1
|
Geng P, Guan M, Wang Y, Mi F, Zhang S, Rao X. A double boronic acid affinity "sandwich" SERS biosensor based on magnetic boronic acid controllable-oriented imprinting for high-affinity biomimetic specific recognition and rapid detection of target glycoproteins. Mikrochim Acta 2024; 191:444. [PMID: 38955823 DOI: 10.1007/s00604-024-06522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.
Collapse
Affiliation(s)
- Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Shan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Xuehui Rao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| |
Collapse
|
2
|
Shi H, Tian X, Wu J, Chen Q, Yang S, Shan L, Zhang C, Wan Y, Wu MY, Feng S. Fabricating Ultrathin Imprinting Layer for Fast Capture of Valsartan via a Metal Affinity-Oriented Surface Imprinting Method. Anal Chem 2024; 96:9447-9452. [PMID: 38807557 DOI: 10.1021/acs.analchem.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Rapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis. Herein, one novel metal affinity-oriented surface imprinting method was proposed to fabricate an MIP with an ultrathin imprinting layer. MIPs were prepared by immobilized template molecules on magnetic nanoparticles (NPs) with metal ions as bridges via coordination, and then polymerization was done. Under the optimized conditions, the thickness of the imprinting layer was merely 1 nm, and the adsorption toward VAL well matched the Langmuir model. Moreover, it took just 5 min to achieve adsorption equilibrium significantly faster than other reported MIPs toward VAL. Adsorption capacity still can reach 25.3 mg/g ascribed to the high imprinting efficiency of the method (the imprinting factor was as high as 5). All evidence proved that recognition sites were all external cavities and were evenly distributed on the surface of the NPs. The obtained MIP NPs exhibited excellent selectivity and specificity toward VAL, with good dispersibility and stability. Coupled with high-performance liquid chromatography, it was successfully used as a dispersed solid phase extraction material to determine VAL in serum. Average recoveries are over 90.0% with relative standard deviations less than 2.14% at three spiked levels (n = 3). All evidence testified that the MIPs fabricated with the proposed method showed a fast trans mass rate and a large rebinding capacity. The method can potentially use high-throughput separation and enrichment of target molecules in batch samples to meet practical applications.
Collapse
Affiliation(s)
- Haizhu Shi
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Xiao Tian
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Jiateng Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Qian Chen
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shuling Yang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Chungu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Yu Wan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| |
Collapse
|
3
|
Liu Y, Lu X, Liu S, Li Y, He X, Chen L, Zhang Y. Electrospun Fiber Membrane with the Dual Affinity of Chelation and Covalent Interactions for the Efficient Enrichment of Glycoproteins. ACS APPLIED BIO MATERIALS 2024; 7:2499-2510. [PMID: 38517141 DOI: 10.1021/acsabm.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.
Collapse
Affiliation(s)
- Yaqi Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Lu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shiling Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijun Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
4
|
Sajid MS, Saleem S, Jabeen F, Najam-Ul-Haq M, Ressom HW. Terpolymeric platform with enhanced hydrophilicity via cysteic acid for serum intact glycopeptide analysis. Mikrochim Acta 2022; 189:277. [PMID: 35829791 DOI: 10.1007/s00604-022-05343-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
A new polymeric (methyl methacrylate/ethylene glycol dimethacrylate/1,2-epoxy-5-hexene) base/matrix has been fabricated and decorated with zwitterionic hydrophilic cysteic acid (Cya) for the enrichment of intact N-glycopeptides from standards and biological samples. Terpolymer-Cya provides good enrichment efficiency, improved hydrophilicity, and selectivity by virtue of better surface area (2.09 × 102 m2/g) provided by terpolymer and the zwitterionic property offered by cysteic acid. Cysteic acid-functionalized polymeric hydrophilic interaction liquid chromatography (HILIC) sorbent enriches 35 and 24 N-linked glycopeptides via SPE (solid phase extraction) mode from tryptic digests of model glycoproteins, i.e., immunoglobulin G (IgG) and horseradish peroxidase (HRP), respectively. Zwitterionic chemistry of cysteine helps in achieving higher selectivity with BSA digest (1:200), and lower detection limit down to 100 attomoles with a complete glycosylation profile of each standard digest. The recovery of 81% and good reproducibility define the application of terpolymer-Cya for complex samples like a serum. Analysis of human serum provides a profile of 807 intact N-linked glycopeptides via nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS). To the best of our knowledge, this is the highest number of glycopeptides enriched by any HILIC sorbent. Selected glycoproteins are evaluated in link to various cancers including the breast, lung, uterine, and melanoma using single-nucleotide variances (BioMuta). This study represents the complete idea of using an in-house developed strategy as a successful tool to help analyze, relate, and answer glycoprotein-based clinical issues regarding cancers.
Collapse
Affiliation(s)
- Muhammad Salman Sajid
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Shafaq Saleem
- Department of Chemistry, The Women University, Kutchery Campus, L.M.Q. Road, Multan, 66000, Pakistan
| | - Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Habtom W Ressom
- Department of Oncology, Genomics and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
5
|
Li H, Yang J, Qin A, Yang F, Liu D, Li H, Yu J. Milk protein hydrolysates obtained with immobilized alcalase and neutrase on magnetite nanoparticles: Characterization and antigenicity study. J Food Sci 2022; 87:3107-3116. [PMID: 35638323 DOI: 10.1111/1750-3841.16189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Enzymatic hydrolysis is the most commonly used method to reduce the antigenicity of milk protein, but free protease is unstable and difficult to recycle after application. In this study, alcalase and neutrase were selected for immobilization on the modified magnetic Fe3 O4 nanoparticles. The reusability of the immobilized enzyme was 68.23% of the total starting activity after 5 recycling batches. The optimal hydrolysis conditions were an enzyme to substrate ratio of 6000 U/g and reaction at 50℃ and pH 8.5 for 3 h. Under these conditions, 22.76% hydrolysis of hydrolysate was achieved, and the antigenicity reduction rates of β-lactoglobulin and casein were 21.34% and 30.89%, respectively. In addition, 82.75% of the hydrolysate had a molecular weight less than 1 kDa, and free amino acids represented 13.65% of the sample. This result showed that the hydrolysis with immobilized enzyme was similar to that with free enzyme and the immobilized enzyme could be applied to produce hypoallergenic hydrolysate. PRACTICAL APPLICATION: Reduces milk protein allergenicity.
Collapse
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Airong Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Dingkuo Liu
- Dingzheng Xinxing Biotechnology (Tianjin) Co., Ltd., Taifeng Road, TEDA, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
6
|
Hu C, Peng F, Mi F, Wang Y, Geng P, Pang L, Ma Y, Li G, Li Y, Guan M. SERS-based boronate affinity biosensor with biomimetic specificity and versatility: Surface-imprinted magnetic polymers as recognition elements to detect glycoproteins. Anal Chim Acta 2022; 1191:339289. [PMID: 35033265 DOI: 10.1016/j.aca.2021.339289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023]
Abstract
Glycoproteins are a class of proteins with significant biological functions and clinical implications. Due to glycoproteins' reliability for the quantitative analysis, they have been used as biomarkers and therapeutic targets for disease diagnosis. We propose a sandwich structure-based boronate affinity biosensor that can separate and detect target glycoproteins by magnetic separation and Surface-enhanced Raman scattering (SERS) probes. The biosensor relies on boronic acid affinity magnetic molecularly imprinted polymer (MMIPs) with pH response as "capturing probe" for glycoproteins, and Au-MPBA@Ag modified with 4-mercaptophenylboronic acid (MPBA) as SERS probes, among which, MPBA has both strong SERS activity and can specifically recognize and bind to glycoproteins. MMIPs ensured specific and rapid analysis, and SERS detection provided high sensitivity. The proposed boronate affinity SERS strategy exhibited universal applicability and provided high sensitivity with limit of detection of 0.053 ng/mL and 0.078 ng/mL for horseradish peroxidase and acid phosphatase, respectively. Ultimately, the boronate affinity SERS strategy was successfully applied in detection of glycoprotein in spiked serum sample with recovery between 90.6% and 103.4%, respectively. In addition, this study used a portable Raman meter, which can meet the requirements of point-of-care testing. The biosensor presented here also has advantages in terms of cost-effectiveness, stability, and detection speed.
Collapse
Affiliation(s)
- Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Lin Pang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guixin Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Yingjun Li
- College of Foreign Languages, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
7
|
Xu H, Zhang Z, Wang Y, Lu W, Min Q. Engineering of nanomaterials for mass spectrometry analysis of biomolecules. Analyst 2021; 146:5779-5799. [PMID: 34397044 DOI: 10.1039/d1an00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) based analysis has received intense attention in diverse biological fields. However, direct MS interrogation of target biomolecules in complex biological samples is still challenging, due to the extremely low abundance and poor ionization potency of target biological species. Innovations in nanomaterials create new auxiliary tools for deep and comprehensive MS characterization of biomolecules. More recently, growing research interest has been directed to the compositional and structural engineering of nanomaterials for enriching target biomolecules prior to MS analysis, enhancing the ionization efficiency in MS detection and designing biosensing nanoprobes in sensitive MS readout. In this review, we mainly focus on the recent advances in the engineering of nanomaterials towards their applications in sample pre-treatment, desorption/ionization matrices and ion signal amplification for MS profiling of biomolecules. This review will provide a toolbox of nanomaterials for researchers devoted to developing analytical methods and practical applications in the biological MS field.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
8
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
9
|
Zhen Y, Chen L, Ma X, Ding G, Zhang D, Chen Q. β-Amyloid Peptide 1-42-Conjugated Magnetic Nanoparticles for the Isolation and Purification of Glycoproteins in Egg White. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14028-14036. [PMID: 33730480 DOI: 10.1021/acsami.1c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aβ1-42-conjugated magnetic nanoparticles, Aβ1-42@MNP, were prepared by covalently coupling Aβ1-42 to hyperbranched polyethyleneimine (PEI)-modified magnetic nanoparticles via N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). Aβ1-42's high binding capacity to glycosyl groups facilitates Aβ1-42@MNP composite to be a promising selective adsorbent for glycoproteins in egg whites. In our study, under conditions of pH 4.0, the adsorption efficiency of Aβ1-42@MNP composite for ovalbumin (100 μg mL-1) was 98.4% and its maximum adsorption capacity was 344.8 mg g -1; under the condition of pH 4.0 and 200 mmol L-1 NaCl, its adsorption efficiencies for ovalbumin and ovotransferrin were 96.9% and 60.0%, respectively. According to these primary data, in practice, ovalbumin was removed from egg white by Aβ1-42@MNP composite at pH 4.0 (step I), and then after adding NaCl until the final salt concentration reached 200 mmol L-1 (pretreated egg white), we utilized the same adsorbent to further isolate/purify glycoproteins (step II). SDS-PAGE results showed that Aβ1-42@MNP composite could largely remove ovalbumin in step I and could isolate/purify the remaining ovalbumin and ovotransferrin in step II. LC-MS/MS analysis results showed that the removal of ovalbumin reduced its percentage in egg white samples from 32.93% to 11.05% in step I and the remaining ovalbumin and ovotransferrin were enriched in step II, where the final percentage reached 11.6% and 12.6%, respectively. In summary, 81 protein species were identified after two-step extraction with Aβ1-42@MNP on egg white, while only 46 protein species were identified directly from raw egg white without any pretreatment. This work well illustrates the excellent adsorption performance of Aβ1-42@MNP composite to glycoproteins and its potential in the application of proteomic studies on low-abundance proteins in egg white.
Collapse
Affiliation(s)
- Yi Zhen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Lei Chen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xiaoyi Ma
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Guoyu Ding
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Dandan Zhang
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Qing Chen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
10
|
Cao JF, Xu W, Zhang YY, Shu Y, Wang JH. Chondroitin sulfate-enriched hierarchical multichannel polydopamine nanoparticles with ultrahigh sorption capacity for separation of low-density lipoprotein. J Mater Chem B 2021; 9:1980-1987. [PMID: 33595048 DOI: 10.1039/d1tb00012h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A hierarchical multichannel polydopamine (HMPDA) nanoparticle with ample chondroitin sulfate (CS) is fabricated via modification of the silane coupling agent (APTES), followed by grafting CS on the unique bicontinuous open channels of HMPDA through amidation reaction. The obtained nanoparticles with both mesopores and macropores, abbreviated as HMPDA-A-CS15, possess a total pore volume of 0.3398 cm3 g-1, and a large surface area up to 69.10 m2 g-1. The as-prepared HMPDA-A-CS15 exhibits significantly enhanced selectivity for the separation of LDL, which is attributed to the specific recognition effect of CS for LDL. Furthermore, the unique large open channels endow the HMPDA-A-CS15 nanoparticles with a gratifying sorption capacity (1015.2 mg g-1) for LDL adsorption. The captured LDL can be stripped using 0.5% (v/v) ammonia solution with the advantage of easy atomization in downstream mass spectrometry (MS) analyses, and a recovery of 71.7% is achieved. Moreover, HMPDA-A-CS15 is further employed in the enrichment of LDL, which can be separated from the complex serum of simulated hypercholesterolemia patients with a favorable adsorption performance, as illustrated by the SDS-PAGE technique.
Collapse
Affiliation(s)
- Jian-Fang Cao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Wang Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yao-Yao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
11
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
12
|
Cao JF, Xu W, Zhang YY, Shu Y, Wang JH. Chondroitin sulfate-functionalized 3D hierarchical flower-type mesoporous silica with a superior capacity for selective isolation of low density lipoprotein. Anal Chim Acta 2020; 1104:78-86. [DOI: 10.1016/j.aca.2019.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023]
|
13
|
Affiliation(s)
| | | | - Ronghu Wu
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
14
|
Selective separation of bovine hemoglobin using magnetic mesoporous rare-earth silicate microspheres. Talanta 2019; 204:792-801. [DOI: 10.1016/j.talanta.2019.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
|
15
|
Guo PF, Wang XM, Chen XW, Yang T, Chen ML, Wang JH. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Rajpoot K, Jain SK. Irinotecan hydrochloride trihydrate loaded folic acid-tailored solid lipid nanoparticles for targeting colorectal cancer: development, characterization, and in vitro cytotoxicity study using HT-29 cells. J Microencapsul 2019; 36:659-676. [PMID: 31495238 DOI: 10.1080/02652048.2019.1665723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: The aim of this investigation was to evaluate the potential of folic acid-tailored solid lipid nanoparticles (SLNs) for encapsulation as well as for in vitro cytotoxicity study of irinotecan hydrochloride trihydrate (IHT) against colorectal cancer (CRC) by using HT-29 cells. Methods: Solvent diffusion technique was employed for the preparation of SLNs. Further, the formulations were optimised via three-level, three-factor Box-Behnken design (BBD). Results: The uncoupled SLNs (IRSLNs) and folic acid-coupled SLNs (IRSLNFs) formulations revealed not only high %entrapment efficiency but also small particle size. Moreover, in vitro drug release results from IRSLNs and IRSLNFs confirmed that they followed sustained-release effect for up to 144 h. Whereas, in vitro cell viability study against HT-29 cell line suggested significantly (p < 0.05) higher cytotoxicity (IC50 = 15 µg/ml) of IRSLNFs over IRSLNs and IHT solution. Conclusions: Outcomes suggested that the engineered IRSLNFs hold great potential for targeting CRC for an extended period of time.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , India
| | - Sunil K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University) , Bilaspur , India
| |
Collapse
|
17
|
Preparation of Tungstotellurate(VI)-coated Magnetic Nanoparticles for Separation and Purification of Ovalbumin in Egg White. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Mikrochim Acta 2019; 186:542. [DOI: 10.1007/s00604-019-3655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023]
|
19
|
Li Y, Li Y, Yu X, Sun Y. Electrochemical Determination of Carbofuran in Tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP) Glassy Carbon Electrode (GCE) with Immobilized Acetylcholinesterase (AChE). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1609490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuanqing Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yuanzhu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Xiaolu Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Qiao M, Liu X, Song JW, Yang T, Chen ML, Wang JH. Improving the adsorption capacity for ovalbumin by functional modification of aminated mesoporous silica nanoparticles with tryptophan. J Mater Chem B 2018; 6:7703-7709. [PMID: 32254892 DOI: 10.1039/c8tb02221f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tryptophan (Trp) modified aminated mesoporous silica nanoparticles (AMSNs), shortened to Trp-AMSNs, are prepared via covalent binding. The obtained Trp-AMSNs exhibit a uniform size of ca. 83 nm, a mesopore diameter of ca. 2.6 nm, along with a pore volume of 0.439 cm3 g-1. It is demonstrated that Trp-AMSNs selectively adsorb ovalbumin (Ova) from complex biological matrices. At pH 5.0, 1.0 mg of Trp-AMSNs produces an adsorption efficiency of 96% for 100 mg L-1 Ova in 1.0 mL of solution. An adsorption capacity of 1240.3 mg g-1 is derived for Ova, which is much improved with respect to that of the native AMSNs. The retained Ova could be readily recovered by a sodium dodecyl sulfate (SDS) solution (0.5%, m/v), providing a recovery of 71.2%. Trp-AMSNs are further applied for the isolation of Ova from a protein mixture (with a molar ratio of ovalbumin/lysozyme of 1 : 10) and an egg-white sample. High-purity Ova is obtained, as demonstrated by SDS-PAGE assay results.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
21
|
Preparation of magnetic microspheres functionalized by lanthanide oxides for selective isolation of bovine hemoglobin. Talanta 2018; 190:210-218. [DOI: 10.1016/j.talanta.2018.07.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
|
22
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
23
|
Xia L, Chen X, Xiao X, Li G. Magnetic-covalent organic polymer solid-phase extraction coupled with high-performance liquid chromatography for the sensitive determination of fluorescent whitening agents in cosmetics. J Sep Sci 2018; 41:3733-3741. [DOI: 10.1002/jssc.201800632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry; Sun Yat-sen University; Guangzhou China
| | - Xiaoman Chen
- School of Chemistry; Sun Yat-sen University; Guangzhou China
| | - Xiaohua Xiao
- School of Chemistry; Sun Yat-sen University; Guangzhou China
| | - Gongke Li
- School of Chemistry; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
24
|
Guo PF, Zhang DD, Guo ZY, Wang XM, Wang MM, Chen ML, Wang JH. PEGylated titanate nanosheets: hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. NANOSCALE 2018; 10:12535-12542. [PMID: 29931026 DOI: 10.1039/c8nr02995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel organic-inorganic hybrid was prepared by anchoring (3-aminopropyl)triethoxysilane (APTES) on the surface of monolayer titanate nanosheets and subsequent modification with hydrophilic polyethylene glycol (PEG). The PEGylated hydrophilic monolayer titanate nanosheets were abbreviated as PEG-APTES-TiNSs, and they exhibit a lateral dimension of dozens of nanometers and a thickness of ca. 1.9 nm. PEGylation of the titanate nanosheets significantly improved their selectivity toward the adsorption of glycoproteins through strong hydrophilic interaction, providing an adsorption capacity of 2540.9 mg g-1 for immunoglobulin G (IgG). The retained IgG is readily collected at a recovery rate of 83.4% with 0.5% (m/v) ammonium hydroxide (NH4OH) as the stripping reagent. PEG-APTES-TiNSs are applied for the selective adsorption of IgG from human serum, which is further confirmed by SDS-PAGE assay.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Xiao H, Hwang JE, Wu R. Mass spectrometric analysis of the N-glycoproteome in statin-treated liver cells with two lectin-independent chemical enrichment methods. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 429:66-75. [PMID: 30147434 PMCID: PMC6103449 DOI: 10.1016/j.ijms.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein N-glycosylation is essential for mammalian cell survival and is well-known to be involved in many biological processes. Aberrant glycosylation is directly related to human disease including cancer and infectious diseases. Global analysis of protein N-glycosylation will allow a better understanding of protein functions and cellular activities. Mass spectrometry (MS)-based proteomics provides a unique opportunity to site-specifically characterize protein glycosylation on a large scale. Due to the complexity of biological samples, effective enrichment methods are critical prior to MS analysis. Here, we compared two lectin-independent methods to enrich glycopeptides for the global analysis of protein N-glycosylation by MS. The first boronic acid-based enrichment (BA) method benefits from the universal and reversible interactions between boronic acid and sugars; the other method utilizes metabolic labeling and click chemistry (MC) to incorporate a chemical handle into glycoproteins for future affinity enrichment. We comprehensively compared the performance of the two methods in the identification and quantification of glycoproteins in statin-treated liver cells. Based on the current results, the BA method is more universal in enriching glycopeptides, while with the MC method, cell surface glycoproteins were highly enriched, and the quantification results appear to be more dynamic because only the newly-synthesized glycoproteins were analyzed. In addition, we normalized the glycosylation site ratios by the corresponding parent protein ratios to reflect the real modification changes. In combination with MS-based proteomics, effective enrichment methods will vertically advance protein glycosylation research.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ju Eun Hwang
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
26
|
Wang R, Chen Z. Boronate affinity monolithic column incorporated with graphene oxide for the in-tube solid-phase microextraction of glycoproteins. J Sep Sci 2018; 41:2767-2773. [DOI: 10.1002/jssc.201701417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan China
- School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan China
- School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| |
Collapse
|
27
|
Jin S, Liu L, Zhou P. Amorphous titania modified with boric acid for selective capture of glycoproteins. Mikrochim Acta 2018; 185:308. [PMID: 29789967 DOI: 10.1007/s00604-018-2824-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 01/07/2023]
Abstract
Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g-1, respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.
Collapse
Affiliation(s)
- Shanxia Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Liping Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
28
|
Zhang D, Wang M, Guo Z, Guo P, Chen X, Wang J. Specific Isolation of Glycoproteins with Mesoporous Zirconia-Polyoxometalate Hybrid. Proteomics 2018; 18:e1700381. [DOI: 10.1002/pmic.201700381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/01/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Dandan Zhang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Mengmeng Wang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Zhiyong Guo
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Pengfei Guo
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Xuwei Chen
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| | - Jianhua Wang
- Research Center for Analytical Sciences; Northeastern University; Shenyang P. R. China
| |
Collapse
|
29
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
30
|
Guo ZY, Hai X, Wang YT, Shu Y, Chen XW, Wang JH. Core–Corona Magnetic Nanospheres Functionalized with Zwitterionic Polymer Ionic Liquid for Highly Selective Isolation of Glycoprotein. Biomacromolecules 2017; 19:53-61. [DOI: 10.1021/acs.biomac.7b01231] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Yong Guo
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Hai
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ting Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Institute
of Biotechnology, College of Life and Health Sciences, Northeastern University, Box H006, Shenyang 110169, China
| | - Xu-Wei Chen
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
31
|
Boronic Acid-Modified Magnetic Fe 3O 4@mTiO 2 Microspheres for Highly Sensitive and Selective Enrichment of N-Glycopeptides in Amniotic Fluid. Sci Rep 2017; 7:4603. [PMID: 28676633 PMCID: PMC5496847 DOI: 10.1038/s41598-017-04517-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022] Open
Abstract
Although mesoporous materials and magnetic materials are used to enrich glycopeptides, materials sharing both mesoporous structures and magnetic properties have not been reported for glycopeptide analyses. Here we prepared boronic acid-modified magnetic Fe3O4@mTiO2 microspheres by covalent binding of boronic acid molecules onto the surfaces of silanized Fe3O4@mTiO2 microspheres. The final particles (denoted as B-Fe3O4@mTiO2) showed a typical magnetic hysteresis curve, indicating superparamagnetic behavior; meanwhile, their mesoporous sizes did not change in spite of the reduction in surface area and pore volume. By using these particles together with conventional poly(methyl methacrylate) (PMMA) nanobeads, we then developed a synergistic approach for highly specific and efficient enrichment of N-glycopeptides/glycoproteins. Owing to the introduction of PMMA nanobeads that have strong adsorption towards nonglycopeptides, the number of N-glycopeptides detected and the signal-to-noise ratio in analyzing standard proteins mixture both increased appreciably. The recovery of N-glycopeptides by the synergistic method reached 92.1%, much improved than from B-Fe3O4@mTiO2 alone that was 75.3%. Finally, we tested this approach in the analysis of amniotic fluid, obtaining the maximum number and ratio of N-glycopeptides compared to the use of B-Fe3O4@mTiO2 alone and commercial SiMAG-boronic acid particles. This ensemble provides an interesting and efficient enrichment platform for glycoproteomics research.
Collapse
|
32
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
33
|
A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2100-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Li Y, Yang CX, Yan XP. Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun (Camb) 2017; 53:2511-2514. [DOI: 10.1039/c6cc10188g] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A monomer-mediated in situ growth strategy has been developed for the controllable fabrication of magnetic COF core–shell nanostructures with great potential for wide applications.
Collapse
Affiliation(s)
- Yang Li
- College of Chemistry
- Research Center for Analytical Science
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Cheng-Xiong Yang
- College of Chemistry
- Research Center for Analytical Science
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Xiu-Ping Yan
- College of Chemistry
- Research Center for Analytical Science
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
35
|
Wang H, Jiao F, Gao F, Huang J, Zhao Y, Shen Y, Zhang Y, Qian X. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides. J Mater Chem B 2017; 5:4052-4059. [DOI: 10.1039/c7tb00700k] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Magnetic covalent organic frameworks were synthesized as novel hydrophilic materials for specific enrichment of glycopeptides.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Junjie Huang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yan Zhao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| |
Collapse
|
36
|
Banazadeh A, Veillon L, Wooding KM, Zabet-Moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 2016; 38:162-189. [PMID: 27757981 DOI: 10.1002/elps.201600357] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
Glycosylation is one of the most common posttranslational modifications of proteins that plays essential roles in various biological processes, including protein folding, host-pathogen interaction, immune response, and inflammation and aberrant protein glycosylation is a well-known event in various disease states including cancer. As a result, it is critical to develop rapid and sensitive methods for the analysis of abnormal glycoproteins associated with diseases. Mass spectrometry (MS) in conjunction with different separation methods, such as capillary electrophoresis (CE), ion mobility (IM), and high performance liquid chromatography (HPLC) has become a popular tool for glycoprotein analysis, providing highly informative fragments for structural identification of glycoproteins. This review provides an overview of the developments and accomplishments in the field of glycomics and glycoproteomics reported between 2014 and 2016.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kerry M Wooding
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
37
|
Liu J, Yang K, Shao W, Li S, Wu Q, Zhang S, Qu Y, Zhang L, Zhang Y. Synthesis of Zwitterionic Polymer Particles via Combined Distillation Precipitation Polymerization and Click Chemistry for Highly Efficient Enrichment of Glycopeptide. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22018-22024. [PMID: 27498760 DOI: 10.1021/acsami.6b06343] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Because of the low abundance of glycopeptide in natural biological samples, methods for efficient and selective enrichment of glycopeptides play a significant role in mass spectrometry (MS)-based glycoproteomics. In this study, a novel kind of zwitterionic hydrophilic interaction chromatography polymer particles, namely, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@l-Cys (poly(MBAAm-co-MAA)@l-Cys), for the enrichment of glycopeptides was synthesized by a facile and efficient approach that combined distillation precipitation polymerization (DPP) and "thiol-ene" click reaction. In the DPP approach, residual vinyl groups explored outside the core with high density, then the functional ligand cysteine was immobilized onto the surface of core particles by highly efficient thiol-ene click reaction. Taking advantage of the unique structure of poly(MBAAm-co-MAA)@l-Cys, the resulting particles possess remarkable enrichment selectivity for glycopeptides from the tryptic digested human immunoglobulin G. The polymer particles were successfully employed for the analysis of human plasma, and 208 unique glycopeptides corresponding to 121 glycoproteins were reliably identified in triple independent nano-LC-MS/MS runs. The selectivity toward glycopeptides of these particles poly(MBAAm-co-MAA)@l-Cys is ∼2 times than that of the commercial beads. These results demonstrated that these particles had great potential for large-scale glycoproteomics research. Moreover, the strategy with the combination of DPP and thiol-ene click chemistry might be a facile method to produce functional polymer particles for bioenrichment application.
Collapse
Affiliation(s)
- Jianxi Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- College of Environment Science and Engineering, Fujian Normal University , Fuzhou 350007, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Wenya Shao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Qi Wu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Shen Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yanyan Qu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
38
|
Song P, Huang P, Huang T, Li H, Chen W, Lin L, Feng S, Tian R. Facile synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles for selective enrichment of glycopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:190-195. [PMID: 27539437 DOI: 10.1002/rcm.7626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Selective enrichment of glycopeptides prior to mass spectrometry (MS) analysis is essential due to the low abundance of the modified glycopeptides in complex samples, ion suppression effects during MS ionization and detection caused by the co-presence of non-glycosylated peptides, etc. Among different enrichment approaches, hydrophilic interaction liquid chromatography (HILIC)-based magnetic separation has become one of the most popular methods in recent years, due to its high efficiency and selectivity for glycopeptide enrichment. METHODS Herein, novel carboxymethyl-β-cyclodextrin (CMCD)-modified magnetic nanoparticles (MNPs) were synthesized via a carbodiimide activation method. CMCD was covalently bonded with the -OH group on the surface of MNPs through carbodiimide, and the proposed procedure provides a rapid and efficient alternative for glycopeptide enrichment due to its stable interaction, time-saving, and easy operation. RESULTS The prepared absorbents with a mean diameter of 15 nm demonstrated a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of bound CMCD was 3 wt%. The outer CMCD layer conjugated on the Fe3 O4 core showed high hydrophilic surface property. In the analysis of a complex mouse liver sample, a total of 666 unique N-glycosylation sites corresponding to 494 glycosylated proteins were identified successfully. CONCLUSIONS The study demonstrated an easy-to-use CMCD-modified MNPs-based approach with high selectivity and high capacity in the enrichment of low-abundance glycopeptides from complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peipei Song
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Peiwu Huang
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Tengjun Huang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Hua Li
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Wendong Chen
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Lin Lin
- Materials Characterization & Preparation Center, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, China
| | - Ruijun Tian
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen, 518055, China
| |
Collapse
|
39
|
Liu Y, Fu D, Yu L, Xiao Y, Peng X, Liang X. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. J Chromatogr A 2016; 1455:147-155. [DOI: 10.1016/j.chroma.2016.05.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023]
|
40
|
Jiang L, Huang T, Feng S, Wang J. Zirconium(IV) functionalized magnetic nanocomposites for extraction of organophosphorus pesticides from environmental water samples. J Chromatogr A 2016; 1456:49-57. [DOI: 10.1016/j.chroma.2016.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022]
|
41
|
A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity. Talanta 2016; 153:211-20. [DOI: 10.1016/j.talanta.2016.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
|