1
|
Xiang F, Yu J, Jiang D, Hu W, Zhang R, Huang C, Wu T, Gao Y, Zheng A, Liu TM, Zheng W, Li X, Li H. Quantitative multiphoton imaging of cell metabolism, stromal fibers, and keratinization enables label-free discrimination of esophageal squamous cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2023; 14:4137-4155. [PMID: 37799684 PMCID: PMC10549756 DOI: 10.1364/boe.492109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 10/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) features atypical clinical manifestations and a low 5-year survival rate (< 5% in many developing countries where most of the disease occurs). Precise ESCC detection and grading toward timely and effective intervention are therefore crucial. In this study, we propose a multidimensional, slicing-free, and label-free histopathological evaluation method based on multispectral multiphoton fluorescence lifetime imaging microscopy (MM-FLIM) for precise ESCC identification. To assess the feasibility of this method, comparative imaging on fresh human biopsy specimens of different ESCC grades is performed. By constructing fluorescence spectrum- and lifetime-coded images, ESCC-induced morphological variations are unveiled. Further quantification of cell metabolism and stromal fibers reveals potential indicators for ESCC detection and grading. The specific identification of keratin pearls provides additional support for the early detection of ESCC. These findings demonstrate the viability of using MM-FLIM and the series of derived indicators for histopathological evaluation of ESCC. As there is an increasing interest in developing multiphoton endoscopes and multiphoton FLIM systems for clinical use, the proposed method would probably allow noninvasive, label-free, and multidimensional histological detection and grading of ESCC in the future.
Collapse
Affiliation(s)
- Feng Xiang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jia Yu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Danling Jiang
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Weiwang Hu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongli Zhang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chenming Huang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ting Wu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yufeng Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Aiping Zheng
- Department of Pathology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shen Zhen 518036, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
3
|
Wu X, Guo LZ, Liu YH, Liu YC, Yang PL, Leung YS, Tai HC, Wang TD, Lin JCW, Lai CL, Chuang YH, Lin CH, Chou PT, Lai IR, Liu TM. Plasma riboflavin fluorescence as a diagnostic marker of mesenteric ischemia-reperfusion injury in rats. Thromb Res 2023; 223:146-154. [PMID: 36753876 DOI: 10.1016/j.thromres.2023.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Due to the delayed and vague symptoms, it is difficult to early diagnose mesenteric ischemia injuries in the dynamics of acute illness, leading to a 60-80 % mortality rate. Here, we found plasma fluorescence spectra can rapidly assess the severity of mesenteric ischemia injury in animal models. Ischemia-reperfusion damage of the intestine leads to multiple times increase in NADH, flavins, and porphyrin auto-fluorescence of blood. The fluorescence intensity ratio between blue-fluorophores and flavins can reflect the occurrence of shock. Using liquid chromatography and mass spectroscopy, we confirm that riboflavin is primarily responsible for the increased flavin fluorescence. Since humans absorb riboflavin from the intestine, its increase in plasma may indicate intestinal mucosa injury. Our work suggests a self-calibrated and reagent-free approach to identifying the emergence of fatal mesenteric ischemia in emergency departments or intensive care units.
Collapse
Affiliation(s)
- Xueqin Wu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Lun-Zhang Guo
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hung Liu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Cheng Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Po-Lun Yang
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Shiuan Leung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China.
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - Jesse Chih-Wei Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chao-Lun Lai
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Hsun Chuang
- Department of Anesthesiology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hsueh Lin
- Department of Nutrition, College of Medical and Health Care, Hungkuang University, Taichung City 433304, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan.
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Barik B, Mohapatra S. Selective and sensitive fluorescence turn-on detection of bilirubin using resorcinol-sucrose derived carbon dot. Anal Biochem 2022; 654:114813. [PMID: 35863463 DOI: 10.1016/j.ab.2022.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Carbon dots have been prepared from resorcinol and sucrose (rsCDs) hydrothermally, which show green emission at 525 nm with a fluorescence quantum yield (PLQY) of 17.2%. The intense emission of rsCDs is quenched upon the addition of Cu2+. In the presence of bilirubin (BR), the emission intensity is enhanced due to the competitive binding of Cu2+ with bilirubin and hence releasing rsCDs to the sensing medium. It is the first time report on turn-on fluorescence sensing towards BR with a detection limit of 85 nM. Even in the presence of other comparable biomolecules, the sensor is selective and ultrasensitive to bilirubin. A cellulose paper-based sensor strip has also been designed for the naked-eye detection of BR in blood serum. Due to the specific recognition of this rsCDs towards BR, it can be applied to detect BR in practical human serum samples.
Collapse
Affiliation(s)
- Balaram Barik
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Sasmita Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
5
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Kaur K, Sahu BK, Swami K, Chandel M, Gupta A, Zhu LH, Youngblood JP, Kanagarajan S, Shanmugam V. Phone Camera Nano-Biosensor Using Mighty Sensitive Transparent Reusable Upconversion Paper. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27507-27514. [PMID: 35667027 DOI: 10.1021/acsami.2c06894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lycopene, a natural colorant and antioxidant with a huge growing market, is highly susceptible to photo/thermal degradation, which demands real-time sensors. Hence, here a transparent upconversion nanoparticles (UCNPs) strip having 30 mol % Yb, 0.1 mol % Tm, and β-NaYF4 UCNPs, which shows an intense emission at 475 nm, has been developed. This strip has been found to be sensitive to lycopene with a detection limit as low as 10 nM using a smartphone camera, which is due to static quenching that is confirmed by the lifetime study. In comparison to previous paper strips, here the transparent strip has minimal scattering with maximum sensitivity in spite of not using any metal quenchers. An increase in strip hydrophobicity during the fabrication process complements the strip to selectively permeate and present an extraction-free substitute analysis for chromatography. Hydrophobicity endows the strip with the capability to reuse the strip with ∼100% luminescence recovery.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Bandana Kumari Sahu
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Kanchan Swami
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Mahima Chandel
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Anshika Gupta
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
8
|
Fathi P, Moitra P, McDonald MM, Esch MB, Pan D. Near-infrared emitting dual-stimuli-responsive carbon dots from endogenous bile pigments. NANOSCALE 2021; 13:13487-13496. [PMID: 34477753 DOI: 10.1039/d1nr01295a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Carbon dots are biocompatible nanoparticles suitable for a variety of biomedical applications. Careful selection of carbon dot precursors and surface modification techniques has allowed for the development of carbon dots with strong near-infrared fluorescence emission. However, carbon dots that provide strong fluorescence contrast would prove even more useful if they were also responsive to stimuli. In this work, endogenous bile pigments bilirubin (BR) and biliverdin (BV) were used for the first time to synthesize stimuli-responsive carbon dots (BR-CDots and BV-CDots respectively). The precursor choice lends these carbon dots spectroscopic characteristics that are enzyme-responsive and pH-responsive without the need for surface modifications post-synthesis. Both BV- and BR-CDots are water-dispersible and provide fluorescence contrast, while retaining the stimuli-responsive behaviors intrinsic to their precursors. Nanoparticle Tracking Analysis revealed that the hydrodynamic size of the BR-CDots and BV-CDots decreased with exposure to bilirubin oxidase and biliverdin reductase, respectively, indicating potential enzyme-responsive degradation of the carbon dots. Fluorescence spectroscopic data demonstrate that both BR-CDots and BV-CDots exhibit changes in their fluorescence spectra in response to changes in pH, indicating that these carbon dots have potential applications in pH sensing. In addition, BR-CDots are biocompatible and provide near-infrared fluorescence emission when excited with light at wavelengths of 600 nm or higher. This work demonstrates the use of rationally selected carbon sources for obtaining near-infrared fluorescence and stimuli-responsive behavior in carbon dots that also provide strong fluorescence contrast.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois, 61801, USA
| | | | | | | | | |
Collapse
|
9
|
Nandi N, Gaurav S, Sarkar P, Kumar S, Sahu K. Multifunctional N-Doped Carbon Dots for Bimodal Detection of Bilirubin and Vitamin B 12, Living Cell Imaging, and Fluorescent Ink. ACS APPLIED BIO MATERIALS 2021; 4:5201-5211. [PMID: 35007002 DOI: 10.1021/acsabm.1c00371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A N-doped carbon dot (NCD) has been synthesized via a simplistic one-step hydrothermal technique using l-aspartic acid and 3,6-diaminoacridine hydrochloride. The NCDs exhibit a high quantum yield (22.7%) and excellent optical stability in aqueous media. Additionally, NCDs display good solid-state yellowish-green emission and are suitable for security ink applications. The remarkable fluorescence (FL) properties of NCDs are further applied to develop a multifunctional sensor for bilirubin (BR) and vitamin B12 (VB12) via fluorescence quenching. We have systematically studied the FL quenching mechanisms of the two analytes. The primary quenching mechanism of BR is via the Förster resonant energy transfer (FRET) pathway facilitated by the H-bonding network between the hydrophilic moieties existing at the surface of BR and NCDs. In contrast, the inner filter effect (IFE) is mainly responsible for the recognition of VB12. The practicability of the nanoprobe NCDs is further tested in real-sample analysis for BR (human serum and urine samples) and VB12 (VB12 tablets, human serum, and energy drink) with a satisfactory outcome. The in vitro competency is also verified in the human cervical cancer cell line (HeLa cell) with negligible cytotoxicity and significant biocompatibility. This result facilitates the application of NCDs for bioimaging and recognition of VB12 in a living organism.
Collapse
Affiliation(s)
- Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shubham Gaurav
- Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sachin Kumar
- Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
10
|
Yao Q, Chen R, Ganapathy V, Kou L. Therapeutic application and construction of bilirubin incorporated nanoparticles. J Control Release 2020; 328:407-424. [DOI: 10.1016/j.jconrel.2020.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
11
|
Advances in luminescent metal-organic framework sensors based on post-synthetic modification. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115939] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Ahmmed E, Mondal A, Sarkar A, Chakraborty S, Lohar S, Saha NC, Dhara K, Chattopadhyay P. Bilirubin Quantification in Human Blood Serum by Deoxygenation Reaction Switch-Triggered Fluorescent Probe. ACS APPLIED BIO MATERIALS 2020; 3:4074-4080. [PMID: 35025482 DOI: 10.1021/acsabm.0c00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A coumarin-based fluorescent compound, bilirubin fluorescent probe N-oxide (BFPNox), was successfully designed and synthesized for highly selective and sensitive detection of free bilirubin with short response time. The fluorescence "turn-on" response of the probe is based on the in situ generated Fe2+-mediated deoxygenation reaction of N-oxide from the diethylarylamine group of the probe, where the group attached to the coumarin π-conjugated system is responsible for the fluorescence quenching state of the probe, BFPNox. Here, the reaction of the added Fe3+ ions with bilirubin produces Fe2+ ions in situ in aqueous buffer. Fluorescence enhancement of BFPNox was achieved by more than 12-fold when a double equivalent of bilirubin solution was added in reaction buffer at pH 7.2 (50 mM HEPES, 5% DMSO) at 25 °C under excitation at 400 nm. It detected free bilirubin as low as 76 nM in an aqueous system without any interference of metal ions, anions, and other important biomolecules with a linear concentration range of 0-10 μM (R2 = 0.991). The probe was also employed in the estimation of free bilirubin in human serum specimens to verify the efficacy of this probe. With these, it is revealed that this probe is a good candidate to be used as a powerful diagnostic tool for the assessment of free bilirubin with significant accuracy and reliability.
Collapse
Affiliation(s)
- Ejaj Ahmmed
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Asit Mondal
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Arnab Sarkar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sujaya Chakraborty
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Somenath Lohar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Nimai Chandra Saha
- Vice Chancellor's Research Group, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
13
|
Vítek L. Bilirubin as a signaling molecule. Med Res Rev 2020; 40:1335-1351. [PMID: 32017160 DOI: 10.1002/med.21660] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
For long time bilirubin was only considered as a potentially dangerous sign of liver diseases, but it now appears clear that it is also a powerful signaling molecule. Together with potent antioxidant activities that were only reported in the last few decades, many other biological effects have now been clearly described. These include especially profound inhibitory effects on almost all effectors of the immune system, with their clinical consequences in the bilirubin-mediated protection against autoimmune and inflammatory diseases. Separate from these, bilirubin activates various nuclear and cytoplasmic receptors, resembling the endocrine activities of actual hormonal substances. This is true for the "classical" hepatic nuclear receptors, including the aryl hydrocarbon receptor, or the constitutive androstane receptor; and also for some lesser-explored receptors such as peroxisome proliferator-activated receptors α and γ; Mas-related G protein-coupled receptor; or other signaling molecules including fatty acid binding protein 1, apolipoprotein D, or reactive oxygen species. All of these targets have broad metabolic effects, which in turn may offer protection against obesity, diabetes mellitus, and other metabolic diseases. The (mostly experimental) data are also supported by clinical evidence. In fact, data from the last three decades have convincingly demonstrated the protective effects of mildly elevated serum bilirubin concentrations against various "diseases of civilization." Additionally, even tiny, micromolar changes of serum bilirubin concentrations have been associated with substantial alteration in the risks of these diseases. It is highly likely that all of the biological activities of bilirubin have yet to be exhaustively explored, and thus we can expect further clinical discoveries about this evolutionarily old molecule into the future.
Collapse
Affiliation(s)
- Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Nandi S, Biswas S. A recyclable post-synthetically modified Al(iii) based metal–organic framework for fast and selective fluorogenic recognition of bilirubin in human biofluids. Dalton Trans 2019; 48:9266-9275. [DOI: 10.1039/c9dt01180c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ultra-fast, highly sensitive and selective sensing features of bilirubin in human biofluids by a post-synthetically modified Al(iii) MOF are presented.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
15
|
Pal S, Banerjee P, Mondal D, Sarkar N. Light-induced morphological transition between unconjugated bilirubin photoisomers. SOFT MATTER 2018; 14:8325-8332. [PMID: 30289141 DOI: 10.1039/c8sm01801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Morphology switching by an external stimulus creates the possibility to detect and control the activity and functionality of bio-molecules. Unconjugated bilirubin (UCB), a waste product resulting from heme catabolism, is highly sensitive towards blue light induced configurational conversion from (4Z,15Z) to (4Z,15E)-bilirubin. UCB has a distinct elongated nanostructure which is readily photoswitchable to spherical by external blue light (470 nm) irradiation. Herein, the morphology alteration by blue light was nicely correlated with the photoisomerisation of UCB, using different microscopic and spectroscopic techniques. To restrict the other photo-incidents during phototreatment on UCB, a suitable time frame was calibrated by monitoring the absorption, HPLC, lifetime distribution and 1H NMR studies. Furthermore, by the help of this morphological transition as a marker, UCB early stage photoisomerisation has also been triggered by two-photon irradiation (940 nm).
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| | - Dipankar Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
16
|
Ngashangva L, Bachu V, Goswami P. Development of new methods for determination of bilirubin. J Pharm Biomed Anal 2018; 162:272-285. [PMID: 30273817 DOI: 10.1016/j.jpba.2018.09.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 02/06/2023]
Abstract
The ever-increasing demand for a sensitive, rapid and reliable method for determination of serum bilirubin level has been inciting the interest of the researchers to develop new methods for both laboratory set up and point of care applications. These efforts embrace measurement of different forms of bilirubin, such as, unconjugated (free and albumin bound) bilirubin, conjugated (direct) bilirubin, and total (both conjugated and unconjugated) bilirubin in the serum that may provide critical information useful for diagnosis of many diseases and metabolic disorders. Herein, an effort has been made to provide a broad overview on the subject starting from the conventional spectroscopy based analytical methods widely practiced in the laboratory setup along with the sophisticated instrument based sensitive methods suitable for determination of different forms of bilirubin to various portable low cost systems applicable in point of care (POC) settings. In all these discussions emphasis is given on the novel methods and techniques bearing potential to measure the bilirubin level in biological samples reliably with less technical complexity and cost. We expect that this review will serve as a ready reference for the researchers and clinical professionals working on the subject and allied fields.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
17
|
Wang T, Zhang KH, Hu PP, Wan QS, Han FL, Zhou JM, Huang DQ, Lv NH. Combination of dual serum fluorescence, AFP and hepatic function tests is valuable to identify HCC in AFP-elevated liver diseases. Oncotarget 2017; 8:97758-97768. [PMID: 29228649 PMCID: PMC5716689 DOI: 10.18632/oncotarget.22050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Serum alpha-fetoprotein (AFP) levels elevated in benign liver diseases (BLD) represent a challenge in hepatocellular carcinoma (HCC) diagnosis. The present study aimed to develop a simple method to identify HCC in AFP-elevated liver diseases based on combining serum fluorescence and general clinical data. Serum specimens and clinical data were collected from 201 HCC and 117 BLD (41 liver cirrhosis, 76 chronic hepatitis) patients with abnormal serum AFP levels. Dual serum fluorescence (autofluorescence and cell-free DNA-related fluorescence) intensities were sequentially measured and expressed as 6 fluorescence indicators. The diagnostic value of these fluorescence and clinical data were evaluated alone and in combination by the area under receiver operating characteristic curve (AUROC). All fluorescence indicators significantly differed between HCC and BLD and some of them were more valuable for diagnosing HCC than AFP (AUROC 0.782-0.801 vs. 0.752). The diagnostic model established with fluorescence indicators, AFP, hepatic function tests and age showed that AUROC, sensitivity, specificity and accuracy were 0.958 (95% CI 0.936-0.979), 92.0%, 88.9% and 92.3%, respectively, and positive rates in AFP-negative, early and small HCCs were 73.8%, 81.6% and 74.3%, respectively. In conclusion, the combination of dual serum fluorescence, AFP, hepatic function tests and age is simple and valuable for identifying HCC in serum AFP-elevated liver diseases.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Piao-Ping Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Qin-Si Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Fang-Li Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Jian-Ming Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - De-Qiang Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| | - Nong-Hua Lv
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, China
| |
Collapse
|
18
|
Mandal RP, Mandal G, Sarkar S, Bhattacharyya A, De S. “Theranostic” role of bile salt-capped silver nanoparticles - gall stone/pigment stone disruption and anticancer activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:269-281. [DOI: 10.1016/j.jphotobiol.2017.08.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/29/2023]
|
19
|
Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat Commun 2017; 8:75. [PMID: 28706202 PMCID: PMC5509677 DOI: 10.1038/s41467-017-00138-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients. Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.
Collapse
|
20
|
Park JS, Nam E, Lee HK, Lim MH, Rhee HW. In Cellulo Mapping of Subcellular Localized Bilirubin. ACS Chem Biol 2016; 11:2177-85. [PMID: 27232847 DOI: 10.1021/acschembio.6b00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bilirubin (BR) is a de novo synthesized metabolite of human cells. However, subcellular localization of BR in the different organelles of human cells has been largely unknown. Here, utilizing UnaG as a genetically encoded fluorescent BR sensor, we report the existence of relatively BR-enriched and BR-depleted microspaces in various cellular organelles of live cells. Our studies indicate that (i) the cytoplasmic facing membrane of the endoplasmic reticulum (ER) and the nucleus are relatively BR-enriched spaces and (ii) mitochondrial intermembrane space and the ER lumen are relatively BR-depleted spaces. Thus, we demonstrate a relationship between such asymmetrical BR distribution in the ER membrane and the BR metabolic pathway. Furthermore, our results suggest plausible BR-transport and BR-regulating machineries in other cellular compartments, including the nucleus and mitochondria.
Collapse
Affiliation(s)
- Jong-Seok Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hye-Kyeong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|