1
|
Cheng Q, Dickwella Widanage MC, Yarava JR, Ankur A, Latgé JP, Wang P, Wang T. Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR. Nat Commun 2024; 15:8295. [PMID: 39333566 PMCID: PMC11437000 DOI: 10.1038/s41467-024-52759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Zygomycetous fungal infections pose an emerging medical threat among individuals with compromised immunity and metabolic abnormalities. Our pathophysiological understanding of these infections, particularly the role of fungal cell walls in growth and immune response, remains limited. Here we conducted multidimensional solid-state NMR analysis to examine cell walls in five Mucorales species, including key mucormycosis causative agents like Rhizopus and Mucor species. We show that the rigid core of the cell wall primarily comprises highly polymorphic chitin and chitosan, with minimal quantities of β-glucans linked to a specific chitin subtype. Chitosan emerges as a pivotal molecule preserving hydration and dynamics. Some proteins are entrapped within this semi-crystalline chitin/chitosan layer, stabilized by the sidechains of hydrophobic amino acid residues, and situated distantly from β-glucans. The mobile domain contains galactan- and mannan-based polysaccharides, along with polymeric α-fucoses. Treatment with the chitin synthase inhibitor nikkomycin removes the β-glucan-chitin/chitosan complex, leaving the other chitin and chitosan allomorphs untouched while simultaneously thickening and rigidifying the cell wall. These findings shed light on the organization of Mucorales cell walls and emphasize the necessity for a deeper understanding of the diverse families of chitin synthases and deacetylases as potential targets for novel antifungal therapies.
Collapse
Affiliation(s)
- Qinghui Cheng
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | | | - Ankur Ankur
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
| | - Ping Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Yu Y, Song Y, Zhao Y, Wang N, Wei B, Linhardt RJ, Dordick JS, Zhang F, Wang H. Quality control, safety assessment and preparation approaches of low molecular weight heparin. Carbohydr Polym 2024; 339:122216. [PMID: 38823901 DOI: 10.1016/j.carbpol.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.
Collapse
Affiliation(s)
- Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yue Song
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yunjie Zhao
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Ningning Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China.
| |
Collapse
|
3
|
Limbach MN, Do TD. Solvent-Free Nuclear Magnetic Resonance Spectroscopy of Charged Molecules. J Phys Chem A 2023; 127:9149-9157. [PMID: 37861438 DOI: 10.1021/acs.jpca.3c05241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy of small molecules protonated in a solvent-free environment was successfully demonstrated. The method is referred to as solvent-free protonation NMR (SoF-NMR). Leveraging matrix-assisted ionization (MAI), we generated protonated species of aniline, 4-chloroaniline, 4-aminobiphenyl, and benzocaine for NMR analysis under mild pressure and temperature conditions. The SoF-NMR spectra were compared to traditional solution NMR spectra, and the shift changes in nuclear spin resonance frequencies verify that these small molecules are protonated by 3-nitrobenzonitrile (3-NBN). As the sample pressure decreased, new spectral features appeared, indicating the presence of differently charged species. Several advantages of SoF-NMR are highlighted, such as the elimination of H/D exchange in labile protons, resulting in the precise observation of protons that are otherwise transient in solution. Notably, the data on benzocaine show evidence of neutral, N-protonated, and O-protonated species all in the same spectrum. SoF-NMR eliminates the solvent effects and interactions that can hinder important spectral features. Optimizing SoF-NMR will result in more cost-effective and efficient NMR experimentation to monitor high-temperature, solvent-free reactions. SoF-NMR has a viable future application for studying exchangeable protons, intermediates, and products in gas-phase chemistry.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
L'Exact M, Comeau C, Bourhis A, Boisvert O, Fröhlich U, Létourneau D, Marsault É, Lavigne P, Grandbois M, Boudreault PL. Beyond Rule-of-five: Permeability Assessment of Semipeptidic Macrocycles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184196. [PMID: 37400050 DOI: 10.1016/j.bbamem.2023.184196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.
Collapse
Affiliation(s)
- Marion L'Exact
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Comeau
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alix Bourhis
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Boisvert
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ulrike Fröhlich
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Danny Létourneau
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Zhai Z, Zhou Y, Korovich AG, Hall BA, Yoon HY, Yao Y, Zhang J, Bortner MJ, Roman M, Madsen LA, Edgar KJ. Synthesis and Characterization of Multi-Reducing-End Polysaccharides. Biomacromolecules 2023. [PMID: 37262428 DOI: 10.1021/acs.biomac.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew G Korovich
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A Hall
- GlycoMIP, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hu Young Yoon
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yimin Yao
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junchen Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A Madsen
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Rojas DMS, Maggio RM, Kaufman TS. A nuclear magnetic resonance-based study of the behavior of the tautomers of triclabendazole in DMSO-d6, in the presence of water. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Phosphate buffer-catalyzed kinetics of mutarotation of glucosamine investigated by NMR spectroscopy. Carbohydr Res 2022; 517:108581. [DOI: 10.1016/j.carres.2022.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
|
9
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
10
|
Lima LMTR, Araújo TS, Almeida MDS. Unambiguous characterization of
PEGylation
site on human amylin by two‐dimensional nuclear magnetic resonance spectroscopy. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luís Maurício T. R. Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Laboratório de Macromoléculas (LAMAC/DIMAV) Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) Duque de Caxias RJ Brazil
| | - Talita Stelling Araújo
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcius da Silva Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
11
|
Unexpected counterion exchange influencing fundamental characteristics of quaternary ammonium chitosan salt. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Jain P, Shanthamurthy CD, Leviatan Ben-Arye S, Yehuda S, Nandikol SS, Thulasiram HV, Padler-Karavani V, Kikkeri R. Synthetic heparan sulfate ligands for vascular endothelial growth factor to modulate angiogenesis. Chem Commun (Camb) 2021; 57:3516-3519. [PMID: 33704312 DOI: 10.1039/d1cc00964h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the discovery of a potential heparan sulfate (HS) ligand to target several growth factors using 13 unique HS tetrasaccharide ligands. By employing an HS microarray and SPR, we deciphered the crucial structure-binding relationship of these glycans with the growth factors BMP2, VEGF165, HB-EGF, and FGF2. Notably, GlcNHAc(6-O-SO3-)-IdoA(2-O-SO3-) (HT-2,6S-NAc) tetrasaccharide showed strong binding with the VEGF165 growth factor. In vitro vascular endothelial cell proliferation, migration and angiogenesis was inhibited in the presence of VEGF165 and HT-2,6S-NAc or HT-6S-NAc, revealing the potential therapeutic role of these synthetic HS ligands.
Collapse
Affiliation(s)
- Prashant Jain
- Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune-411008, India.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rivlin M, Navon G. Molecular imaging of cancer by glucosamine chemical exchange saturation transfer MRI: A preclinical study. NMR IN BIOMEDICINE 2021; 34:e4431. [PMID: 33103831 DOI: 10.1002/nbm.4431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Glucosamine (GlcN) was recently proposed as an agent with an excellent safety profile to detect cancer with the chemical exchange saturation transfer (CEST) MRI technique. Translation of the GlcN CEST method to the clinical application requires evaluation of its sensitivity to the different frequency regions of irradiation. Hence, imaging of the GlcN signal was established for the full Z spectra recorded following GlcN administration to mice bearing implanted 4T1 breast tumors. Significant CEST effects were observed at around 1.5, 3.6 and -3.4 ppm, corresponding to the hydroxyl, amine/amide exchangeable protons and for the Nuclear Overhauser Enhancement (NOE), respectively. The sources of the observed CEST effects were investigated by identifying the GlcN metabolic products as observed by 13 C NMR spectroscopy studies of extracts from the same tumor model following treatment with [UL-13 C] -GlcN·HCl. The CEST contribution can be attributed to several phosphorylated products of GlcN, including uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), which is a substrate for the O-linked and N-linked glycosylated proteins that may be associated with the increase of the NOE signal. The observation of a significant amount of lactate among the metabolic products hints at acidification as one of the sources of the enhanced CEST effect of GlcN. The proposed method may offer a new approach for clinical molecular imaging that enables the detection of metabolically active tumors and may play a role in other diseases.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Kitayama Y, Isomura M. Molecularly imprinted polymer particles with gas-stimuli responsive affinity toward target proteins prepared using switchable functional monomer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Kadela-Tomanek M, Jastrzębska M, Chrobak E, Bębenek E, Latocha M, Kusz J, Boryczka S. Structural and spectral characterisation of 2-amino-2H-[1,2,3]triazolo[4,5-g]quinoline-4,9-dione polymorphs. Cytotoxic activity and molecular docking study with NQO1 enzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118038. [PMID: 31945713 DOI: 10.1016/j.saa.2020.118038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/15/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Depending on temperature, the 2-amino-2H-[1,2,3]triazolo[4,5-g]quinoline-4,9-dione forms two polymorphic structures, which differ in the spatial arrangement of the amine group. Both polymorphs were investigated using different experimental methods as well as various quantum chemical calculations in order to characterise their molecular structures. We used X-ray diffraction, FT-IR and NMR (solid-state and liquid) methods supplemented by the density functional theory (DFT) calculations, molecular electrostatic potential (MEP) and molecular orbital (HOMO, LUMO) analyses. It was found that the arrangement of the amine group affected the crystal structure, formation of H-bonds, the amine and carbonyl vibration bands in the FT-IR spectra, chemical shift of amine group in 15N CP/MAS NMR and chemical shift of amine protons in 1H NMR spectra. Both polymorphs were tested on anticancer activity against a panel of human cancer cell lines. Comparing the activity of both compounds showed that activity against MCF-7, MDA-MB-231 and Caco-2 lines depend on the arrangement of the amine group. Moreover, both polymorphs exhibited the highest activity against cell line with high NQO1 protein level, such as: A549, MCF-7 and Caco-2. The molecular docking was used to examine the probable interaction between the ligand of the tested polymorphs and the NQO1 enzyme. The analysis showed that ligands formed a hydrophobic interaction with tryptophan (Trp105), phenylalanine (Phe126 and Phe178) and tyrosine (Tyr 126).
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Maria Jastrzębska
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, Institute of Physics, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Małgorzata Latocha
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 8 Jedności Str., 41-200 Sosnowiec, Poland
| | - Joachim Kusz
- University of Silesia, Institute of Physics, 1 75 Pułku Piechoty Str., 41 500 Chorzów, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
16
|
Abstract
15N labeled amino acids are routinely used to label proteins or nucleic acids for study by NMR. However, NMR studies of 15N labeled amino acids in metabolite studies have not been pursued extensively, presumably due to line broadening present under standard experimental conditions. In this work, we show that lowering the temperature to −5 °C allows facile characterization of 15N-labeled amino acids. Further, we show that this technique can be exploited to measure 15NH3 produced in an enzyme catalyzed reaction and the transport and metabolism of individual amino acids in mammalian cell culture. With respect to 13C-labeled amino acids, 15N-labeled amino acids are less costly and enable direct characterization of nitrogen metabolism in complex biological systems by NMR. In summary, the present work significantly expands the metabolite pools and their reactions for study by NMR.
Collapse
|
17
|
Rudd TR, Mauri L, Marinozzi M, Stancanelli E, Yates EA, Naggi A, Guerrini M. Multivariate analysis applied to complex biological medicines. Faraday Discuss 2019; 218:303-316. [PMID: 31123736 DOI: 10.1039/c9fd00009g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biological medicine (or biologicals) is a term for a medicinal compound that is derived from a living organism. By their very nature, they are complex and often heterogeneous in structure, composition and biological activity. Some of the oldest pharmaceutical products are biologicals, for example insulin and heparin. The former is now produced recombinantly, with technology being at a point where this can be considered a defined chemical entity. This is not the case for the latter, however. Heparin is a heterogeneous polysaccharide that is extracted from the intestinal mucosa of animals, primarily porcine, although there is also a significant market for non-porcine heparin due to social and economical reasons. In 2008 heparin was adulterated with another sulfated polysaccharide. Unfortunately this event was disastrous and resulted in a global public health emergency. This was the impetuous to apply modern analytical techniques, principally NMR spectroscopy, and multivariate analyses to monitor heparin. Initially, traditional unsupervised multivariate analysis (principal component analysis (PCA)) was applied to the problem. This was able to distinguish animal heparins from each other, and could also separate adulterated heparin from what was considered bona fide heparin. Taught multivariate analysis functions by training the analysis to look for specific patterns within the dataset of interest. If this approach was to be applied to heparin, or any other biological medicine, it would have to be taught to find every possible alien signal. The opposite approach would be more efficient; defining the complex heterogeneous material by a library of bona fide spectra and then filtering test samples with these spectra to reveal alien features that are not consistent with the reference library. This is the basis of an approach termed spectral filtering, which has been applied to 1D and 2D-NMR spectra, and has been very successful in extracting the spectral features of adulterants in heparin, as well as being able to differentiate supposedly biosimilar products. In essence, the filtered spectrum is determined by subtracting the covariance matrix of the library spectra from the covariance matrix of the library spectra plus the test spectrum. These approaches are universal and could be applied to biological medicines such as vaccine polysaccharides and monoclonal antibodies.
Collapse
Affiliation(s)
- Timothy R Rudd
- National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Green AR, Li K, Lockard B, Young RP, Mueller LJ, Larive CK. Investigation of the Amide Proton Solvent Exchange Properties of Glycosaminoglycan Oligosaccharides. J Phys Chem B 2019; 123:4653-4662. [PMID: 31067054 DOI: 10.1021/acs.jpcb.9b01794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One-dimensional 1H NMR experiments were conducted for aqueous solutions of glycosaminoglycan oligosaccharides to measure the amide proton temperature coefficients and activation energy barriers for solvent exchange and evaluate the effect of pH on the solvent exchange properties. A library of mono- and oligosaccharides was prepared by enzymatic depolymerization of amide-containing polysaccharides and by chemical modification of heparin and heparan sulfate saccharides including members that contain a 3- O-sulfated glucosamine residue. The systematic evaluation of this saccharide library facilitated assessment of the effects of structural characteristics, such as size, sulfation number and site, and glycosidic linkage, on amide proton solvent exchange rates. Charge repulsion by neighboring negatively charged sulfate and carboxylate groups was found to have a significant impact on the catalysis of amide proton solvent exchange by hydroxide. This observation leads to the conclusion that solvent exchange rates must be interpreted within the context of a given chemical environment. On their own, slow exchange rates do not conclusively establish the involvement of a labile proton in a hydrogen bond, and additional supporting experimental evidence such as reduced temperature coefficients is required.
Collapse
Affiliation(s)
- Andrew R Green
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Kecheng Li
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology , Chinese Academy of Sciences , Qingdao 266071 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Blake Lockard
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Robert P Young
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States.,Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Leonard J Mueller
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| | - Cynthia K Larive
- Department of Chemistry , University of California-Riverside , Riverside , California 92501 , United States
| |
Collapse
|
19
|
Structural Insights into the Molecular Evolution of the Archaeal Exo-β-d-Glucosaminidase. Int J Mol Sci 2019; 20:ijms20102460. [PMID: 31109049 PMCID: PMC6566704 DOI: 10.3390/ijms20102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA), a thermostable enzyme belonging to the glycosidase hydrolase (GH) 35 family, hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a novel enzyme in terms of its primary structure, as it is homologous to both GH35 and GH42 β-galactosidases. The catalytic mechanism of GlmA is not known. Here, we summarize the recent reports on the crystallographic analysis of GlmA. GlmA is a homodimer, with each subunit comprising three distinct domains: a catalytic TIM-barrel domain, an α/β domain, and a β1 domain. Surprisingly, the structure of GlmA presents features common to GH35 and GH42 β-galactosidases, with the domain organization resembling that of GH42 β-galactosidases and the active-site architecture resembling that of GH35 β-galactosidases. Additionally, the GlmA structure also provides critical information about its catalytic mechanism, in particular, on how the enzyme can recognize glucosamine. Finally, we postulate an evolutionary pathway based on the structure of an ancestor GlmA to extant GH35 and GH42 β-galactosidases.
Collapse
|
20
|
Li K, Green AR, Dinges MM, Larive CK. 1H NMR characterization of chitin tetrasaccharide in binary H 2O:DMSO solution: Evidence for anomeric end-effect propagation. Int J Biol Macromol 2019; 129:744-749. [PMID: 30771389 DOI: 10.1016/j.ijbiomac.2019.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 11/29/2022]
Abstract
Chitin oligosaccharides, composed of homogeneous β(1 → 4)-linked N-acetyl-D-glucosamine (GlcNAc) sequences, is a well-known elicitor of plant immune defense, and also occur as structural elements of chitosan and nodulation (Nod) factor. Detailed microstructure characterization is required for understanding the function mode of these bioactive molecules. Herein, experimental conditions for detection and elucidation of the 1H NMR resonances of amide groups in chitin oligosaccharides are presented. The binary mixture of 70% H2O: 30% DMSO‑d6 was found to be the optimal solvent for amide proton measurements in homogeneous GlcNAc sequences, facilitating differentiation of the local chemical microenvironments of all four amide groups of the chitin tetrasaccharide. Experimental evidence that anomeric end-effect triggers amide proton resonance differentiation at the adjacent residue has potential to provide important insights into the solution structure of chitin and other amino sugars containing GlcNAc sequences.
Collapse
Affiliation(s)
- Kecheng Li
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Andrew R Green
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States
| | - Meredith M Dinges
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States
| | - Cynthia K Larive
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
21
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|
22
|
Mathon C, Barding GA, Larive CK. Separation of ten phosphorylated mono-and disaccharides using HILIC and ion-pairing interactions. Anal Chim Acta 2017; 972:102-110. [DOI: 10.1016/j.aca.2017.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
23
|
Abstract
Heparin, the widely used anticoagulant drug, is unusual among major pharmaceutical agents being neither single chemical entity nor a defined mixture of compounds. Its composition, while conforming to approximate average disaccharide composition or sulfation levels, exhibits heterogeneity and variability depending on the source, as well as its geographical origin. Furthermore, individual polysaccharide chains, whose physico-chemical properties are extremely similar, cannot be separated with current state-of-the-art techniques, presenting a challenge to those interested in the quality control of heparin, in ensuring its provenance and safety, and those with an interest in investigating the relationships between its structure and biological activity. The review consists of two main sections: The first is the Introduction, comprising (i) The History, Occurrence and Use of Heparin and (ii) Approaches to Structure-Activity Relationships. The second section is Improved Techniques for Structural Analysis, comprising; (i) Separation and Identification, (ii) Spectroscopic Methods, (iii) Enzymatic Approaches and (iv) Other Physico-Chemical Approaches. The ~60 references cover recent technological advances in the study of heparin structural analysis, largely since 2010.
Collapse
Affiliation(s)
- Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZBUK.
| | - Timothy R Rudd
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZBUK; National Institute for Biological Standards and Controls (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| |
Collapse
|
24
|
Mine S, Watanabe M, Kamachi S, Abe Y, Ueda T. The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution. J Biol Chem 2017; 292:4996-5006. [PMID: 28130448 DOI: 10.1074/jbc.m116.766535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.
Collapse
Affiliation(s)
- Shouhei Mine
- From the Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577,
| | - Masahiro Watanabe
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Saori Kamachi
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Yoshito Abe
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
25
|
Investigating the relationship between temperature, conformation and calcium binding in heparin model oligosaccharides. Carbohydr Res 2016; 438:58-64. [PMID: 27987423 DOI: 10.1016/j.carres.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans such as heparan sulfate (HS) are major components of the cell surface and extracellular matrix (ECM) of all multicellular animals, connecting cells to each other as well as to their environment. The ECM must, therefore, both sense and accommodate changes to external conditions. Heparin, a model compound for HS, responds to increased temperatures, involving changes in the populations of conformational states with implications for the binding of HS to proteins, cations and, potentially, for its activity. A fully 13C and 15N labelled model octasasccharide; D-GlcNS6S α(1-4) L-IdoA2S [α(1-4) D-GlcNS6S α(1-4) L-IdoA2S]2 α(1-4) D-GlcNS6S α(1-4) L-IdoA1,6an, was studied by 1H, 13C and 15N NMR, revealing complex changes in chemical shifts and conformation, over temperatures (280-305 K), comfortably within the range relevant to terrestrial biology. These complex conformational changes indicated an interaction between the carboxylate group of L-iduronate and D-glucosamine residues that was susceptible to temperature changes in this range, while the well-documented hydrogen bond between the N-sulfamido group of glucosamine and the hydroxyl group at position-3 of iduronate remained intact. Unexpectedly, despite the presence of similar thermally-induced conformational changes in a heparin octasaccharide fraction in the sodium ion form, its subsequent binding to calcium ions and their resulting conformation was stringently maintained, as judged by comparisons of 1H NMR chemical shifts.
Collapse
|
26
|
Pomin VH. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton. Pharmaceuticals (Basel) 2016; 9:ph9030058. [PMID: 27618066 PMCID: PMC5039511 DOI: 10.3390/ph9030058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/20/2022] Open
Abstract
Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially 1H-15N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the 1H-15N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate 15N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS 15N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via 1H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D 1H and 2D 1H-15N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
- University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.
| |
Collapse
|