transfer (IT) within the polarizable potential window (PPW) was measured to establish a structure-property relationship. The Gibbs free energy of IT and the solubility of their ILs were also calculated. For phosphonium cations bearing either three butyl or three hydroxypropyl groups with a tunable fourth arm, the latter displayed a wide variety of easily characterizable IT potentials. The tributylphosphonium ILs, however, were too hydrophobic to undergo IT within the PPW. Utilizing a micro-ITIES (25 μm diameter) housed at the tip of a capillary in a uniquely designed pipet holder, we were able to probe beyond the traditional potential window and observe ion transfer of these hydrophobic phosphonium ILs for the first time. A similar trend in lipophilicity was determined between the two subsets of ILs by means of derived solubility product constants. The above results serve as evidence of the validation of this technique for the evaluation of hydrophobic cations that appear beyond the conventional PPW and of the lipophilicity of their ILs.
Collapse
Affiliation(s)
- T Jane Stockmann
- Sorbonne Paris Cité, Paris Diderot University, Interfaces, Traitements, Organisation et Dynamique des Systèmes , CNRS-UMR 7086, 15 rue J.A. Baïf, 75013 Paris, France
- Center for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario , Chemistry Building, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Ryan Guterman
- Center for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario , Chemistry Building, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- Max Planck Institute for Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paul J Ragogna
- Center for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario , Chemistry Building, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Center for Advanced Materials and Biomaterials Research (CAMBR), Department of Chemistry, The University of Western Ontario , Chemistry Building, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Huang X, Xie L, Lin X, Su B. Detection of Metoprolol in Human Biofluids and Pharmaceuticals via Ion-Transfer Voltammetry at the Nanoscopic Liquid/Liquid Interface Array. Anal Chem 2016; 89:945-951. [PMID: 27958719 DOI: 10.1021/acs.analchem.6b04099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metoprolol (MTP) is one of the most widely used antihypertensive drugs yet banned to use in sport competition. Therefore, there has been an increasing demand for developing simple, rapid, and sensitive methods suited to the identification and quantification of MTP in human biofluids. In this work, ultrathin silica nanochannel membrane (SNM) with perforated channels was employed to support nanoscale liquid/liquid interface (nano-ITIES) array for investigation of the ion-transfer voltammetric behavior of MTP and for its detection in multiple human biofluids and pharmaceutical formulation. Several potential interfering substances, including small molecules, d-glucose, urea, ascorbic acid, glycine, magnesium chloride, sodium sulfate and large molecules, bovine serum albumin (BSA), were chosen as models of biological interferences to examine their influence on the ion-transfer current signal of MTP. The results confirmed that the steady-state current wave barely changed in the presence of small molecules. Although BSA displayed an apparent blockade on the transfer of MTP, the accurate determination of MTP in multiple human biofluids (i.e., urine, serum and whole blood) and pharmaceutical formulation were still feasible, thanks to the molecular sieving and antifouling abilities of SNM. A limit of detection (LOD) within the physiological level of MTP during therapy could be achieved for all cases, i.e., 0.5 and 1.1 μM for 100 times diluted urine and serum, respectively, and 2.2 μM for 1000 times diluted blood samples. These results demonstrated that the nano-ITIES array behaved as a simplified and integrated detection platform for ionizable drug analysis in complex media.
Collapse
Affiliation(s)
- Xiao Huang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Lisiqi Xie
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Xingyu Lin
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University , Hangzhou 310058, China
| |
Collapse
|
15
|
Liu Y, Holzinger A, Knittel P, Poltorak L, Gamero-Quijano A, Rickard WDA, Walcarius A, Herzog G, Kranz C, Arrigan DWM. Visualization of Diffusion within Nanoarrays. Anal Chem 2016; 88:6689-95. [DOI: 10.1021/acs.analchem.6b00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Angelika Holzinger
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Peter Knittel
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Lukasz Poltorak
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Alonso Gamero-Quijano
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | | | - Alain Walcarius
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Grégoire Herzog
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | | |
Collapse
|
16
|
Arrigan DWM, Liu Y. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:145-161. [PMID: 27049634 DOI: 10.1146/annurev-anchem-071015-041415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.
Collapse
Affiliation(s)
- Damien W M Arrigan
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| | - Yang Liu
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| |
Collapse
|
17
|
Huang X, Xie L, Lin X, Su B. Permselective Ion Transport Across the Nanoscopic Liquid/Liquid Interface Array. Anal Chem 2016; 88:6563-9. [DOI: 10.1021/acs.analchem.6b01383] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiao Huang
- Institute of Analytical
Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lisiqi Xie
- Institute of Analytical
Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xingyu Lin
- Institute of Analytical
Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical
Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Arrigan DWM, Alvarez de Eulate E, Liu Y. Electroanalytical Opportunities Derived from Ion Transfer at Interfaces between Immiscible Electrolyte Solutions. Aust J Chem 2016. [DOI: 10.1071/ch15796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review presents an introduction to electrochemistry at interfaces between immiscible electrolyte solutions and surveys recent studies of this form of electrochemistry in electroanalytical strategies. Simple ion and facilitated ion transfers across interfaces varying from millimetre scale to nanometre scales are considered. Target detection strategies for a range of ions, inorganic, organic, and biological, including macromolecules, are discussed.
Collapse
|
19
|
Goh E, Lee HJ. Applications of Electrochemistry at Liquid/Liquid Interfaces for Ionizable Drug Molecule Sensing. ACTA ACUST UNITED AC 2016. [DOI: 10.5189/revpolarography.62.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eunseo Goh
- Department of Chemistry and Green-NanoMaterials Research Center, Kyungpook National University
| | - Hye Jin Lee
- Department of Chemistry and Green-NanoMaterials Research Center, Kyungpook National University
| |
Collapse
|
20
|
Local pH changes triggered by photoelectrochemistry for silica condensation at the liquid-liquid interface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
|
22
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
23
|
Gu J, Zhao W, Chen Y, Zhang X, Xie X, Liu S, Wu X, Zhu Z, Li M, Shao Y. Study of Ion Transfer Coupling with Electron Transfer by Hydrophilic Droplet Electrodes. Anal Chem 2015; 87:11819-25. [DOI: 10.1021/acs.analchem.5b03280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Gu
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenbo Zhao
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Chen
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Zhang
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Xie
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shujuan Liu
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Wu
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory
for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Liu Y, Sairi M, Neusser G, Kranz C, Arrigan DWM. Achievement of Diffusional Independence at Nanoscale Liquid–Liquid Interfaces within Arrays. Anal Chem 2015; 87:5486-90. [DOI: 10.1021/acs.analchem.5b01162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Liu
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Masniza Sairi
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
- Mechanisation
and Automation Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), P.O. Box 12301, 50774 Kuala Lumpur, Malaysia
| | - Gregor Neusser
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Damien W. M. Arrigan
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
25
|
Herzog G. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 2015; 140:3888-96. [DOI: 10.1039/c5an00601e] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The most recent developments on electrochemical sensing of ions at the liquid–liquid interface are reviewed here.
Collapse
Affiliation(s)
- Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME)
- UMR 7564
- CNRS – Université de Lorraine
- Villers-lès-Nancy
- France
| |
Collapse
|