1
|
Ribeiro JA, Silva AF, Girault HH, Pereira CM. Electroanalytical applications of ITIES - A review. Talanta 2024; 280:126729. [PMID: 39180876 DOI: 10.1016/j.talanta.2024.126729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Over the last decades, the interface between two immiscible electrolyte solutions (ITIES) attracted considerable attention of the scientific community due to their vast applications, such as extraction, catalysis, partition studies and sensing. The aim of this Review is to highlight the potential of electrochemistry at the ITIES for analytical purposes, focusing on ITIES-based sensors for detection and quantification of chemically and biologically relevant (bio)molecules. We start by addressing the evolution of ITIES in terms of number of publications over the years along with an overview of their main applications (Chapter 1). Then, we provide a general historical perspective about pioneer voltammetric studies at water/oil systems (Chapter 2). After that, we discuss the most impacting improvements on ITIES sensing systems from both perspectives, set-up design (interface stabilization and miniaturization, selection of the organic solvent, etc.) and optimization of experimental conditions to improve selectivity and sensitivity (Chapter 3). In Chapter 4, we discuss the analytical applications of ITIES for electrochemical sensing of several types of analytes, including drugs, pesticides, proteins, among others. Finally, we highlight the present achievements of ITIES as analytical tool and provide future challenges and perspectives for this technology (Chapter 5).
Collapse
Affiliation(s)
- José A Ribeiro
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| | - A Fernando Silva
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal
| | - H H Girault
- Institut des Sciences et Ingénierie Chimiques (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Carlos M Pereira
- CIQUP/Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua do Campo Alegre s/n, Porto, 4169-007, Portugal.
| |
Collapse
|
2
|
Chen Y, Cui M, Liu B, Gao L, Mitome N, Hirono-Hara Y, Hara KY, Méhes G, Miyake T. A Multienzyme Logic H + and Na + Biotransducer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37521-37529. [PMID: 38985575 DOI: 10.1021/acsami.4c05499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sodium ions and protons regulate various fundamental processes at the cell and tissue levels across all biological kingdoms. It is therefore pivotal for bioelectronic devices, such as biosensors and biotransducers, to control the transport of these ions through biological membranes. Our study explores the regulation of proton and sodium concentrations by integrating an Na+-type ATP synthase, a glucose dehydrogenase (GDH), and a urease into a multienzyme logic system. This system is designed to operate using various chemical control input signals, while the output current corresponds to the local change in proton or sodium concentrations. Therein, a H+ and Na+ biotransducer was integrated to fulfill the roles of signal transducers for the monitoring and simultaneous control of Na+ and H+ levels, respectively. To increase the proton concentration at the output, we utilized GDH driven by the inputs of glucose and nicotinamide adenine dinucleotide (NAD+), while recorded the signal change from the biotransducer, together acting as an AND enzyme logic gate. On the contrary, we introduced urease enzyme which hydrolyzed urea to control the decrease in proton concentration, serving as a NOT gate and reset. By integrating these two enzyme logic gates we formed a simple multienzyme logic system for the control of proton concentrations. Furthermore, we also demonstrate a more complex, Na+-type ATP synthase-urease multienzyme logic system, controlled by the two different inputs of ADP and urea. By monitoring the voltage of the peak current as the output signal, this logic system acts as an AND enzyme logic gate. This study explores how multienzyme logic systems can modulate biologically important ion concentrations, opening the door toward advanced biological on-demand control of a variety of bioelectronic enzyme-based devices, such as biosensors and biotransducers.
Collapse
Affiliation(s)
- Yukun Chen
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Mingyin Cui
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Bingfu Liu
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Liyun Gao
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Noriyo Mitome
- Faculty of Education, Tokoha University, 6-1 Yayoicho, Suruga, Shizuoka, Shizuoka 422-8581, Japan
| | - Yoko Hirono-Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, Suruga-ku 422-8526, Japan
| | - Kiyotaka Y Hara
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, Suruga-ku 422-8526, Japan
| | - Gábor Méhes
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Takeo Miyake
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
la Asunción-Nadal VD, Crespo GA, Cuartero M. Light-induced Delivery of Charged Species using Ion-selective Core-Shell Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202403756. [PMID: 38501244 DOI: 10.1002/anie.202403756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Controlled release systems have gained considerable attention owing to their potential to deliver molecules, including ions and drugs, in a customized manner. We present a light-induced ion-transfer platform consisting of a dispersion of nanoparticles (NPs, ~300 nm) with the conductive polymer poly(3-octylthiophene-2,5-diyl) (POT) in the core and a potassium (K+)-selective membrane in the shell. Owing to the photoactive nature of POT, POT NPs can be used for a dual purpose: as a host for positively charged species and as an actuator to trigger the subsequent release. POT0 and doped POT+ coexist in the core, allowing K+ encapsulation in the shell. As POT0 is photo-oxidized to POT+, K+ is released to the (aqueous) dispersion phase to preserve the neutrality of the NPs. This process is reversible and can be simultaneously assessed using the native fluorescence of POT0 and via potentiometric measurements. The NP structure and its mechanism of action were thoroughly studied with a series of control experiments and complementary techniques. Understanding the NP and its surrounding interactions will pave the way for other nanostructured systems, facilitating sophisticated applications. The delivery of ionic drugs and interference/pollutant catching for advanced sensing/restoration will be considered in future research.
Collapse
Affiliation(s)
- Víctor de la Asunción-Nadal
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
| | - Gastón A Crespo
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107, Murcia, Spain
| | - María Cuartero
- Department of Chemistry, KTH, The Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107, Murcia, Spain
| |
Collapse
|
4
|
Mattos GJ, Rothen JA, Tiuftiakov NY, Bakker E. Ion transfer mediated by TEMPO in ionophore-doped thin films for multi-ion sensing by cyclic voltammetry. Anal Chim Acta 2024; 1299:342388. [PMID: 38499432 DOI: 10.1016/j.aca.2024.342388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
We report here on the development of thin-layer ion-selective membranes containing lipophilic TEMPO as a phase-transfer redox mediator for the simultaneous detection of non-redoxactive ions. This redox probe was recently introduced by our group and provides ideal ion-transfer waves when the membrane is interrogated by cyclic voltammetry. To perform multianalyte detection in the same sensing film, plasticized PVC-based membranes were doped with lithium and potassium ionophores in addition to a lipophilic cation-exchanger. The ionophores allow for ion discrimination owing to the different ionophore-cation complexation constants and the oxidation of TEMPO to the oxoammonium form results in the selective transfer of lithium and potassium at different potentials. The resulting voltammograms have half-peak widths of 100 and 102 mV, and the peak separation between anodic and cathodic scans is 8 and 9 mV for lithium and potassium, respectively, close to theoretical expectations. High peak resolution was observed, and the ion-transfer waves are still distinguishable when the ion activities differ by three orders of magnitude. These parameters are remarkably better than those obtained with other redox probes, which is important for multianalyte detection in the same voltammetric scan. Optimized membranes showed independent Nernstian shifts (slopes of 59.23 mV and 54.8 mV for K+ and Li+, respectively) of the peak position for increasing ion concentrations. An idealized model for two ionophore-based membranes combining redox and phase-boundary potentials was applied to the proposed system with excellent correlation. Potassium and lithium ions were simultaneously detected in undiluted human serum samples with good accuracy and precision.
Collapse
Affiliation(s)
- Gabriel J Mattos
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Justine A Rothen
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Nikolai Yu Tiuftiakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland.
| |
Collapse
|
5
|
Keresten V, Lazarev F, Mikhelson K. Transfer of Sodium Ion across Interface between Na +-Selective Electrode Membrane and Aqueous Electrolyte Solution: Can We Use Nernst Equation If Current Flows through Electrode? MEMBRANES 2024; 14:74. [PMID: 38668102 PMCID: PMC11052482 DOI: 10.3390/membranes14040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Electrochemical impedance and chronopotentiometric measurements with Na+-selective solvent polymeric (PVC) membranes containing a neutral ionophore and a cation exchanger revealed low-frequency resistance, which is ascribed to Na+ ion transfer across the interface between the membrane and aqueous solution. The attribution is based on the observed regular dependence of this resistance on the concentration of Na+ in solutions. The respective values of the exchange current densities were found to be significantly larger than the currents flowing through ion-selective electrodes (ISEs) during an analysis in non-zero-current mode. This fact suggests that the interfacial electrochemical equilibrium is not violated by the current flow and implies that the Nernst equation can be applied to interpret the data obtained in non-zero-current mode, e.g., constant potential coulometry.
Collapse
Affiliation(s)
| | | | - Konstantin Mikhelson
- Chemistry Institute, St. Petersburg State University, 26 Universiteskij Pr., Stary Peterhof, 198504 St. Petersburg, Russia; (V.K.); (F.L.)
| |
Collapse
|
6
|
Robayo-Molina I, Crespo GA, Cuartero M. Usefulness of the Distribution of Relaxation Time Method in Electroanalytical Systems: The Case of Voltammetric Ion-Selective Electrodes. ACS OMEGA 2024; 9:8162-8172. [PMID: 38405490 PMCID: PMC10882611 DOI: 10.1021/acsomega.3c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
Despite the distribution of relaxation time (DRT) method providing clear insights about processes that go unnoticed by traditional electrochemical impedance spectroscopy (EIS) analysis, it has not yet been adopted to solve electroanalytical systems. As an illustration case, we apply the DRT method to deconvolve EIS data from solid-state voltammetric ion-selective electrodes (ISEs). The main aim is to shed light on the underlying working mechanism across the different materials and interfaces, specifically, the doping of a conducting polymer when covered with a very thin (ca. 230 nm) permselective membrane. Although frequency-dependent AC measurements in EIS allow the separation of processes that contribute to the electrical signal, interpretation of the data is challenging. DRT may overcome this inconvenience by revealing a series of peaks corresponding to the predominant electrochemical processes, without any preknowledge on those. To demonstrate our hypothesis, we examine the conducting polymer poly(3-octylthiophene) (POT) linked to a membrane with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (Na+TFPB-) as the cation exchanger, in which the lipophilic anionic part (TFPB-) is responsible for the POT doping when it gets electrochemically oxidized (POT+). The investigation of EIS data obtained under different conditions with the DRT method showed the occurrence of several processes. We have attributed two of these to two different conformational changes in the POT film in connection with p-type charge-transfer doping. Indeed, the kinetics is found to follow a Butler-Volmer behavior, with average charge transfers of 0.5 and 0.3 mol of electrons for each peak. Overall, we demonstrate the utility of the EIS-DRT tandem to separately study charge-transfer events that interconnect along the same (interfacial segmented) system, which cannot be reached by using classical electrochemical approaches. These kinds of insights are necessary for a more efficient design and high-level exploitation of voltammetric ISEs but also other electrochemical systems such as catalysts, batteries, and photovoltaic cells.
Collapse
Affiliation(s)
- Iván Robayo-Molina
- Deparment
of Chemistry, School of Engineering Science in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Deparment
of Chemistry, School of Engineering Science in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM Hitech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- Deparment
of Chemistry, School of Engineering Science in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
- UCAM-SENS, Universidad
Católica San Antonio de Murcia,
UCAM Hitech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| |
Collapse
|
7
|
Liu Y, Crespo GA, Cuartero M. Voltammetric Ion-Selective Electrodes in Thin-Layer Samples: Absolute Detection of Ions Using Ultrathin Membranes. Anal Chem 2024; 96:1147-1155. [PMID: 38181330 PMCID: PMC10809245 DOI: 10.1021/acs.analchem.3c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Calibration-free sensors are generally understood as analytical tools with no need for calibration apart from the initial one (i.e., after its fabrication). However, an "ideal" and therefore "more restricted" definition of the concept considers that no calibration is necessary at all, with the sensor being capable of directly providing the analyte concentration in the sample. In the electroanalysis field, investigations have been directed to charge-based readouts (i.e., coulometry) that allow for concentration calculation via the Faraday Law: The sample volume must be precisely defined and the absoluteness of the electrochemical process in which the analyte is involved must be ensured (i.e., the analyte in the sample is ∼100% converted/transported). Herein, we report on the realization of calibration-free coulometric ISEs based on ultrathin ion-selective membranes, which is demonstrated for the detection of potassium ions (K+). In essence, the K+ transfer at the membrane-sample interface is modulated by the oxidation state of the conducting polymer underlying the membrane. The accumulation/release of K+ to/from the membrane is an absolute process owing to the confinement of the sample to a thin-layer domain (thickness of <100 μm). The capacity of the membrane expressed in charge is fixed to ca. 18 μC, and this dictates the detection of micromolar levels of K+ present in ca. 5 μL sample volume. The system is interrogated with cyclic voltammetry to obtain peaks related to the K+ transfer that can be treated charge-wise. The conceptual and technical innovative steps developed here made the calibration-free detection of K+ possible in artificial and real samples with acceptable accuracy (<10% difference compared with the results obtained from a current-based calibration and ion chromatography). The charge-based analysis does not depend on temperature and appeared to be repetitive, reproducible, and reversible in the concentration range from 1 to 37.5 μM, with an average coulometry efficiency of 96%.
Collapse
Affiliation(s)
- Yujie Liu
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- UCAM-SENS,
Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| | - María Cuartero
- Department
of Chemistry, School of Engineering Science in Chemistry, Biochemistry
and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- UCAM-SENS,
Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107 Murcia, Spain
| |
Collapse
|
8
|
Li J, Zhang W, Qin W. Trace-level chronopotentiometric detection in the presence of a high electrolyte background using thin-layer ion-selective polymeric membranes. Chem Commun (Camb) 2023; 59:14257-14260. [PMID: 37961819 DOI: 10.1039/d3cc04512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
We propose here a pulsed galvanostatic control of a solid-contact ion-selective electrode coupled with a thin-layer ion-exchanger free membrane, which allows chronopotentiometric trace-level ion detection with a high-interfering background in a rapid and reversible way.
Collapse
Affiliation(s)
- Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
| | - Wenting Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
9
|
Mao C, Soda Y, Robinson KJ, Forrest T, Bakker E. Mass Transfer from Ion-Sensing Component-Loaded Nanoemulsions into Ion-Selective Membranes: An Electrochemical Quartz Crystal Microbalance and Thin-Film Coulometry Study. ACS MEASUREMENT SCIENCE AU 2023; 3:45-52. [PMID: 36817005 PMCID: PMC9936608 DOI: 10.1021/acsmeasuresciau.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Recent work has shown that ion-selective components may be transferred from nanoemulsions (NEs) to endow polymeric membranes with ion-selective sensing properties. This approach has also been used for nanopipette electrodes to achieve single-entity electrochemistry, thereby sensing the ion-selective response of single adhered nanospheres. To this date, however, the mechanism and rate of component transfer remain unclear. We study here the transfer of lipophilic ionic compounds from nanoemulsions into thin plasticized poly(vinyl chloride) (PVC-DOS) films by chronoamperometry and quartz crystal microbalance. Thin-film cyclic coulovoltammetry measurements serve to quantify the uptake of lipophilic species into blank PVC-DOS membranes. Electrochemical quartz crystal microbalance data indicate that the transfer of the emulsion components is insignificant, ruling out simple coalescence with the membrane film. Ionophores and ion-exchangers are shown to transfer into the membrane at rates that correlate with their lipophilicity if mass transport is not rate-limiting, which is the case with more lipophilic compounds (calcium and sodium ionophores). On the other hand, with less lipophilic compounds (valinomycin and cation-exchanger salts), transfer rates are limited by mass transport. This is confirmed with rotating disk electrode experiments in which a linear relationship between the diffusion layer thickness and current is observed. The data suggests that once the nanoemulsion container approaches the membrane surface, transfer of components occur by a three-phase partition mechanism where the aqueous phase serves as a kinetic barrier. The results help better understand and quantify the interaction between nanoemulsions and ion-selective membranes and predict membrane doping rates for a range of components.
Collapse
|
10
|
Keresten V, Mikhelson K. Voltammetric Ion Sensing with Ionophore-Based Ion-Selective Electrodes Containing Internal Aqueous Solution, Improving Lifetime of Sensors. MEMBRANES 2022; 12:1048. [PMID: 36363603 PMCID: PMC9699433 DOI: 10.3390/membranes12111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The possibility of voltammetric ion sensing is demonstrated, for the first time, for ion-selective electrodes (ISEs) containing an internal aqueous solution. ISEs selective to calcium, lithium and potassium ions are used as model systems. The internal solution of the ISEs contains a chloride salt of the respective cation and a ferrocenemethanol or ferrocyanide/ferricyanide redox couple. A platinum wire is used as the internal reference electrode. It is shown, theoretically and experimentally, that the dependence of oxidation and reduction peak potentials on the sample composition obeys the Nernst law, while the peak currents virtually do not depend on the sample composition. Thus, the electrode behavior is similar to that reported by Bakker's group for solid contact ISEs with ultra-thin membranes (200-300 nm). It is shown that the use of classical ISEs with relatively thick membranes (100-300 µm) and internal aqueous solution allows for the sensor lifetime of about one month. It is also shown that use of a suitable background electrolyte allows for improvement of the detection limits in voltammetric measurements with ISEs.
Collapse
|
11
|
Michalak M, Kałuża D, Michalska A, Maksymiuk K. Temperature triggered ion-selective membranes for non-zero current electrochemical ion sensors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Ultrathin ion-selective membranes for trace detection of lead, copper and silver ions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kalisz J, Węgrzyn K, Michalska A, Maksymiuk K. Resolution increase of ion-selective electrodes response by using a reversed amperometric setup. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Liu Y, Crespo GA, Cuartero M. Spectroelectrochemistry with Ultrathin Ion-Selective Membranes: Three Distinct Ranges for Analytical Sensing. Anal Chem 2022; 94:9140-9148. [PMID: 35687727 PMCID: PMC9244873 DOI: 10.1021/acs.analchem.2c01584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present spectroelectrochemical sensing of the potassium ion (K+) at three very distinct analytical ranges─nanomolar, micromolar, and millimolar─when using the same ion-selective electrode (ISE) but interrogated under various regimes. The ISE is conceived in the all-solid-state format: an ITO glass modified with the conducting polymer poly(3-octylethiophene) (POT) and an ultrathin potassium-selective membrane. The experimental setup is designed to apply a potential in a three-electrode electrochemical cell with the ISE as the working electrode, while dynamic spectral changes in the POT film are simultaneously registered. The POT film is gradually oxidized to POT+, and this process is ultimately linked to K+ transfer at the membrane-sample interface, attending to electroneutrality requirements. The spectroelectrochemistry experiment provides two signals: a voltammetric peak and a transient absorbance response, with the latter of special interest because of its correspondence with the generated charge in the POT and thus with the ionic charge expelled from the membrane. By modifying how the ion analyte (K+ but also others) is initially accumulated into the membrane, we found three ranges of response for the absorbance: 10-950 nM for an accumulation-stripping protocol, 0.5-10 μM in diffusion-controlled cyclic voltammetry, and 0.5-32 mM with thin-layer cyclic voltammetry. This wide response range is a unique feature, one that is rare to find for a sensor and indeed for any analytical technique. Accordingly, the developed sensor is highly appealing for many analytical applications, especially considering the versatility of samples and ion analytes that may be spotted.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
15
|
Wang L, Jensen K, Hatzakis N, Zhang M, Sørensen TJ. Robust Dual Optical Sensor for pH and Dissolved Oxygen. ACS Sens 2022; 7:1506-1513. [PMID: 35535664 DOI: 10.1021/acssensors.2c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As part of moving our optical pH and dissolved oxygen (DO) optical chemosensors toward industrial applications, we decided to explore a many-sensors-in-one principle. It was tested if physical segregation of the optical sensor components in a single sensor polymer could remove cross-talk and quenching. It was found that a design concept with an oxygen-responsive dye in polymer nanoparticles and a pH-responsive dye in an organically modified siloxane polymer resulted in a robust pH/O2 dual optical sensor. Individually, the O2-sensitive nanoparticles, a known component for optical DO sensing, and the pH sensor are operational. Thus, it was decided to test if nanoparticles enclosed within the pH-sensitive responsive sol-gel (i) could work together if segregated and (ii) could operate with a single intensity signal that is without a reference signal; developments within industrial optical sensor technology indicate that this should be feasible. The prototype optode produced in this work was shown to have a negligible drift over 60 h, bulk diffusion-limited DO response, and independent response to pH and O2. On the individual optode, pH calibration was found to show the expected sigmoidal shape and pKa, while the complexity of the calibration function for the DO signal was significant. While the engineering of the sensor device, optics, and hardware are not robust enough to attempt generic sensor calibration, it was decided to demonstrate the design concept in simple fermentation experiments. We conclude that the dual sensor design with the physical segregation of components is viable.
Collapse
Affiliation(s)
- Lu Wang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Kim Jensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Nikos Hatzakis
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Min Zhang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Bondar AV, Keresten VM, Mikhelson KN. Ionophore-Based Ion-Selective Electrodes in Non-Zero Current Modes: Mechanistic Studies and the Possibilities of the Analytical Application. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
This mini review briefly describes (i) literature data on the non-zero current measurements with ionophore-based ion-selective electrodes (ISEs) aimed at fundamental studies of the mechanism of their potentiometric response, and (ii) the data on the possibilities of analytical applications of ISEs in voltametric and constant potential chronoamperometric/coulometric modes, in particular the K+ ion assay in blood serum with the sensitivity of 0.1%. A special attention is paid to the basics of voltammetry and chronoamperometry/coulometry with the ionophore-based ISEs, and to how and why these methods differ from the classical voltammetry and coulometry.
Collapse
|
17
|
Kisiel A, Michalska A, Maksymiuk K. Bypassed ion-selective electrodes – self-powered polarization for tailoring of sensor performance. Analyst 2022; 147:2764-2772. [DOI: 10.1039/d2an00458e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bypass circuit with zinc wire induces spontaneous charge flow: oxidation of zinc and reduction of the solid contact of K-ISE. This effect is helpful in the improvement of analytical parameters of K-ISE.
Collapse
Affiliation(s)
- Anna Kisiel
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agata Michalska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Krzysztof Maksymiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
Kałuża D, Michalska A, Maksymiuk K. Solid‐Contact Ion‐Selective Electrodes Paving the Way for Improved Non‐Zero Current Sensors: A Minireview. ChemElectroChem 2021. [DOI: 10.1002/celc.202100892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dawid Kałuża
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Agata Michalska
- Faculty of Chemistry University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | | |
Collapse
|
19
|
Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Yang S, Yu S, Yu L, Liu Y, Liao J, Shen J, Gao C. Cation Exchange Membranes Coated with Polyethyleneimine and Crown Ether to Improve Monovalent Cation Electrodialytic Selectivity. MEMBRANES 2021; 11:membranes11050351. [PMID: 34068766 PMCID: PMC8151526 DOI: 10.3390/membranes11050351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022]
Abstract
Developing monovalent cation permselective membranes (MCPMs) with high-efficient permselectivity is the core concern in specific industrial applications. In this work, we have fabricated a series of novel cation exchange membranes (CEMs) based on sulfonated polysulfone (SPSF) surface modification by polyethyleneimine (PEI) and 4′-aminobenzo-12-crown-4 (12C4) codeposited with dopamine (DA) successively, which was followed by the cross-linking of glutaraldehyde (GA). The as-prepared membranes before and after modification were systematically characterized with regard to their structures as well as their physicochemical and electrochemical properties. Particularly, the codeposition sequence of modified ingredients was investigated on galvanostatic permselectivity to cations. The modified membrane (M-12C4-0.50-PEI) exhibits significantly prominent selectivity to Li+ ions (PMg2+Li+ = 5.23) and K+ ions (PMg2+K+ = 13.56) in Li+/Mg2+ and K+/Mg2+ systems in electrodialysis (ED), which is far superior to the pristine membrane (M-0, PMg2+Li+ = 0.46, PMg2+K+ = 1.23) at a constant current density of 5.0 mA·cm−2. It possibly arises from the synergistic effects of electrostatic repulsion (positively charged PEI), pore-size sieving (distribution of modified ingredients), and specific interaction effect (12C4 ~Li+). This facile strategy may provide new insights into developing selective CEMs in the separation of specific cations by ED.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Shuaijun Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Lu Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Yuanwei Liu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China;
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (S.Y.); (S.Y.); (L.Y.); (J.L.)
- Correspondence:
| | - Congjie Gao
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| |
Collapse
|
21
|
Zdrachek E, Bakker E. Unbiased Selectivity Coefficients of Potentiometric Sensors Using Thin Membrane Layers. ELECTROANAL 2021. [DOI: 10.1002/elan.202060605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry University of Geneva Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
22
|
Yin T, Wang H, Li J, Yuan B, Qin W. Translating potentiometric detection into non-enzymatic amperometric measurement of H 2O 2. Talanta 2021; 232:122489. [PMID: 34074447 DOI: 10.1016/j.talanta.2021.122489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
The developments of alternative signal readout strategies for the ion-selective electrodes (ISEs) are necessary in order to break through the limitation of the Nernst equation. In this work, a simple, convenient and easily operated strategy based on the non-enzymatic amperometric measurement of H2O2 is proposed to read out the potentiometric responses for the ISEs. The proposed amperometric signal readout based on H2O2 is carried out in a two compartment electrochemical cell configuration containing a detection cell and a sample cell, physically connected by a salt bridge. A glassy carbon (GC) electrode is placed in the detection cell to monitor the oxidation current of H2O2, and an ISE is placed in the sample cell to act as both the reference electrode and the potentiometric sensor for obtaining the ion activities. The oxidation of H2O2 is induced by a constant potential applied between the GC electrode and the ISE, and subsequently modulated by the potential change of the ISE in the presence of the primary ion. The proposed amperometric signal readout based on H2O2 shows the satisfied slope sensitivity and detection limit, which are better than or compared to those for the potentiometric responses for the ISEs. This work provides a general strategy for transforming the potential response of the ISEs into the amperometric readout, and is promising for detection of cations (eg., Ca2+) and anions (eg., NO3-) with high sensitivity and excellent selectivity.
Collapse
Affiliation(s)
- Tanji Yin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 26620, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| | - Hemin Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong, 264003, PR China; School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Jinghui Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 26620, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Baiqing Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China.
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 26620, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
23
|
Chen LD, Wang WJ, Wang GJ. Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane. BIOSENSORS 2021; 11:109. [PMID: 33917075 PMCID: PMC8067767 DOI: 10.3390/bios11040109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to develop simple electrochemical electrodes for the fast detection of chloride, sodium and potassium ions in human serum. A flat thin-film gold electrode was used as the detection electrode for chloride ions; a single-piece type membrane based solid-state ion-selective electrode (ISE), which was formed by covering a flat thin-film gold electrode with a mixture of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and ion-selective membrane (ISM), was developed for sodium and potassium ions detection. Through cyclic voltammetry (CV) and square-wave voltammetry (SWV), the detection data can be obtained within two minutes. The linear detection ranges in the standard samples of chloride, sodium, and potassium ions were 25-200 mM, 50-200 mM, and 2-10 mM, with the average relative standard deviation (RSD) of 0.79%, 1.65%, and 0.47% and the average recovery rates of 101%, 100% and 96%, respectively. Interference experiments with Na+, K+, Cl-, Ca2+, and Mg2+ ions demonstrated that the proposed detection electrodes have good selectivity. Moreover, the proposed detection electrodes have characteristics such as the ability to be prepared under relatively simple process conditions, excellent detection sensitivity, and low RSD, and the detection linear range is suitable for the Cl-, Na+ and K+ concentrations in human serum.
Collapse
Affiliation(s)
- Li-Da Chen
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan; (L.-D.C.); (W.-J.W.)
| | - Wei-Jhen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan; (L.-D.C.); (W.-J.W.)
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan; (L.-D.C.); (W.-J.W.)
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung 40227, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
24
|
Solovyeva EV, Lu H, Khripoun GA, Mikhelson KN, Kazarian SG. In situ ATR-FTIR spectroscopic imaging of PVC, plasticizer and water in solvent-polymeric ion-selective membrane containing Cd2+-selective neutral ionophore. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
A Novel Multi-Ionophore Approach for Potentiometric Analysis of Lanthanide Mixtures. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aims to discuss quantification of rare earth metals in a complex mixture using the novel multi-ionophore approach based on potentiometric sensor arrays. Three compounds previously tested as extracting agents in reprocessing of spent nuclear fuel were applied as ionophores in polyvinyl chloride (PVC)-plasticized membranes of potentiometric sensors. Seven types of sensors containing these ionophores were prepared and assembled into a sensor array. The multi-ionophore array performance was evaluated in the analysis of Ln3+ mixtures and compared to that of conventional monoionophore sensors. It was demonstrated that a multi-ionophore array can yield RMSEP (root mean-squared error of prediction) values not exceeding 0.15 logC for quantification of individual lanthanides in binary mixtures in a concentration range 5 to 3 pLn3+.
Collapse
|
26
|
Han T, Mattinen U, Mousavi Z, Bobacka J. Coulometric response of solid-contact anion-sensitive electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Mao C, Yuan D, Wang L, Bakker E. Separating boundary potential changes at thin solid contact ion transfer voltammetric membrane electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Liu Y, Wiorek A, Crespo GA, Cuartero M. Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer. Anal Chem 2020; 92:14085-14093. [PMID: 32972129 PMCID: PMC7584340 DOI: 10.1021/acs.analchem.0c03124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous publications have demonstrated the tuning of ion-transfer (IT) processes across ion-selective membranes (ISMs) with thicknesses in the nanometer order by modulating the oxidation state of a film of a conducting polymer, such as poly(3-octylthiophene) [POT], that is in back-side contact. Attempts on the theoretical description of this charge transfer (CT)-IT system have considered the Nernst equation for the CT, while there is no empirical evidence confirming this behavior. We present herein the first experimental characterization of the CT in POT films involved in different CT-IT systems. We take advantage of the absorbance change in the POT film while being oxidized, to monitor the CT linked to nonassisted and assisted ITs at the sample-ISM interface, from one to three ionophores, therefore promoting a change in the nature and number of the ITs. The CT is visualized as an independent sigmoid in different potential ranges according to the assigned IT. Herein, we have proposed a simple calculation of the empirical CT utilizing the mathematical Sigmoidal-Boltzmann model. The identification of the physical meaning of the mathematical definition of CT opens up new possibilities for the design of sensors with superior analytical features (mainly in terms of selectivity) and the calculation of apparent binding constants in the ISM.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Alexander Wiorek
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
29
|
Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. MEMBRANES 2020; 10:membranes10060128. [PMID: 32585903 PMCID: PMC7345918 DOI: 10.3390/membranes10060128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- Correspondence: (S.G.); (L.N.)
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Guifu Yang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
- Correspondence: (S.G.); (L.N.)
| |
Collapse
|
30
|
Han T, Mousavi Z, Mattinen U, Bobacka J. Coulometric response characteristics of solid contact ion-selective electrodes for divalent cations. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04718-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe chronoamperometric and coulometric response of solid contact ion-selective electrodes (SCISEs) for the detection of divalent cations was investigated in order to provide a more complete description of the mechanism of the recently introduced coulometric transduction method for SCISEs. The coulometric transduction method has earlier been employed only for SCISEs that were selective to monovalent ions. The SCISEs utilized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrene sulfonate) (PSS−) as the solid contact (ion-to-electron transducer). PEDOT(PSS) was electrodeposited on glassy carbon and covered with plasticized PVC-based ion-selective membranes (ISMs) that were selective towards divalent cations (Ca2+, Pb2+). In contrast to earlier studies, the results obtained in this work show that the coulometric response for the Pb2+-SCISE was limited mainly by ion transport in the PEDOT(PSS) layer, which was not the case for the Ca2+-SCISE, nor was it observed earlier for the monovalent ions. The exceptional behavior of the Pb2+-SCISE was explored further by electrochemical impedance spectroscopy, and it was shown that the effective redox capacitance of PEDOT(PSS) was significantly higher for the Pb2+-SCISE than for the Ca2+-SCISE although the polymerization charge of PEDOT(PSS) was the same. The slow transport of Pb2+ in PEDOT(PSS) was tentatively related to complexation between Pb2+ and PEDOT(PSS).
Collapse
|
31
|
Kalinichev AV, Solovyeva EV, Ivanova AR, Khripoun GA, Mikhelson KN. Non-constancy of the bulk resistance of ionophore-based Cd2+-selective electrode: A correlation with the water uptake by the electrode membrane. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
33
|
Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Kałuża D, Michalska A, Maksymiuk K. Voltammetric Properties of All‐solid State Ion‐selective Electrodes with Multiwalled Carbon Nanotubes‐poly(3‐octylthiophene‐2,5‐diyl) Nanocomposite Transducer. ELECTROANAL 2019. [DOI: 10.1002/elan.201900380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dawid Kałuża
- Faculty of ChemistryUniversity of Warsaw, Pasteura 1 02-093 Warsaw Poland
| | - Agata Michalska
- Faculty of ChemistryUniversity of Warsaw, Pasteura 1 02-093 Warsaw Poland
| | | |
Collapse
|
35
|
Zdrachek E, Bakker E. From Molecular and Emulsified Ion Sensors to Membrane Electrodes: Molecular and Mechanistic Sensor Design. Acc Chem Res 2019; 52:1400-1408. [PMID: 31017760 DOI: 10.1021/acs.accounts.9b00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Selective molecular ion probes are often insoluble in water and require a hydrophobic solvent environment for strong and selective binding, which runs counter to the desire of utilizing them in a homogeneous solution. This Account aims to guide the reader on how such molecules, often coined ionophores, can be harnessed to design exceptionally useful optical and electrochemical sensors. We start here with some historical context on the design of such ionophores and continue with the explanation of the response mechanism of optical and potentiometric sensors and the role of combined components to build a robust ion sensor. This Account is addressed to nonspecialist readers and for this reason avoids extensive use of equations or theoretical considerations. The interested reader should turn to the original literature for further reading. Emulsified optical sensors are introduced as an initial example. Here, multiple reagents are confined in an attoliter sensing nanodroplet of the organic phase, immiscible with the aqueous sample phase. In this case, the ionophore molecules may retain their high affinity and selectivity to the target ion and the aqueous sample phase does not have to be modified. Emulsified optical sensors allow one to achieve the selective chemical sensing of ions, even with optically silent ionophores. Such ionophore-based nanodroplets are also discussed as a useful novel class of complexometric titration reagents and optical end point indicators with unique selectivities. We then turn our attention to potentiometric sensing probes and briefly discuss the unique opportunity of a direct characterization of ion-ionophore complexation properties offered by membrane electrodes. A carbonate-selective membrane electrode containing a highly selective tweezer-type ionophore with trifluoroacetophenone functional groups is then used as an example for the construction of a robust all-solid-state sensor. This potentiometric probe, in combination with a pH electrode, can directly measure PCO2 in freshwater lakes, demonstrating a dramatically improved response time relative to traditional sensors equipped with a gas-permeable membrane. In recent years, new sensing modes and electrode designs have been introduced to expand the application scope of ionophore-based potentiometric sensors. Membrane electrodes containing ionophores are placed under dynamic electrochemistry control to give important progress in the field. We specifically highlight our recent works by membranes that are controlled by chronopotentiometry (controlled current) for speciation analysis, by ion transfer voltammetry on thin sensing films for multianalyte detection, by exhaustive coulometry for potentially calibration-free sensors and with coulometric membrane pumps for the selective delivery of reagents.
Collapse
Affiliation(s)
- Elena Zdrachek
- University of Geneva, Department of Inorganic and Analytical Chemistry, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Eric Bakker
- University of Geneva, Department of Inorganic and Analytical Chemistry, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| |
Collapse
|
36
|
Liu S, Ding J, Qin W. Dual-Analyte Chronopotentiometric Aptasensing Platform Based on a G-Quadruplex/Hemin DNAzyme and Logic Gate Operations. Anal Chem 2019; 91:3170-3176. [PMID: 30648390 DOI: 10.1021/acs.analchem.8b05971] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conventional potentiometric ion sensors that rely on a specific ion carrier in a polymeric membrane can hardly achieve multianalyte detection. Inspired by the remarkable ability of built-in logic gate sensors for multianalyte detection, herein we report a potentiometric aptasensing platform based on a G-quadruplex/hemin DNAzyme and logic gate operations for determination of two analytes using a single membrane electrode. A bifunctional probe with two aptamer units and a signal reporter oligonucleotide with a DNAzyme sequence are assembled on the magnetic beads to form a DNA hybrid structure. The "OR" and "INHIBIT" logic functions can be performed by using the two aptamers and their targets as inputs, and using the chronopotentiometric response based on the G-quadruplex/hemin DNAzyme-H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine as output. Kanamycin and oxytetracycline, as commonly used antibiotics, have been employed as the models and successfully measured.
Collapse
Affiliation(s)
- Shuwen Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , P. R. China
| |
Collapse
|
37
|
Yang Y, Cuartero M, Gonçales VR, Gooding JJ, Bakker E. Light‐Addressable Ion Sensing for Real‐Time Monitoring of Extracellular Potassium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ying Yang
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Maria Cuartero
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E.-Ansermet 30 1211 Geneva 4 Switzerland
| | | | - J. Justin Gooding
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry University of Geneva Quai E.-Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
38
|
Yang Y, Cuartero M, Gonçales VR, Gooding JJ, Bakker E. Light-Addressable Ion Sensing for Real-Time Monitoring of Extracellular Potassium. Angew Chem Int Ed Engl 2018; 57:16801-16805. [PMID: 30397985 DOI: 10.1002/anie.201811268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 11/09/2022]
Abstract
We report here on a light addressable potassium (K+ ) sensor where light illumination of a semiconducting silicon electrode substrate results in a localized activation of the faradaic electrochemistry at the illuminated spot. This allows one, by electrochemical control, to oxidize surface bound ferrocene moieties that in turn trigger K+ transfer from the overlaid K+ -selective film to the solution phase. The resulting voltammetric response is shown to be K+ -selective, where peak position is a direct function of K+ activity at the surface of electrode. This concept was used to measure extracellular K+ concentration changes by stimulating living breast cancer cells. The associated decrease of intracellular K+ level was confirmed with a fluorescent K+ indicator. In contrast to light addressable potentiometry, the approach introduced here relies on dynamic electrochemistry and may be performed in tandem with other electrochemical analysis when studying biological events on the electrode.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria Cuartero
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai E.-Ansermet 30, 1211, Geneva 4, Switzerland
| | | | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai E.-Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
39
|
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
40
|
Zdrachek E, Bakker E. Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes. Anal Chem 2018; 90:7591-7599. [DOI: 10.1021/acs.analchem.8b01282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
41
|
Ding J, Yu N, Wang X, Qin W. Sequential and Selective Detection of Two Molecules with a Single Solid-Contact Chronopotentiometric Ion-Selective Electrode. Anal Chem 2018; 90:1734-1739. [DOI: 10.1021/acs.analchem.7b03522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiawang Ding
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, People’s Republic of China
| | - Nana Yu
- Department
of Environmental Sciences, Key Laboratory of Watershed Science and
Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Xuedong Wang
- Department
of Environmental Sciences, Key Laboratory of Watershed Science and
Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Wei Qin
- Key
Laboratory of Coastal Environmental Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, People’s Republic of China
| |
Collapse
|
42
|
Zdrachek E, Bakker E. Describing Ion Exchange at Membrane Electrodes for Ions of Different Charge. ELECTROANAL 2017. [DOI: 10.1002/elan.201700700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry; University of Geneva; Quai Ernest-Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|
43
|
Davis AN, Travis AR, Miller DR, Cliffel DE. Multianalyte Physiological Microanalytical Devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:93-111. [PMID: 28605606 PMCID: PMC9235322 DOI: 10.1146/annurev-anchem-061516-045334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Advances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology. Patients and clinicians have also benefited from the highly translational nature of MAP, and the continued expansion of the repertoire of analytes that can be measured with multianalyte microphysiometers will undoubtedly play a role in the automation and personalization of medicine. This is perhaps most evident with the recent advent of fully integrated noninvasive sensor arrays that can continuously monitor changes in analytes linked to specific disease states and deliver a therapeutic agent as required without the need for patient action.
Collapse
Affiliation(s)
- Anna Nix Davis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Adam R Travis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Dusty R Miller
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
44
|
Jin H, Gui R, Yu J, Lv W, Wang Z. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens Bioelectron 2017; 91:523-537. [DOI: 10.1016/j.bios.2017.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/26/2022]
|
45
|
Ding J, Lv E, Zhu L, Qin W. Optical Ion Sensing Platform Based on Potential-Modulated Release of Enzyme. Anal Chem 2017; 89:3235-3239. [DOI: 10.1021/acs.analchem.7b00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiawang Ding
- Key Laboratory of Coastal Environmental
Processes and Ecological Remediation, Yantai Institute of Coastal
Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial
Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Enguang Lv
- Key Laboratory of Coastal Environmental
Processes and Ecological Remediation, Yantai Institute of Coastal
Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial
Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Liyan Zhu
- Key Laboratory of Coastal Environmental
Processes and Ecological Remediation, Yantai Institute of Coastal
Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial
Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental
Processes and Ecological Remediation, Yantai Institute of Coastal
Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial
Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China
| |
Collapse
|
46
|
Yuan D, Cuartero M, Crespo GA, Bakker E. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment. Anal Chem 2017; 89:595-602. [PMID: 27976860 DOI: 10.1021/acs.analchem.6b03355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.
Collapse
Affiliation(s)
- Dajing Yuan
- Department of Inorganic and Analytical Chemistry, University of Geneva , Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Maria Cuartero
- Department of Inorganic and Analytical Chemistry, University of Geneva , Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Gaston A Crespo
- Department of Inorganic and Analytical Chemistry, University of Geneva , Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva , Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
47
|
Jansod S, Wang L, Cuartero M, Bakker E. Electrochemical ion transfer mediated by a lipophilic Os(ii)/Os(iii) dinonyl bipyridyl probe incorporated in thin film membranes. Chem Commun (Camb) 2017; 53:10757-10760. [DOI: 10.1039/c7cc05908f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new lipophilic dinonyl bipyridyl Os(ii)/Os(iii) complex successfully mediates ion transfer processes across voltammetric thin membranes.
Collapse
Affiliation(s)
- Sutida Jansod
- Department of Inorganic and Analytical chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| | - Lu Wang
- Department of Inorganic and Analytical chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| | - Maria Cuartero
- Department of Inorganic and Analytical chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical chemistry
- University of Geneva
- CH-1211 Geneva
- Switzerland
| |
Collapse
|
48
|
Yuan D, Cuartero M, Crespo GA, Bakker E. Voltammetric Thin-Layer Ionophore-Based Films: Part 1. Experimental Evidence and Numerical Simulations. Anal Chem 2016; 89:586-594. [DOI: 10.1021/acs.analchem.6b03354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dajing Yuan
- Department of Inorganic and
Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Maria Cuartero
- Department of Inorganic and
Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Gaston A. Crespo
- Department of Inorganic and
Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and
Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
49
|
Izadyar A, Al-Amoody F, Arachchige DR. Ion transfer stripping voltammetry to detect nanomolar concentrations of Cr (VI) in drinking water. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Cuartero M, Acres RG, De Marco R, Bakker E, Crespo GA. Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene). Anal Chem 2016; 88:6939-46. [DOI: 10.1021/acs.analchem.6b01800] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maria Cuartero
- Department
of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet
30, CH-1211 Geneva, Switzerland
| | - Robert G. Acres
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Victoria 3168, Australia
| | - Roland De Marco
- Faculty
of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Department
of Chemistry, Curtin University, GPO Box U1987, Perth, Western
Australia 6109, Australia
| | - Eric Bakker
- Department
of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet
30, CH-1211 Geneva, Switzerland
| | - Gastón A. Crespo
- Department
of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet
30, CH-1211 Geneva, Switzerland
| |
Collapse
|