1
|
Liang Z, Guo Y, Ellin N, King TI, Berthold EC, Mukhopadhyay S, Sharma A, McCurdy CR, Prentice BM. Formation of multiple ion types during MALDI imaging mass spectrometry analysis of Mitragyna speciosa alkaloids in dosed rat brain tissue. Talanta 2024; 274:125923. [PMID: 38569366 DOI: 10.1016/j.talanta.2024.125923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.
Collapse
Affiliation(s)
- Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Nicholas Ellin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Tamara I King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Sushobhan Mukhopadhyay
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Garate J, Maimó-Barceló A, Bestard-Escalas J, Fernández R, Pérez-Romero K, Martínez MA, Payeras MA, Lopez DH, Fernández JA, Barceló-Coblijn G. A Drastic Shift in Lipid Adducts in Colon Cancer Detected by MALDI-IMS Exposes Alterations in Specific K + Channels. Cancers (Basel) 2021; 13:cancers13061350. [PMID: 33802791 PMCID: PMC8061771 DOI: 10.3390/cancers13061350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
Even though colorectal cancer (CRC) is one of the most preventable cancers, it is one of the deadliest, and recent data show that the incidence in people <50 years has unexpectedly increased. While new techniques for CRC molecular classification are emerging, no molecular feature is as yet firmly associated with prognosis. Imaging mass spectrometry (IMS) lipidomic analyses have demonstrated the specificity of the lipid fingerprint in differentiating pathological from healthy tissues. During IMS lipidomic analysis, the formation of ionic adducts is common. Of particular interest is the [Na+]/[K+] adduct ratio, which already functions as a biomarker for homeostatic alterations. Herein, we show a drastic shift of the [Na+]/[K+] adduct ratio in adenomatous colon mucosa compared to healthy mucosa, suggesting a robust increase in K+ levels. Interrogating public databases, a strong association was found between poor diagnosis and voltage-gated potassium channel subunit beta-2 (KCNAB2) overexpression. We found this overexpression in three CRC molecular subtypes defined by the CRC Subtyping Consortium, making KCNAB2 an interesting pharmacological target. Consistently, its pharmacological inhibition resulted in a dramatic halt in commercial CRC cell proliferation. Identification of potential pharmacologic targets using lipid adduct information emphasizes the great potential of IMS lipidomic techniques in the clinical field.
Collapse
Affiliation(s)
- Jone Garate
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
| | - Albert Maimó-Barceló
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Joan Bestard-Escalas
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
- Research Department, IMG Pharma Biotech S.L., BIC Bizkaia (612), 48160 Derio, Spain
| | - Karim Pérez-Romero
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Marco A. Martínez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Pathology Anatomy Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Mª Antònia Payeras
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Gastroenterology Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Daniel H. Lopez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - José Andrés Fernández
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (J.G.); (R.F.); (J.A.F.)
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), 07120 Palma, Spain; (A.M.-B.); (J.B.-E.); (K.P.-R.); (M.A.M.); (M.A.P.); (D.H.L.)
- Research Unit, Hospital Universitari Son Espases, 07120 Palma, Spain
- Correspondence: ; Tel.: +34-871-205-000 (ext. 66300)
| |
Collapse
|
3
|
Garate J, Lage S, Martín-Saiz L, Perez-Valle A, Ochoa B, Boyano MD, Fernández R, Fernández JA. Influence of Lipid Fragmentation in the Data Analysis of Imaging Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:517-526. [PMID: 32126773 DOI: 10.1021/jasms.9b00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging mass spectrometry (IMS) is becoming an essential technique in lipidomics. Still, many questions remain open, precluding it from achieving its full potential. Among them, identification of species directly from the tissue is of paramount importance. However, it is not an easy task, due to the abundance and variety of lipid species, their numerous fragmentation pathways, and the formation of a significant number of adducts, both with the matrix and with the cations present in the tissue. Here, we explore the fragmentation pathways of 17 lipid classes, demonstrating that in-source fragmentation hampers identification of some lipid species. Then, we analyze what type of adducts each class is more prone to form. Finally, we use that information together with data from on-tissue MS/MS and MS3 to refine the peak assignment in a real experiment over sections of human nevi, to demonstrate that statistical analysis of the data is significantly more robust if unwanted peaks due to fragmentation, matrix, and other species that only introduce noise in the analysis are excluded.
Collapse
Affiliation(s)
| | | | | | | | | | - M Dolores Boyano
- Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | | | | |
Collapse
|
4
|
Imaging Mass Spectrometry–Based Lipidomic Approach to Classification of Architectural Features in Nevi. J Invest Dermatol 2019; 139:2055-2058.e7. [DOI: 10.1016/j.jid.2019.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/23/2022]
|
5
|
Lou B, Liu Q, Hou J, Kabir I, Liu P, Ding T, Dong J, Mo M, Ye D, Chen Y, Bui HH, Roth K, Cao Y, Jiang XC. 2-Hydroxy-oleic acid does not activate sphingomyelin synthase activity. J Biol Chem 2018; 293:18328-18336. [PMID: 30305392 DOI: 10.1074/jbc.ra118.005904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Indexed: 11/06/2022] Open
Abstract
2-Hydroxy-oleic acid (2OHOA) is a potent anticancer drug that induces cancer cell cycle arrest and apoptosis. Previous studies have suggested that 2OHOA's anticancer effect is mediated by SMS activation in cancer cells, including A549 and U118 cells. To confirm this phenomenon, in this study, we treated both A549 and U118 cells with 2OHOA and measured SMS activity. To our surprise, we found neither 2OHOA-mediated SMS activation nor sphingomyelin accumulation in the cells. However, we noted that 2OHOA significantly reduces phosphatidylcholine in these cells. We also did not observe 2OHOA-mediated SMS activation in mouse tissue homogenates. Importantly, 2OHOA inhibited rather than activated recombinant SMS1 (rSMS1) and rSMS2 in a dose-dependent fashion. Intra-gastric treatment of C57BL/6J mice with 2OHOA for 10 days had no effects on liver and small intestine SMS activities and plasma sphingomyelin levels. The treatment inhibited lysophosphatidylcholine acyltransferase (LPCAT) activity, consistent with the aforementioned reduction in plasma phosphatidylcholine. Because total cellular phosphatidylcholine is used as a predictive biomarker for monitoring tumor responses, the previously reported 2OHOA-mediated cancer suppression could be related to this phosphatidylcholine reduction, which may influence cell membrane structure and properties. We conclude that 2OHOA is not a SMS activator and that its anticancer property may be related to an effect on phosphatidylcholine metabolism.
Collapse
Affiliation(s)
- Bin Lou
- From the School of Pharmacy, Fudan University, Shanghai 201203, China,.
| | - Qi Liu
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Hou
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Inamul Kabir
- the Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Peipei Liu
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tingbo Ding
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jibin Dong
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingguang Mo
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Deyong Ye
- From the School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yang Chen
- the Institute of Precision Medicine, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai H Bui
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, and
| | - Kenneth Roth
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, Indiana 46285, and
| | - Yu Cao
- the Institute of Precision Medicine, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China,.
| | - Xian-Cheng Jiang
- From the School of Pharmacy, Fudan University, Shanghai 201203, China,; the Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203,; the Molecular and Cellular Cardiology Program, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209
| |
Collapse
|
6
|
Fernández R, Garate J, Abad B, Ochoa B, Fernández JA. Mapping Lipid Distribution in Rat Sciatic Nerve Using Imaging Mass Spectrometry. Methods Mol Biol 2018; 1791:51-65. [PMID: 30006701 DOI: 10.1007/978-1-4939-7862-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipids are essential components of cells and tissues. They play active and central roles in signaling and many biological functions and therefore their dysregulation is very often the first signal of function alteration. Here we describe the protocol to analyze not only lipid expression in rat sciatic nerve but also the lipid distribution along its different anatomic areas. The protocol combines results from MALDI-IMS and UHPLC-MS/MS to identify and cartography the maximum number of lipid species in the tissue.
Collapse
Affiliation(s)
- Roberto Fernández
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jone Garate
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Abad
- Faculty of Science and Technology, Central Analysis Service, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Begoña Ochoa
- Faculty of Medicine and Nursing, Department of Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Fernández
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
7
|
Fernández R, González P, Lage S, Garate J, Maqueda A, Marcaida I, Maguregui M, Ochoa B, Rodríguez FJ, Fernández JA. Influence of the Cation Adducts in the Analysis of Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry Data from Injury Models of Rat Spinal Cord. Anal Chem 2017; 89:8565-8573. [DOI: 10.1021/acs.analchem.7b02650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Roberto Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Pau González
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Sergio Lage
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jone Garate
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Alfredo Maqueda
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Iker Marcaida
- Department
of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Maite Maguregui
- Department
of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Begoña Ochoa
- Department
of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - F. Javier Rodríguez
- Laboratory
of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| |
Collapse
|
8
|
Bestard-Escalas J, Garate J, Maimó-Barceló A, Fernández R, Lopez DH, Lage S, Reigada R, Khorrami S, Ginard D, Reyes J, Amengual I, Fernández JA, Barceló-Coblijn G. Lipid fingerprint image accurately conveys human colon cell pathophysiologic state: A solid candidate as biomarker. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1942-1950. [PMID: 27663183 DOI: 10.1016/j.bbalip.2016.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
Membrane lipids are gaining increasing attention in the clinical biomarker field, as they are associated with different pathologic processes such as cancer or neurodegenerative diseases. Analyzing human colonoscopic sections by matrix assisted laser/desorption ionization (MALDI) mass spectrometry imaging techniques, we identified a defined number of lipid species changing concomitant to the colonocyte differentiation and according to a quite simple mathematical expression. These species felt into two lipid families tightly associated in signaling: phosphatidylinositols and arachidonic acid-containing lipids. On the other hand, an opposed pattern was observed in lamina propria for AA-containing lipids, coinciding with the physiological distribution of the immunological response cells in this tissue. Importantly, the lipid gradient was accompanied by a gradient in expression of enzymes involved in lipid mobilization. Finally, both lipid and protein gradients were lost in adenomatous polyps. The latter allowed us to assess how different a single lipid species is handled in a pathological context depending on the cell type. The strict patterns of distribution in lipid species and lipid enzymes described here unveil the existence of fine regulatory mechanisms orchestrating the lipidome according to the physiological state of the cell. In addition, these results provide solid evidence that the cell lipid fingerprint image can be used to predict precisely the physiological and pathological status of a cell, reinforcing its translational impact in clinical research.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain.
| | - Jone Garate
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Albert Maimó-Barceló
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain.
| | - Roberto Fernández
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Daniel Horacio Lopez
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain.
| | - Sergio Lage
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Rebeca Reigada
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain.
| | - Sam Khorrami
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain.
| | - Daniel Ginard
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain.
| | - José Reyes
- Gastroenterology Unit, Hospital Comarcal de Inca, Inca, Balearic Islands, Spain.
| | - Isabel Amengual
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain; Pathological Anatomy Unit, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain.
| | - José A Fernández
- Dep. of Physical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain.
| | - Gwendolyn Barceló-Coblijn
- Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa, Medical Research Institute of Palma), Palma, Balearic Islands, Spain.
| |
Collapse
|