1
|
Geng Y, Zhao H, Yan Y, Fang Z, Wang J. Fabrication of disk ultramicroelectrode using nanoskiving method. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:113709. [PMID: 39601652 DOI: 10.1063/5.0228902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 11/29/2024]
Abstract
The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.
Collapse
Affiliation(s)
- Yanquan Geng
- State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150001, China
| | - Hainan Zhao
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yongda Yan
- State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150001, China
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuo Fang
- Center for Precision Engineering, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiqiang Wang
- State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Cain D, Cao E, Vlassiouk I, Schäffer TE, Siwy ZS. Ion concentration polarization causes a nearly pore-length-independent conductance of nanopores. Faraday Discuss 2024. [PMID: 39440602 DOI: 10.1039/d4fd00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
There has been a great amount of interest in nanopores as the basis for sensors and templates for preparation of biomimetic channels as well as model systems to understand transport properties at the nanoscale. The presence of surface charges on the pore walls has been shown to induce ion selectivity as well as enhance ionic conductance compared to uncharged pores. Here, using three-dimensional continuum modeling, we examine the role of the length of charged nanopores as well as applied voltage for controlling ion selectivity and ionic conductance of single nanopores and small nanopore arrays. First, we present conditions where the ion current and ion selectivity of nanopores with homogeneous surface charges remain unchanged, even if the pore length decreases by a factor of 6. This length-independent conductance is explained through the effect of ion concentration polarization (ICP), which modifies local ionic concentrations, not only at the pore entrances but also in the pore in a voltage-dependent manner. We describe how voltage controls the ion selectivity of nanopores with different lengths and present the conditions when charged nanopores conduct less current than uncharged pores of the same geometrical characteristics. The manuscript provides different measures of the extent of the depletion zone induced by ICP in single pores and nanopore arrays, including systems with ionic diodes. The modeling shown here will help design selective nanopores for a variety of applications where single nanopores and nanopore arrays are used.
Collapse
Affiliation(s)
- DaVante Cain
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| | - Ethan Cao
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| | - Ivan Vlassiouk
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, 37831, TN, USA
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, 92697, California, USA.
| |
Collapse
|
3
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
4
|
Heroin detection in a droplet hosted in a 3D printed support at the miniaturized electrified liquid-liquid interface. Sci Rep 2022; 12:18615. [PMID: 36329050 PMCID: PMC9633610 DOI: 10.1038/s41598-022-21689-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Simple sensing protocols for the detection of illicit drugs are needed. Electrochemical sensing is especially attractive in this respect, as its cost together with the analytical accuracy aspires to replace still frequently used colorimetric tests. In this work, we have shown that the interfacial transfer of protonated heroin can be followed at the electrified water-1,2-dichloroethane interface. We have comprehensively studied the interfacial behavior of heroin alone and in the presence of its major and abundant cutting agents, caffeine and paracetamol. To maximally increase developed sensing protocol applicability we have designed and 3D printed a platform requiring only a few microliters of the aqueous and the organic phase. The proposed sensing platform was equipped with a cavity hosting a short section of Ag/AgCl electrode, up to 20 µL of the aqueous phase and the end of the micropipette tip being used as a casing of a fused silica capillary having 25 µm as the internal pore diameter. The volume of the organic phase was equal to around 5 µL and was present inside the micropipette tip. We have shown that under optimized conditions heroin can be detected in the presence of caffeine and paracetamol existing in a sample with 10,000 times excess over the analyte of interest. The calculated limit of detection equal to 1.3 µM, linear dynamic range spanning to at least 50 µM, good reproducibility, and very low volume of needed sample is fully in line with forensic demands.
Collapse
|
5
|
Ion-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Lucas RA, Siwy ZS. Tunable Nanopore Arrays as the Basis for Ionic Circuits. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56622-56631. [PMID: 33283510 DOI: 10.1021/acsami.0c18574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been considerable interest in preparing ionic circuits capable of manipulating ionic and molecular transport in a solution. This direction of research is inspired by biological systems where multiple pores with different functionalities embedded in a cell membrane transmit external signals and underlie all physiological processes. In this manuscript, we describe the modeling of ion transport through small arrays of nanopores consisting of 3, 6, and 9 nanopores and an integrated gate electrode placed on the membrane surface next to one pore opening. We show that by tuning the gate voltage and strategically placing nanopores with nonlinear current-voltage characteristics, the local signal at the gate affects ionic transport through all nanopores in the array. Conditions were identified when the same gate voltage induced opposite rectification properties of neighboring nanopores. We also demonstrate that an ionic diode embedded in a nanopore array can modulate transport properties of neighboring pores even without a gate voltage. The results are explained by the role of concentration polarization and overlapping depletion zones on one side of the membrane. The modeling presented here is intended to become an inspiration to future experiments to create nanopore arrays that can transduce signals in space and time.
Collapse
Affiliation(s)
- Rachel A Lucas
- Department of Physics and Astronomy, University of California, 210G Rowland Hall, Irvine, California 92697, United States
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, 210G Rowland Hall, Irvine, California 92697, United States
| |
Collapse
|
7
|
Viada BN, Yudi LM, Arrigan DWM. Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. Analyst 2020; 145:5776-5786. [PMID: 32672287 DOI: 10.1039/d0an00884b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a category of persistent environmental contaminants that have been linked to health issues in humans. In this work, we investigate the detection of perfluorooctanesulfonate (PFOS-), one such PFAS, by ion-transfer voltammetry at an array of microinterfaces between two immiscible electrolyte solutions (μITIES). Cyclic voltammetry, differential pulse voltammetry and differential pulse stripping voltammetry (DPSV) indicated the ion-transfer behaviour and detection of PFOS-, with the latter enabling detection at picomolar concentrations. Using a 5 min preconcentration time, during which PFOS- was preconcentrated into the organic phase of the μITIES array, a limit of detection (LOD) of 0.03 nM (0.015 μg L-1) in aqueous electrolyte was achieved. This performance is attributed to the enhanced mass transport (radial diffusion) to the μITIES that occurs during preconcentration. To investigate the potentiality for applications of this analytical approach to environmental samples, measurements in a range of water matrices were investigated. Drinking water, laboratory tap water and seawater matrices were assessed by spiking with PFOS- over the 0.1-1 nM range. A matrix effect was observed, with changes in sensitivity and LOD relative to those in pure aqueous electrolyte solutions. Such matrix effects need to be considered in designing applications of these PFOS- measurements to environmental samples. The results presented here indicate that DPSV at a μITIES array can form the basis for a fast and sensitive screening method for PFOS- contamination that is suited to portable and on-site applications.
Collapse
Affiliation(s)
- Benjamín N Viada
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | | | | |
Collapse
|
8
|
A gold coated polystyrene ring microarray formed by two-step patterning: construction of an advanced microelectrode for voltammetric sensing. Mikrochim Acta 2019; 186:349. [PMID: 31093739 DOI: 10.1007/s00604-019-3461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
A two-step patterning process was developed based on nanosphere lithography and plasma etching to fabricate an array of electrodes with two different gold ring structures: the arrays of Au micro-ring electrode (Au-MRE) and Au covered with polystyrene micro-ring electrode (Au-PS-MRE). The Au-MRE structure was fabricated by etching a monolayer of polystyrene (PS) spheres on indium tin oxide (ITO) surface to generate PS rings on ITO glass. PS rings served as a mask in secondary etching for blocking an interaction of oxygen plasma and ITO surface to create a ring-patterned ITO surface. Then, the PS residue was removed and gold was deposited. The site-selective electrodeposition of gold was carried out and an array of a gold ring structure was formed on the ITO glass. The Au-PS-MRE structure was fabricated by keeping the PS residue from second etching before deposition of gold. The Au-PS-MRE microelectrode was studied by using hexacyanoferrate as an electrochemical probe where it displayed steady state current in cyclic voltammetry. The respective calibration plots were acquired at a working potential of 0.31 V and 0.12 V (vs. Ag/AgCl) for oxidation and reduction reaction, respectively. The sensitivity is as high as 163.4-220.7 μA·mM-1·mm-2 which is larger by a factor of 95-132 compared to a conventional gold film macroelectrode. The detection limit (at a signal-to-noise ratio of 3) is 2.2 μM. This approach thus yields relatively effective and low-cost fabrication without resorting to high resolution instruments. Conceivably, the technique may be used to produce microelectrode arrays on a large scale. Graphical abstract Schematic presentation of a novel fabrication process of micro-ring electrode arrays. Two-step patterning based on nanosphere lithography leads to electrodes with great electrochemical performance. Direct deposition metal in the presence of polystyrene (PS) mask induces the formation of a new structure with arrays of gold covered with PS microring on the indium tin oxide (ITO) coated glass. The microelectrode-like behavior has been achieved using this fabrication process.
Collapse
|
9
|
Rudnicki K, Poltorak L, Skrzypek S, Sudhölter EJR. Fused Silica Microcapillaries Used for a Simple Miniaturization of the Electrified Liquid-Liquid Interface. Anal Chem 2018; 90:7112-7116. [PMID: 29781599 PMCID: PMC6011180 DOI: 10.1021/acs.analchem.8b01351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Short
pieces of fused silica capillary tubing were used to support
an electrified liquid–liquid interface. A methyl deactivated
silica capillary having a diameter of 25 μm was filled with
1,2-dichloroethane solution and served as the organic part of the
liquid–liquid interface. A nondeactivated fused silica capillary
having a diameter of 5, 10, or 25 μm was filled with an aqueous
HCl solution and served as the aqueous part of the electrochemical
cell. For the latter, silanization of the capillary interior with
chlorotrimethylsilane allowed for a successful phase reversal. All
capillaries were characterized by ion transfer voltammetry using tetramethylammonium
cation as a model ion. This simple, fast, and low-cost miniaturization
technique was successfully applied for detection of the antibiotic
ofloxacin.
Collapse
Affiliation(s)
- Konrad Rudnicki
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Lodz , Poland
| | - Lukasz Poltorak
- Delft University of Technology , Department of Chemical Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Sławomira Skrzypek
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry , University of Lodz , Tamka 12 , 91-403 Lodz , Poland
| | - Ernst J R Sudhölter
- Delft University of Technology , Department of Chemical Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| |
Collapse
|
10
|
Holzinger A, Neusser G, Austen BJJ, Gamero-Quijano A, Herzog G, Arrigan DWM, Ziegler A, Walther P, Kranz C. Investigation of modified nanopore arrays using FIB/SEM tomography. Faraday Discuss 2018; 210:113-130. [DOI: 10.1039/c8fd00019k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FIB/SEM tomography and energy dispersive X-ray (EDX) spectroscopy are employed to study the interface between two immiscible electrolyte solutions at nanopore arrays, which were electrochemically modified by silica.
Collapse
Affiliation(s)
- Angelika Holzinger
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Gregor Neusser
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Benjamin J. J. Austen
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Alonso Gamero-Quijano
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l’Environment (LCPME)
- UMR 7564
- CNRS-Université de Lorraine
- 54600 Villers-les-Nancy
- France
| | - Damien W. M. Arrigan
- Curtin Institute for Functional Molecules and Interfaces
- Curtin University
- Perth
- Australia
| | - Andreas Ziegler
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Paul Walther
- Zentrale Einrichtung Elektronenmikroskopie
- Ulm University
- 89081 Ulm
- Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
11
|
Xie L, Huang X, Su B. Portable Sensor for the Detection of Choline and Its Derivatives Based on Silica Isoporous Membrane and Gellified Nanointerfaces. ACS Sens 2017; 2:803-809. [PMID: 28723110 DOI: 10.1021/acssensors.7b00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A portable amperometric ion sensor was fabricated by integrating silica isoporous membrane (SIM) and organogel composed of polyvinyl chloride and 1,2-dichloroethane (PVC-DCE) on a 3D-printed polymer chip. The detection of ionic species in aqueous samples could be accomplished by adding a microliter of sample droplet to the sensor and by identifying the ion-transfer potential and current magnitude at the water/organogel interface array templated by SIM. Thanks to the ultrasmall channel size (2-3 nm in diameter), high channel density (4 × 108 μm-2), and ultrathin thickness (80 nm) of SIM, the ensemble of nanoscopic water/organogel (nano-W/Gel) interface array behaved like a microinterface with two back-to-back hemispherical mass diffusion zones. So, the heterogeneous ion-transfer across the nano-W/Gel interface array generated a steady-state sigmoidal current wave. The detection of choline (Ch) and its derivatives, including acetylcholine (ACh), benzoylcholine (BCh), and atropine (AP), in aqueous samples was examined with this portable sensor. Using differential pulse stripping voltammetry (DPSV), the quantification of these analytes was achieved with a limit of detection (LOD) down to 1 μM. Moreover, the portable ion sensor was insensitive to various potential interferents that might coexist in vivo, owing to size-/charge-based selectivity and antifouling capacity of SIM. With this priority, the portable ion sensor was able to quantitatively determine Ch and its derivatives in diluted urine and blood samples. The LODs for Ch, ACh, AP, and BCh in urine were 1.12, 1.30, 1.08, and 0.99 μM, and those for blood samples were 3.61, 3.38, 2.32, and 1.81 μM, respectively.
Collapse
Affiliation(s)
- Lisiqi Xie
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiao Huang
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Institute of Analytical Chemistry,
Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Atighilorestani M, Brolo AG. Comparing the Electrochemical Response of Nanostructured Electrode Arrays. Anal Chem 2017; 89:6129-6135. [DOI: 10.1021/acs.analchem.7b00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mahdieh Atighilorestani
- Department of Chemistry, University of Victoria, P.O. Box 1700,
STN CSC, Victoria BC V8W
2Y2, Canada
| | - Alexandre G. Brolo
- Department of Chemistry, University of Victoria, P.O. Box 1700,
STN CSC, Victoria BC V8W
2Y2, Canada
| |
Collapse
|
13
|
Xie L, Huang X, Lin X, Su B. Nanoscopic liquid/liquid interface arrays supported by silica isoporous membranes: Trans-membrane resistance and ion transfer reactions. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Hussain G, Silvester DS. Detection of sub-ppm Concentrations of Ammonia in an Ionic Liquid: Enhanced Current Density Using “Filled” Recessed Microarrays. Anal Chem 2016; 88:12453-12460. [DOI: 10.1021/acs.analchem.6b03824] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ghulam Hussain
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPOBox U1987, Perth, Western
Australia 6845, Australia
| | - Debbie S. Silvester
- Nanochemistry Research Institute,
Department of Chemistry, Curtin University, GPOBox U1987, Perth, Western
Australia 6845, Australia
| |
Collapse
|
15
|
Zhang Y, Zhou Q, Zhao W, Chu W, Zheng J. Array of recessed gold nanoelectrodes formed with polymethylmethacrylate for individual detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Yan L, Zhang K, Xu H, Ji J, Wang Y, Liu B, Yang P. Target induced interfacial self-assembly of nanoparticles: A new platform for reproducible quantification of copper ions. Talanta 2016; 158:254-261. [DOI: 10.1016/j.talanta.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/24/2022]
|
17
|
Liu Y, Holzinger A, Knittel P, Poltorak L, Gamero-Quijano A, Rickard WDA, Walcarius A, Herzog G, Kranz C, Arrigan DWM. Visualization of Diffusion within Nanoarrays. Anal Chem 2016; 88:6689-95. [DOI: 10.1021/acs.analchem.6b00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Angelika Holzinger
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Peter Knittel
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Lukasz Poltorak
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Alonso Gamero-Quijano
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | | | - Alain Walcarius
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Grégoire Herzog
- Laboratoire
de Chimie Physique et Microbiologie pour l’Environnement (LCPME),
UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54600 Villers-les-Nancy, France
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | | |
Collapse
|
18
|
Arrigan DWM, Liu Y. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:145-161. [PMID: 27049634 DOI: 10.1146/annurev-anchem-071015-041415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.
Collapse
Affiliation(s)
- Damien W M Arrigan
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| | - Yang Liu
- Nanochemistry Research Institute and Department of Chemistry, Curtin University, Perth, Western Australia 6845, Australia;
| |
Collapse
|
19
|
Alvarez de Eulate E, Strutwolf J, Liu Y, O’Donnell K, Arrigan DWM. An Electrochemical Sensing Platform Based on Liquid–Liquid Microinterface Arrays Formed in Laser-Ablated Glass Membranes. Anal Chem 2016; 88:2596-604. [DOI: 10.1021/acs.analchem.5b03091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eva Alvarez de Eulate
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Jörg Strutwolf
- Department
of Chemistry, Institute of Organic Chemistry, University of Tübingen, 72074 Tübingen, Germany
| | - Yang Liu
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Kane O’Donnell
- Department
of Physics, Astronomy and Medical Radiation Science, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Damien W. M. Arrigan
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
20
|
Zhang Z, Kong XY, Xiao K, Xie G, Liu Q, Tian Y, Zhang H, Ma J, Wen L, Jiang L. A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:144-150. [PMID: 26551055 DOI: 10.1002/adma.201503668] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/27/2015] [Indexed: 06/05/2023]
Abstract
A bioinspired multifunctional heterogeneous membrane composed of a block copolymer (PS-b-P4VP) membrane and a porous anodic alumina membrane is fabricated. The ionic rectification is so strong that the maximum ratio is ≈489, and the chemical actuation of the anion or cation gate from the "OFF" to the "ON" state promotes a 98.5% increase in the channel conductance.
Collapse
Affiliation(s)
- Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qian Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huacheng Zhang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Ma
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
21
|
|
22
|
Affiliation(s)
- Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|