1
|
Abd Muain MF, Amir Hamzah AS, Chia SL, Yusoff K, Lim HN, Shinya I, Ahmad Tajudin A. Voltammetric-based immunosensing of Newcastle disease virus on polyethylene glycol-containing self-assembled monolayer modified gold electrode. Anal Biochem 2024; 697:115700. [PMID: 39461695 DOI: 10.1016/j.ab.2024.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
A voltammetric immunosensor for the detection of Newcastle disease virus (NDV) has been developed by employing polyclonal antibody targeting NDV (anti-NDV) as a bioreceptor. Anti-NDV was immobilized on polyethylene glycol (PEG)-containing self-assembled monolayer (SAM) which was activated with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimidehydrochloride (EDC) and N-hydroxy succinimide (NHS) coupling on screen-printed gold electrode (SPGE). The introduction of PEG-containing SAM on the SPGE allowed the bioreceptor to covalently bound to the electrode surface whilst still providing a hydrophilic layer on the electrode which is important to greatly reduce non-specific bindings. The bioreceptor functionalized electrode was then allowed to be incubated with NDV-spiked samples. The electrode surface modification with PEG-containing SAM, immobilization of anti-NDV as bioreceptor, up to the detection of NDV were characterized electrochemically through differential pulse voltammetry (DPV) analysis in [Fe(CN)6]3- as the redox probe. Decrement of anodic current peak (Ipa) of [Fe(CN)6]3- was seen as the concentration of NDV increased from 0.156 to 20 HA μL-1 with the limit of detection (LoD) of 1.50 HA μL-1 at 3σ m-1. The detection of NDV in HA μL-1 unit in this study would ease interlaboratory interpretation as it was the same unit used in hemagglutination (HA) assay of conventional NDV diagnosis. The specificity of anti-NDV used as bioreceptor towards NDV was confirmed through western blot analysis, whilst the selectivity of the bioreceptor-functionalized electrode has been tested with allantoic fluid as the negative control in which no apparent changes of anodic peak (Ipa) has been seen. This simple, fast, and less laborious electrochemical detection method could become an alternative to the conventional method for NDV detection.
Collapse
Affiliation(s)
- Mohamad Farid Abd Muain
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Amir Syahir Amir Hamzah
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ikeno Shinya
- Department of Biological Functions Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu Science and Research Park, Kitakyushu, Fukuoka, Japan.
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Laboratory of Virology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Zhang Y, Wang L, Ma N, Wan Y, Zhu X, Qian W. Ordered Porous Layer Interferometry for Dynamic Observation of Non-Specific Adsorption Induced by 1-Ethyl-3-(3-(dimethylamino)propyl) Carbodiimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11406-11413. [PMID: 37542713 DOI: 10.1021/acs.langmuir.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xueyi Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Lee E, Shrestha KL, Kang S, Ramakrishnan N, Kwon Y. Cell-Based Sensors for the Detection of EGF and EGF-Stimulated Ca 2+ Signaling. BIOSENSORS 2023; 13:383. [PMID: 36979595 PMCID: PMC10045995 DOI: 10.3390/bios13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Epidermal growth factor (EGF)-mediated activation of EGF receptors (EGFRs) has become an important target in drug development due to the implication of EGFR-mediated cellular signaling in cancer development. While various in vitro approaches are developed for monitoring EGF-EGFR interactions, they have several limitations. Herein, we describe a live cell-based sensor system that can be used to monitor the interaction of EGF and EGFR as well as the subsequent signaling events. The design of the EGF-detecting sensor cells is based on the split-intein-mediated conditional protein trans-cleavage reaction (CPC). CPC is triggered by the presence of the target (EGF) to activate a signal peptide that translocates the fluorescent cargo to the target cellular location (mitochondria). The developed sensor cell demonstrated excellent sensitivity with a fast response time. It was also successfully used to detect an agonist and antagonist of EGFR (transforming growth factor-α and Cetuximab, respectively), demonstrating excellent specificity and capability of screening the analytes based on their function. The usage of sensor cells was then expanded from merely detecting the presence of target to monitoring the target-mediated signaling cascade, by exploiting previously developed Ca2+-detecting sensor cells. These sensor cells provide a useful platform for monitoring EGF-EGFR interaction, for screening EGFR effectors, and for studying downstream cellular signaling cascades.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Keshab Lal Shrestha
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Seonhye Kang
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Neethu Ramakrishnan
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
4
|
Xia N, Liu G, Zhang S, Shang Z, Yang Y, Li Y, Liu L. Oxidase-mimicking peptide-copper complexes and their applications in sandwich affinity biosensors. Anal Chim Acta 2022; 1214:339965. [DOI: 10.1016/j.aca.2022.339965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
|
5
|
Chang Y, Ma X, Sun T, Liu L, Hao Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021; 234:122649. [PMID: 34364458 DOI: 10.1016/j.talanta.2021.122649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
In the classical heterogeneous electrochemical assay, phosphorylation of peptide substrate is usually performed on the solid-liquid surface. However, immobilization of probe on the solid surface may limit the interaction between the reaction site of probe and the active center of kinase due to the steric hindrance effect. In this work, we proposed a heterogeneous electrochemical method for kinase detection, in which the probe is immobilization-free during the phosphorylation reaction. A biotinylated peptide was used as the kinase substrate. After phosphorylation, the biotinylated phosphopeptide was captured by the neutravidin (NA)-modified electrode through the avidin-biotin interaction. The phosphate groups on the electrode surface were then recognized by the conjugates preformed between biotinylated Phos-tag™ (Bio-tag-Phos) and ferrocene (Fc)-capped NA-modified gold nanoparticle (Fc-AuNP-NA). The method integrates the advantages of homogeneous reaction and heterogeneous detection with high simplicity, sensitivity and specificity. The strategy can be applied to design other heterogeneous biosensors without the immobilization of probe during the enzyme catalyzed reaction.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaohua Ma
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| |
Collapse
|
6
|
Wang LS, Gopalakrishnan S, Luther DC, Rotello VM. Protein-Based Films as Antifouling and Drug-Eluting Antimicrobial Coatings for Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48301-48307. [PMID: 34606711 PMCID: PMC8556632 DOI: 10.1021/acsami.1c15001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nosocomial infections, caused by bacterial contamination of medical devices and implants, are a serious healthcare concern. We demonstrate here, the use of fluorous-cured protein nanofilm coatings for generating antimicrobial surfaces. In this approach, bacteria-repelling films are created by heat-curing proteins in fluorous media. These films are then loaded with antibiotics, with release controlled via electrostatic interactions between therapeutic and protein film building blocks to provide bactericidal surfaces. This film fabrication process is additive-free, biocompatible, biodegradable, and can be used to provide antimicrobial coatings for both three-dimensional (2D) and 3D objects for use in indwelling devices.
Collapse
|
7
|
Timilsina SS, Jolly P, Durr N, Yafia M, Ingber DE. Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples. Acc Chem Res 2021; 54:3529-3539. [PMID: 34478255 DOI: 10.1021/acs.accounts.1c00382] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to perform multiplexed detection of various biomarkers within complex biological fluids in a robust, rapid, sensitive, and cost-effective manner could transform clinical diagnostics and enable personalized healthcare. Electrochemical (EC) sensor technology has been explored as a way to address this challenge because it does not require optical instrumentation and it is readily compatible with both integrated circuit and microfluidic technologies; yet this approach has had little impact as a viable commercial bioanalytical tool to date. The most critical limitation hindering their clinical application is the fact that EC sensors undergo rapid biofouling when exposed to complex biological samples (e.g., blood, plasma, saliva, urine), leading to the loss of sensitivity and selectivity. Thus, to break through this barrier, we must solve this biofouling problem.In response to this challenge, our group has developed a rapid, robust, and low-cost nanocomposite-based antifouling coating for multiplexed EC sensors that enables unprecedented performance in terms of biomarker signal detection compared to reported literature. The bioinspired antifouling coating that we developed is a nanoporous composite that contains various conductive nanomaterials, including gold nanowires (AuNWs), carbon nanotubes (CNTs), or reduced graphene oxide nanoflakes (rGOx). Each study has progressively evolved this technology to provide increasing performance while simplifying process flow, reducing time, and decreasing cost. For example, after successfully developing a semipermeable nanocomposite coating containing AuNWs cross-linked to bovine serum albumin (BSA) using glutaraldehyde, we replaced the nanomaterials with reduced graphene oxide, reducing the cost by 100-fold while maintaining similar signal transduction and antifouling properties. We, subsequently, developed a localized heat-induced coating method that significantly improved the efficiency of the drop-casting coating process and occurs within the unprecedented time of <1 min (at least 3 orders of magnitude faster than state-of-the-art). Moreover, the resulting coated electrodes can be stored at room temperature for at least 5 months and still maintain full sensitivity and specificity. Importantly, this improved coating showed excellent antifouling activity against various biological fluids, including plasma, serum, whole blood, urine, and saliva.To enable affinity-based sensing of multiple biomarkers simultaneously, we have developed multiplexed EC sensors coated with the improved nanocomposite coating and then employed a sandwich enzyme-linked immunosorbent assay (ELISA) format for signal detection in which the substrate for the enzyme bound to the secondary antibody precipitates locally at the molecular binding site above the electrode surface. Using this improved EC sensor platform, we demonstrated ultrasensitive detection of a wide range of biomarkers from biological fluids, including clinical biomarkers, in both single and multiplex formats (N = 4) with assay times of 37 and 15 min when integrated with a microfluidic system. These biosensors developed demonstrate the vast potential of solving the biofouling problem, and how it can enable potential clinically important diagnostic applications. This Account reviews our antifouling surface chemistry and the multiplexed EC sensor-based biodetection method we developed and places it in context of the various innovative contributions that have been made by other researchers in this field. We are optimistic that future iterations of these systems will change the way diagnostic testing is done, and where it can be carried out, in the future.
Collapse
Affiliation(s)
- Sanjay S. Timilsina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, Massachusetts, 02115, United States,
| | - Pawan Jolly
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, Massachusetts, 02115, United States,
| | - Nolan Durr
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, Massachusetts, 02115, United States,
| | - Mohamed Yafia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, Massachusetts, 02115, United States,
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, CLSB5, 3 Blackfan Circle, Boston, Massachusetts, 02115, United States,
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02115, United States
| |
Collapse
|
8
|
Giarola JDF, Souto DEP, Kubota LT. Evaluation of PAMAM Dendrimers (G3, G4, and G5) in the Construction of a SPR-based Immunosensor for Cardiac Troponin T. ANAL SCI 2021; 37:1007-1013. [PMID: 33431736 DOI: 10.2116/analsci.20p394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An immunosensor was developed using a SAM of an alkanethiol associated with PAMAM(G4) dendrimers based on surface plasmon resonance (SPR) to enhance the sensitivity for troponin T detection in blood samples. The feasibility of using three-dimensional platforms based on dendrimers for the development of immunosensors was demonstrated by evaluating three different generations of these dendrimers (G3, G4, and G5) to detect troponin T. The results showed the efficiency of these 3D platforms in anchoring biomolecules, amplifying the detection of troponin T. The sandwich assay showed good performance for troponin T detection, using secondary monoclonal antibodies, in the concentration range of 5 - 300 ng mL-1 (0.14 - 8.67 nmol L-1), R2 = 0.991, with the LOD of 3.6 ng mL-1. The sandwich assay's applicability was demonstrated by evaluating a secondary polyclonal antibody's performance in the concentration range of 3 - 30 ng mL-1, R2 = 0.998, with the LOD of 0.98 ng mL-1. The immunosensor was applied to determine troponin T in blood plasma samples from healthy patients, with an average recovery of 88 to 104%. The performance of the SPR-based immunosensor indicates reliable results and is expected to contribute to the rapid diagnosis of heart attack, with reduced costs.
Collapse
Affiliation(s)
- Juliana de F Giarola
- Institute of Chemistry, University of Campinas (UNICAMP).,National Institute of Science & Technology of Bioanalytics (INCTBio)
| | - Dênio E P Souto
- Department of Chemistry, Federal University of Paraná (UFPR)
| | - Lauro T Kubota
- Institute of Chemistry, University of Campinas (UNICAMP).,National Institute of Science & Technology of Bioanalytics (INCTBio)
| |
Collapse
|
9
|
Silver Nanoparticle-Based Sensor for the Selective Detection of Nickel Ions. NANOMATERIALS 2021; 11:nano11071733. [PMID: 34209361 PMCID: PMC8308118 DOI: 10.3390/nano11071733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
Silver nanoparticles (AgNPs) can be used as a surface plasmon resonance (SPR) colorimetric sensor; the correlation between the SPR phenomenon and the aggregation state of nanoparticle allows the real-time detection of a target molecule. Surface functionalization of NPs with proper molecular baits is often performed to establish the selectivity of the sensor. This work reports on the synthesis of AgNPs under reducing conditions and on the functionalization thereof with mercaptoundecanoic acid (11-MUA). UV-VIS Spectroscopy confirmed the formation of AgNPs, eliciting a surface plasmon absorption band (SPAB) at 393 nm that shifted to 417 nm upon surface coating. Dynamic light scattering was used to investigate the surface coatings; moreover, pelleted AgNPs@11MUA nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzers (EDX), and infrared spectroscopy to corroborate the presence of 11MUA on the surface. Most interestingly, the resulting AgNPs@11MUA selectively detected micromolar levels of Ni2+, also in the presence of other cations such as Mn2+, Co2+, Cd2+, Cu2+, Zn2+, Fe2+, Hg2+, Pb2+, and Cr3+.
Collapse
|
10
|
Sailer CO, Refardt J, Blum CA, Schnyder I, Molina-Tijeras JA, Fenske W, Christ-Crain M. Validity of different copeptin assays in the differential diagnosis of the polyuria-polydipsia syndrome. Sci Rep 2021; 11:10104. [PMID: 33980941 PMCID: PMC8114908 DOI: 10.1038/s41598-021-89505-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to correlate three commercially available copeptin assays and their diagnostic accuracy in the differential diagnosis of the polyuria-polydipsia syndrome. Analyzed data include repeated copeptin measures of 8 healthy volunteers and 40 patients with polyuria-polydipsia syndrome undergoing osmotic stimulation and of 40 patients hospitalized with pneumonia. Copeptin was measured using the automated Brahms KRYPTOR, the manual Brahms LIA and the manual Cloud Clone ELISA assay. Primary outcome was the interrater correlation coefficient (ICC) and diagnostic accuracy in the polyuria-polydipsia syndrome of the three assays. In healthy volunteers, there was a moderate correlation for the KRYPTOR and LIA (ICC 0.74; 95% CI 0.07 to 0.91), and a poor correlation for the KRYPTOR and ELISA (ICC 0.07; 95% CI - 0.06 to 0.29), as for the LIA and ELISA (ICC 0.04; 95% CI - 0.04 to 0.17). The KRYPTOR had the highest diagnostic accuracy (98% (95% CI 83 to100)), comparable to the LIA (88% (95% CI 74 to 100)), while the ELISA had a poor diagnostic accuracy (55% (95% CI 34 to 68)) in the differential diagnosis of the polyuria-polydipsia syndrome. The KRYPTOR and LIA yield comparable copeptin concentrations and high diagnostic accuracy, while the ELISA correlates poorly with the other two assays and shows a poor diagnostic accuracy for polyuria-polydipsia patients. The current copeptin cut-off is valid for the KRYPTOR and LIA assay. Our results indicate that interpretation with other assays should be performed with caution and separate validation studies are required before their use in differentiating patients with polyuria-polydipsia syndrome.Trial registration: NCT02647736 January 6, 2016/NCT01940614 September 12, 2013/NCT00973154 September 9, 2009.
Collapse
Affiliation(s)
- Clara Odilia Sailer
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Julie Refardt
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Claudine Angela Blum
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Medical University Clinic, Kantonsspital Aarau, Aarau, Switzerland
| | - Ingeborg Schnyder
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jose Alberto Molina-Tijeras
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Wiebke Fenske
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany.,Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Mirjam Christ-Crain
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
11
|
Ortega FG, Regiart MD, Rodríguez-Martínez A, de Miguel-Pérez D, Serrano MJ, Lorente JA, Tortella G, Rubilar O, Sapag K, Bertotti M, Fernández-Baldo MA. Sandwich-Type Electrochemical Paper-Based Immunosensor for Claudin 7 and CD81 Dual Determination on Extracellular Vesicles from Breast Cancer Patients. Anal Chem 2021; 93:1143-1153. [PMID: 33301317 DOI: 10.1021/acs.analchem.0c04180] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study is focused on identifying novel epithelial markers in circulating extracellular vesicles (EVs) through the development of a dual sandwich-type electrochemical paper-based immunosensor for Claudin 7 and CD81 determination, as well as its validation in breast cancer (BC) patients. This immunosensor allows for rapid, sensitive, and label-free detection of these two relevant BC biomarkers. Under optimum conditions, the limit of detection for Claudin 7 was 0.4 pg mL-1, with a wide linear range of 2 to 1000 pg mL-1, while for CD81, the limit of detection was 3 pg mL-1, with a wide linear range of 0.01 to 10 ng mL-1. Finally, we validated Claudin 7 and CD81 determination in EVs from 60 BC patients and 20 healthy volunteers, reporting higher diagnostic accuracy than the one observed with classical diagnostic markers. This analysis provides a low-cost, specific, versatile, and user-friendly strategy as a robust and reliable tool for early BC diagnosis.
Collapse
Affiliation(s)
- Francisco G Ortega
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma de Mallorca, Spain
| | - Matías D Regiart
- LSEME, Laboratório de Sensores Eletroquímicos e Métodos Eletroanalíticos. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970 São Paulo, São Paulo, Brazil
| | - Alba Rodríguez-Martínez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Diego de Miguel-Pérez
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain
| | - María J Serrano
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain
| | - José A Lorente
- Liquid Biopsy and Metastasis Research Group, GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government PTS, Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain.,Laboratory of Genetic Identification, Legal Medicine and Toxicology Department, Faculty of Medicine-PTS, University of Granada, Avenida de la Investigación, 11, 18016 Granada, Spain
| | - Gonzalo Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, 4811230 Temuco, Chile.,Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), 4811230 Temuco, Chile
| | - Olga Rubilar
- Departamento de Ingeniería Química, Universidad de La Frontera, 4811230 Temuco, Chile.,Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), 4811230 Temuco, Chile
| | - Karim Sapag
- INFAP, Laboratorio de Solidos Porosos, Universidad Nacional de San Luis, CONICET, Ejercito de los Andes 950, D5700BWS San Luis, Argentina
| | - Mauro Bertotti
- LSEME, Laboratório de Sensores Eletroquímicos e Métodos Eletroanalíticos. Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970 São Paulo, São Paulo, Brazil
| | - Martín A Fernández-Baldo
- INQUISAL, Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS San Luis, Argentina
| |
Collapse
|
12
|
Anti-fouling SERS-based immunosensor for point-of-care detection of the B7–H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138:110-122. [DOI: 10.1016/j.aca.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
13
|
La M, Wu D, Gao Y, Xia N, Niu Y, Liu L, Yi X. Competitive impedimetric aptasensors for detection of small molecule pollutants by the signal amplification of self-assembled biotin-phenylalanine nanoparticle networks. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Daboss S, Lin J, Godejohann M, Kranz C. Redox Switchable Polydopamine-Modified AFM-SECM Probes: A Probe for Electrochemical Force Spectroscopy. Anal Chem 2020; 92:8404-8413. [PMID: 32337984 DOI: 10.1021/acs.analchem.0c00995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polydopamine (PDA) has high potential in biorelevant applications as a versatile thin film material, e.g., as adhesive coating for cell immobilization or for sensing applications due to the plethora of functional groups. In this study we present the modification of conductive colloidal atomic force-scanning electrochemical microscopy (AFM-SECM) probes with electrochemically deposited PDA resulting in functional probes for quantitative electrochemical adhesion studies. Surface functionality of PDA can be altered by oxidation or reduction of functional groups applying an appropriate potential to the PDA-modified AFM-SECM probe, thereby enabling adhesion measurements under potential control. This facilitates probing specific interactions of surface groups present in PDA with various surfaces of different wettabilities. The versatility of such switchable AFM-SECM probes is demonstrated for electrochemical force spectroscopic studies at model samples such as plasma-treated gold substrates, hydrophobic or hydrophilic self-assembled monolayers, and for adhesion measurements of bacteria in dependence of altered surface charges of the colloidal probe. The maximum obtained adhesion force of a positively polarized PDA-modified AFM-SECM probe was 6.2 ± 2.2 nN, and it was about 50% less (i.e., 2.6 ± 1.1 nN) for a negatively polarized probe at a hydrophilic OH-terminated gold surface. In situ control of the active surface groups enabled investigations on the influence of surface charges on adhesion. Furthermore, plateaus of constant force were observed, which are a characteristic of polymer structures. Finally, electrochemical force measurements with switchable probes were used for the first time during adhesion studies of bacterial cells (i.e., Pseudomonas fluorescens). Positively biased PDA-coated colloidal probes revealed adhesion forces of 6.0 ± 1.1 nN, whereas significantly reduced adhesion forces 1.1 ± 0.7 nN were observed for negatively biased PDA-modified colloidal probes.
Collapse
Affiliation(s)
- Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Godejohann
- MG Optical Solutions GmbH, Industriestraße 23, 86919 Utting am Ammersee, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
15
|
Lin PH, Li BR. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020; 145:1110-1120. [DOI: 10.1039/c9an02017a] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A review presented recent development of antifouling strategies in electrochemical sensors and biosensors based on the modification methods.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering
- College of Electrical and Computer Engineering
- National Chiao Tung University
- Hsinchu
- Taiwan
| |
Collapse
|
16
|
Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. NANOSCALE 2019; 11:19105-19118. [PMID: 31549117 DOI: 10.1039/c9nr05696c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotechnology and nanomaterial based electrochemical biosensors (ECBs) have achieved great development in many fields, such as clinical diagnosis, food analysis, and environmental monitoring. Nowadays, the single-handed pursuit of sensitivity and accuracy cannot meet the demands of detection in many in situ and point-of-care (POC) circumstances. More and more attention has been focused on simplifying the operation procedure and reducing detection time, and thus no-wash assay has become one of the most effective ways for the continuous development of ECBs. However, there are many challenges to realize no-wash detection in the real analysis, such as redox interferences, multiple impurities, non-conducting protein macromolecules, etc. Furthermore, the complex detection circumstance in different application fields makes the realization of no-wash ECBs more complicated and difficult. Thanks to the updated nanotechnology and nanomaterials, in-depth analysis of the obstacles in the detection process and various methods for fabricating no-wash ECBs, most issues have been largely resolved. In this review, we have systematically analyzed the nanomaterial based design strategy of the state-of-the-art no-wash ECBs in the past few years. Following that, we summarized the challenges in the detection process of no-wash ECBs and their applications in different fields. Finally, based on the summary and analysis in this review, we also evaluated and discussed future prospects from the design to the application of ECBs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Wang LS, Gopalakrishnan S, Rotello VM. Tailored Functional Surfaces Using Nanoparticle and Protein "Nanobrick" Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10993-11006. [PMID: 30543751 DOI: 10.1021/acs.langmuir.8b03235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface properties are an essential feature in a wide range of functional materials. In this article, we summarize strategies developed in our group that employ nanoparticles and proteins as nanobricks to create thin-film coatings on surfaces. These coatings contain tailorable surface functionality based on the properties of the predesigned nanobricks, parlaying both the chemical and structural features of the precursor particles and proteins. This strategy is versatile, providing the rapid generation of both uniform and patterned coatings that provide "plug-and-play" customizable surfaces for materials and biomedical applications.
Collapse
Affiliation(s)
- Li-Sheng Wang
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Sanjana Gopalakrishnan
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
18
|
Bhardwaj H, Pandey MK, Rajesh, Sumana G. Electrochemical Aflatoxin B1 immunosensor based on the use of graphene quantum dots and gold nanoparticles. Mikrochim Acta 2019; 186:592. [DOI: 10.1007/s00604-019-3701-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/13/2019] [Indexed: 12/12/2022]
|
19
|
Bio-assay: The best alternative for conventional methods in detection of epidermal growth factor. Int J Biol Macromol 2019; 133:624-639. [DOI: 10.1016/j.ijbiomac.2019.04.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
20
|
Fang Y, Li Y, Zhang M, Cui B, Hu Q, Wang L. A novel electrochemical strategy based on porous 3D graphene-starch architecture and silver deposition for ultrasensitive detection of neuron-specific enolase. Analyst 2019; 144:2186-2194. [DOI: 10.1039/c8an02230e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work was aimed at designing a novel and ultrasensitive electrochemical immunoassay strategy to detect neuron-specific enolase (NSE) with a triple signal amplification strategy.
Collapse
Affiliation(s)
- Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Yanping Li
- School of Food Science and Engineering
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- China
| | - Ming Zhang
- School of Food Science and Engineering
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan 250353
- China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- People's Republic of China
| |
Collapse
|
21
|
Electrochemiluminescent biosensor with DNA link for selective detection of human IgG based on steric hindrance. Talanta 2018; 194:745-751. [PMID: 30609601 DOI: 10.1016/j.talanta.2018.10.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/27/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
A highly selective DNA-based electrochemiluminescence (ECL) based biosensor is described for the detection of human IgG. It is exploiting the effect of steric hindrance that affects the strength of the ECL signal in the presence of IgG. Digoxin-linked signaling DNA was specifically bound to IgG, and this causes steric hindrance which limits the ability of DNA to hybridize with capturing DNA attached to a gold electrode. Europium (II) doped CdSe quantum dots were covalently linked to the DNA in order to generate the ECL signal. Using this steric hindrance hybridization method, the ECL signal of the biosensor were proportional to the concentration of IgG with a wide linear range and a 14 pM detection limit. Conceivably, the method can be expanded to the detection of a wide range of proteins for which homologous recognition elements are available.
Collapse
|
22
|
Liu X, Peng L, Meng J, Zhu Z, Han B, Wang S. Protein-mediated anti-adhesion surface against oral bacteria. NANOSCALE 2018; 10:2711-2714. [PMID: 29372229 DOI: 10.1039/c7nr08844b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomedical materials, such as orthopedic biomaterials, have a great impact on improving life quality and self-esteem of human beings. However, the usage of fixed appliances during dental treatment often increases the difficulty of oral cleaning and enlarges the adhesion opportunity of oral bacteria. Furthermore, the existing anti-adhesion coatings, such as polyethylene glycol derivatives and zwitterionic polymers, have not been universally accepted in the oral environment due to their intrinsic problems. Herein, inspired by the anti-adhesion capability of bovine serum albumin, we report a facile protein-based anti-bacterial surface, showing excellent anti-adhesion performance toward oral bacteria. This protein-mediated anti-adhesion strategy may provide a promising clue for developing new anti-bacterial biomaterials, such as dental fixed appliances, restorative materials and medical mouthwashes.
Collapse
Affiliation(s)
- Xi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Qin H, Zhu Z, Ji W, Zhang M. Carbon Nanotube Paper-based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. ELECTROANAL 2018. [DOI: 10.1002/elan.201700689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hancheng Qin
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Ziyu Zhu
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Wenliang Ji
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Meining Zhang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
24
|
Liu CH, Qi FP, Wen FB, Long LP, Liu AJ, Yang RH. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe. Methods Appl Fluoresc 2018; 6:024001. [PMID: 29350185 DOI: 10.1088/2050-6120/aa86b7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.
Collapse
Affiliation(s)
- Chang-Hui Liu
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410004, People's Republic of China. College of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, People's Republic of China. School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Yang R, Li Y, Zou K, Meng L, Zhang X, Chen J. A label-free and blocker-free photoelectrochemical strategy for highly sensitive caspase-3 assay. Chem Commun (Camb) 2018; 54:4830-4833. [DOI: 10.1039/c8cc02226g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Based on CC-DEVD-peptide modified nitrogen-doped porous carbon-ZnO nanopolyhedra/CdS hybrids, a label-free and blocker-free photoelectrochemical strategy was developed for caspase-3 assay.
Collapse
Affiliation(s)
- Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Yanmei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Kang Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
26
|
Gan C, Wang B, Huang J, Qileng A, He Z, Lei H, Liu W, Liu Y. Multiple amplified enzyme-free electrochemical immunosensor based on G-quadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection. Biosens Bioelectron 2017; 98:126-133. [DOI: 10.1016/j.bios.2017.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/24/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
|
27
|
Tang Z, Ma Z. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review. Biosens Bioelectron 2017; 98:100-112. [DOI: 10.1016/j.bios.2017.06.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
|
28
|
Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy. Biosens Bioelectron 2017; 102:282-287. [PMID: 29153950 DOI: 10.1016/j.bios.2017.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 11/24/2022]
Abstract
In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (IFc) and "signal-off" of MB (IMB). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL-1 to 15ngmL-1 with a low detection limit of 0.03pgmL-1. This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe.
Collapse
|
29
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
30
|
Liu X, Song X, Dong Z, Meng X, Chen Y, Yang L. Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein. Biosens Bioelectron 2017; 91:431-435. [DOI: 10.1016/j.bios.2016.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
31
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
32
|
Zhu G, Lee HJ. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens Bioelectron 2016; 89:959-963. [PMID: 27816594 DOI: 10.1016/j.bios.2016.09.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
A novel sandwich-type biosensor was developed for the electrochemical detection of α-1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0pM and a low detection limit of 0.01pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.
Collapse
Affiliation(s)
- Gangbing Zhu
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea.
| |
Collapse
|
33
|
Song Y, Shen Y, Chen J, Song Y, Gong C, Wang L. A pH-Dependent Electrochemical Immunosensor Based on Integrated Macroporous Carbon Electrode for Assay of Carcinoembryonic Antigen. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Yang J, Shen H, Zhang X, Tao Y, Xiang H, Xie G. A novel platform for high sensitivity determination of PbP2a based on gold nanoparticles composited graphitized mesoporous carbon and doxorubicin loaded hollow gold nanospheres. Biosens Bioelectron 2016; 77:1119-25. [DOI: 10.1016/j.bios.2015.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023]
|
35
|
Cai X, Weng S, Guo R, Lin L, Chen W, Zheng Z, Huang Z, Lin X. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker. Biosens Bioelectron 2016; 81:173-180. [PMID: 26945184 DOI: 10.1016/j.bios.2016.02.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/21/2016] [Accepted: 02/25/2016] [Indexed: 02/04/2023]
Abstract
A ratiometric assay in an electrochemical immunosensor for tumor marker, herein carcinoembryonic antigen (CEA) was chosen as a model analyte, was developed to improve simplicity and accuracy. The immunosensor was fabricated via the simple expedient way of using Polythionine-gold (PTh-Au) as electrode modified material to be an internal reference signal and K3[Fe(CN)6] in electrolyte as an indicator signal. When the CEA was fixed on the modified electrode via immunoreaction, only the indicator signal sensitively altered; by contrast, the internal reference signal of PTh-Au remained constant at a suitable pH of the electrolyte. The ratio between the alterations of the indicator signal of K3[Fe(CN)6] and the constant internal reference signal can be used to monitor the concentration of CEA reliably, reproducibly, and sensitively. The prepared ratiometric electrochemical immunosensor could detect CEA with good specificity within a wide linear range from 0.005ng/ml to 40ng/ml with a detection limit of 2.2pg/ml. Additionally, experimental results confirm that our proposed method is practical. Thus, this method can expand to recognize and test other protein markers.
Collapse
Affiliation(s)
- Xiaohui Cai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China.
| | - Rubin Guo
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China
| | | | - Zhengjun Huang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, the Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350108, China.
| |
Collapse
|
36
|
Wang W, Cui M, Song Z, Luo X. An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Adv 2016. [DOI: 10.1039/c6ra19169j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A sensitive and antifouling electrochemical CEA immunosensor was developed based on PEDOT doped with hyaluronic acid.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Min Cui
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhiling Song
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|