1
|
Shvartsburg AA, Sadowski P, Poad BLJ, Blanksby SJ. Metal Polycation Adduction to Lipids Enables Superior Ion Mobility Separations with Ultrafast Ozone-Induced Dissociation. Anal Chem 2024; 96:15960-15969. [PMID: 39334534 DOI: 10.1021/acs.analchem.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Specific lipid isomers are functionally critical, but their structural rigidity and usually minute geometry differences make separating them harder than other biomolecules. Such separations by ion mobility spectrometry (IMS) were recently enabled by new high-definition methods using dynamic electric fields, but major resolution gains are needed. Another problem of identifying many isomers with no unique fragments in ergodic collision-induced dissociation (CID) was partly addressed by the direct ozone-induced dissociation (OzID) that localizes the double bonds, but a low reaction efficiency has limited the sensitivity, dynamic range, throughput, and compatibility with other tools. Typically lipids are analyzed by MS as singly charged protonated, deprotonated, or ammoniated ions. Here, we explore the differential IMS (FAIMS) separations with OzID for exemplary lipids cationized by polyvalent metals. These multiply charged adducts have much greater FAIMS compensation voltages (UC) than the 1+ ions, with up to 10-fold resolution gain enabling baseline isomer separations even at a moderate resolving power of the SelexION stage. Concomitantly OzID speeds up by many orders of magnitude, producing a high yield of diagnostic fragments already in 1 ms. These capabilities can be ported to the superior high-definition FAIMS and high-pressure OzID systems to take lipidomic analyses to the next level.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pawel Sadowski
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility and Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
3
|
Huang L, Huang M, Zhou T. Efficient Strategy for Characterization and Quantification of Polyunsaturated Lipids by Microwave-Assisted MMPP Epoxidation. Anal Chem 2024; 96:11189-11197. [PMID: 38965741 DOI: 10.1021/acs.analchem.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Lipids play integral roles in biological processes, with carbon-carbon double bonds (C═C) markedly influencing their structure and function. Precise characterization and quantification of unsaturated lipids are crucial for understanding lipid physiology and discovering disease biomarkers. However, using mass spectrometry for these purposes presents significant challenges. In this study, we developed a microwave-assisted magnesium monoperoxyphthalate hexahydrate (MMPP) epoxidation reaction, coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to analyze unsaturated lipids. Microwave irradiation expedited the MMPP epoxidation, achieving complete derivatization in 10 min without byproducts. A diagnostic ion pair, displaying a 16 Da mass difference, effectively identified the location of the C═C bond in mass spectra. Microwave irradiation also significantly facilitated the epoxidation reaction of polyunsaturated lipids, achieving yields greater than 85% and yielding a complete epoxidation product. This simplifies chromatographic separation and aids in accurate quantification. Additionally, a purification process was implemented to remove excess derivatization reagents, significantly reducing mass spectrometry response suppression and enhancing analytical reproducibility. The method's effectiveness was validated by analyzing unsaturated lipids in rat plasma from a type I diabetes model. We quantified nine unsaturated lipids and characterized 42 fatty acids and glycerophospholipids. The results indicated that unsaturated fatty acids increased in diabetic plasma while unsaturated glycerophospholipids decreased. Furthermore, the relative abundances of Δ9/Δ11 isomer pairs also exhibited a close association with diabetes. In conclusion, microwave-assisted MMPP epoxidation coupled with LC-MS/MS provides an effective strategy for characterization and quantification of polyunsaturated lipids, offering deeper insight into the physiological impact of unsaturated lipids in related diseases.
Collapse
Affiliation(s)
- Longhui Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Minhan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Sazzad MA, Fabritius M, Boström P, Yang B. Advanced Tandem Mass Spectrometric Analysis of Complex Mixtures of Triacylglycerol Regioisomers: A Case Study of Bovine Milk Fat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8849-8858. [PMID: 38580310 PMCID: PMC11036391 DOI: 10.1021/acs.jafc.3c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
Comprehensive analysis of triacylglycerol (TAG) regioisomers is extremely challenging, with many variables that can influence the results. Previously, we reported a novel algorithmic method for resolving regioisomers of complex mixtures of TAGs. In the current study, the TAG Analyzer software and its mass spectrometric fragmentation model were further developed and validated for a much wider range of TAGs. To demonstrate the method, we performed for the first time a comprehensive analysis of TAG regioisomers of bovine milk fat, a very important and one of the most complex TAG mixtures in nature containing FAs ranging from short to long carbon chains. This analysis method forms a solid basis for further investigation of TAG regioisomer profiles in various natural fats and oils, potentially aiding in the development of new and healthier foods and nutraceuticals with targeted lipid structures.
Collapse
Affiliation(s)
| | | | | | - Baoru Yang
- Food Sciences, Department
of Life Technologies, University of Turku, FI-20500 Turku, Finland
| |
Collapse
|
5
|
Zhang C, Xu X, Zhang S, Xiao M, Liu Y, Li J, Du G, Lv X, Chen J, Liu L. Detection and analysis of triacylglycerol regioisomers via electron activated dissociation (EAD) tandem mass spectrometry. Talanta 2024; 270:125552. [PMID: 38118324 DOI: 10.1016/j.talanta.2023.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Triacylglycerols (TGs) are important components of human diet. The positional distribution of fatty acids (FAs) on the glycerol backbone affects the chemistry and physical properties of fats. Especially for infants, the structure of TGs plays an important role in the growth and development. However, limited by detecting technology, accurately identifying regioisomers of ABA/AAB and BAC/ABC/ACB type TGs is a significant challenge for human milk utilization and the development of infant formula. For this, we exploit a novel method for identifying the regioisomers of ABA/AAB and BAC/ABC/ACB type TGs within complex lipid mixtures, via used electron activated dissociation (EAD) tandem mass spectrometry. The distribution information of acyl chains at the sn-2 and sn-1/3 positions of glycerol backbone and double bonds in unsaturated FAs can be easily obtained by fragmenting TG ions with energetic electrons (15 eV). Then, the standard curve was established by correlating the peak area intensity of sn-2 characteristic product ion with the content of TG regioisomers standard. These analytical methods successfully enabled the identification and quantification of TG regioisomers in human milk, cow milk, infant formula, palm oil, and sunflower oil. Additionally, the distribution of the double-bond positions of unsaturated FAs in these samples was also identified. Compared to traditional methods, this approach eliminates the need for complex processing and analysis procedures, enabling rapid structural characterization of ABA/AAB and BAC/ABC/ACB type TGs within 17 min. Hence, we provide a rapid and convenient methodology for detecting and analyzing ABA/AAB and BAC/ABC/ACB type TG regioisomers, thereby offering valuable assistance in the development of specialized formulations and facilitating effective process control for ensuring the quality of edible oils and fats.
Collapse
Affiliation(s)
- Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | | | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
6
|
Michael JA, Young RSE, Balez R, Jekimovs LJ, Marshall DL, Poad BLJ, Mitchell TW, Blanksby SJ, Ejsing CS, Ellis SR. Deep Characterisation of the sn-Isomer Lipidome Using High-Throughput Data-Independent Acquisition and Ozone-Induced Dissociation. Angew Chem Int Ed Engl 2024; 63:e202316793. [PMID: 38165069 DOI: 10.1002/anie.202316793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years there has been a significant interest in the development of innovative lipidomics techniques capable of resolving lipid isomers. To date, methods applied to resolving sn-isomers have resolved only a limited number of species. We report a workflow based on ozone-induced dissociation for untargeted characterisation of hundreds of sn-resolved glycerophospholipid isomers from biological extracts in under 20 min, coupled with an automated data analysis pipeline. It provides an order of magnitude increase in the number of sn-isomer pairs identified as compared to previous reports and reveals that sn-isomer populations are tightly regulated and significantly different between cell lines. The sensitivity of this method and potential for de novo molecular discovery is further demonstrated by the identification of unexpected lipids containing ultra-long monounsaturated acyl chains at the sn-1 position.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David L Marshall
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics and the Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Wang Z, Garza S, Li X, Rahman MS, Brenna JT, Wang DH. Paternò-Büchi Reaction Mass Spectrometry Enables Positional Assignment of Polymethylene-Interrupted Double Bonds in Food-Derived Lipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3180-3188. [PMID: 38308634 DOI: 10.1021/acs.jafc.3c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Fatty acids (FAs) containing polymethylene-interrupted (PMI) double bonds are a component of human foods; however, they present a significant analytical challenge for de novo identification. Covalent adduct chemical ionization and ozone-induced dissociation mass spectrometry (MS) methods enable unambiguous assignment of PMI-FA double bond positions, however, no method has been reported with electrospray ionization (ESI) platform using off-the-shelf systems. In the current work, we studied the Paternò-Büchi (PB) fragmentation patterns of PMI-FA and triacylglycerol (TG) by analyzing several known food sources. PB-MS/MS and MS3 enabled complete double bond location assignments, including the isolated double bond in PMI-FA and triacylglycerols. Sea urchin ("uni"), oyster, pine nut, and ginkgo nut were characterized for their signature PMI-FA, 20:2(5Z,11Z), 22:2(7Z, 15Z), 18:3(5Z,9Z,12Z), and 20:3(5Z,11Z,14Z), respectively. Quantitative analyses of the relative abundance of these PMI-FA led to results similar to reference methods. 18:3(5Z,9Z,12Z) was enriched at the sn-1/sn-3 position in pine nut major TG.
Collapse
Affiliation(s)
- Zhen Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P. R. China
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Secilia Garza
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
| | - Xu Li
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, 9 Seyuan Road, Nantong 226019 Jiangsu, China
| | - Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas 78520, United States
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Dong Hao Wang
- Dell Pediatric Research Institute, Departments of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, Texas 78723, United States
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P. R. China
| |
Collapse
|
8
|
Harris RA, May JC, Harvey SR, Wysocki VH, McLean JA. Evaluation of Surface-Induced Dissociation Ion Mobility-Mass Spectrometry for Lipid Structural Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:214-223. [PMID: 38215279 DOI: 10.1021/jasms.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses. We have developed a tuning methodology for guiding the efficient operation of a previously developed custom SID device for molecules as small as ca. 300 Da with ion mobility analysis of the fragmentation products. SID fragmentation of the various lipids analyzed was found to generate fragment ions similar to those observed in CID spectra, but fragment ion lab frame onset energies were lower in SID due to the higher energy deposition via a more massive target. For the largest lipid evaluated (cardiolipin 18:1), SID produced chain fragment ions, which yielded analytically useful information regarding the composition of the acyl tails. Ion mobility provided an orthogonal dimension of separation and aided in assigning product ions to their precursors. Overall, the combination of SID and IM-MS is another potential methodology in the analytical toolkit for lipid structural analysis.
Collapse
Affiliation(s)
- Rachel A Harris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
9
|
Wang Z, Yang T, Brenna JT, Wang DH. Fatty acid isomerism: analysis and selected biological functions. Food Funct 2024; 15:1071-1088. [PMID: 38197562 DOI: 10.1039/d3fo03716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.
Collapse
Affiliation(s)
- Zhen Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tingxiang Yang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Depts of Pediatrics, of Chemistry, and of Nutrition, University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Parker K, Bollis NE, Ryzhov V. Ion-molecule reactions of mass-selected ions. MASS SPECTROMETRY REVIEWS 2024; 43:47-89. [PMID: 36447431 DOI: 10.1002/mas.21819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With "soft" ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their "natural" oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.
Collapse
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas E Bollis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
11
|
Xia T, Zhou F, Zhang D, Jin X, Shi H, Yin H, Gong Y, Xia Y. Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry. Nat Commun 2023; 14:4263. [PMID: 37460558 DOI: 10.1038/s41467-023-40046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Feng Zhou
- Bytedance Technology Co., 201103, Shanghai, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument, 100084, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Hengxue Shi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, 100084, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, 100034, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
12
|
Characterization of Triacylglycerol Estolide Isomers Using High-Resolution Tandem Mass Spectrometry with Nanoelectrospray Ionization. Biomolecules 2023; 13:biom13030475. [PMID: 36979410 PMCID: PMC10046810 DOI: 10.3390/biom13030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Triacylglycerol estolides (TG-EST) are biologically active lipids extensively studied for their anti-inflammatory and anti-diabetic properties. In this work, eight standards of TG-EST were synthesized and systematically investigated by nanoelectrospray tandem mass spectrometry. Mass spectra of synthetic TG-EST were studied with the purpose of enabling the unambiguous identification of these lipids in biological samples. TG-EST glycerol sn-regioisomers and isomers with the fatty acid ester of hydroxy fatty acid (FAHFA) subunit branched in the ω-, α-, or 10-position were used. Ammonium, lithium, and sodium adducts of TG-EST formed by nanoelectrospray ionization were subjected to collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). Product ion spectra allowed for identification of fatty acid (FA) and FAHFA subunits originally linked to the glycerol backbone and distinguished the α-branching site of the FAHFA from other estolide-branching isomers. The ω- and 10-branching sites were determined by combining CID with ozone-induced dissociation (OzID). Lithium adducts provided the most informative product ions, enabling characterization of FA, hydroxy fatty acid (HFA), and FAHFA subunits. Glycerol sn-regioisomers were distinguished based on the relative abundance of product ions and unambiguously identified using CID/OzID of lithium and sodium adducts.
Collapse
|
13
|
Grooms A, Nordmann AN, Badu-Tawiah AK. Plasma-Droplet Reaction Systems: A Direct Mass Spectrometry Approach for Enhanced Characterization of Lipids at Multiple Isomer Levels. ACS MEASUREMENT SCIENCE AU 2023; 3:32-44. [PMID: 36817012 PMCID: PMC9936802 DOI: 10.1021/acsmeasuresciau.2c00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/18/2023]
Abstract
Neutral triacylglyceride (TG) lipids are critical in cellular function, signaling, and energy storage. Multiple molecular pathways control TG structure via nonselective routes making them structurally complex and analytically challenging to characterize. The presence of C=C bond positional isomers exacerbates this challenge as complete structural elucidation is not possible by conventional tandem mass spectrometric methods such as collision-induced dissociation (CID), alone. Herein, we report a custom-made coaxial contained-electrospray ionization (ESI) emitter that allows the fusion of plasma discharge with charged microdroplets during electrospray (ES). Etched capillaries were incorporated into this contained-ES emitter, facilitating the generation of reactive oxygen species (ROS) at low (3 kV) ESI voltages and allowing stable ESI ion signal to be achieved at an unprecedented high (7 kV) spray voltage. The analytical utility of inducing plasma discharge during electrospray was investigated using online ionization of neutral TGs, in situ epoxidation of unsaturation sites, and C=C bond localization via conventional CID mass spectrometry. Collisional activation of the lipid epoxide generated during the online plasma-droplet fusion experiment resulted in a novel fragmentation pattern that showed a quadruplet of diagnostic ions for confident assignment of C=C bond positions and subsequent isomer differentiation. This phenomenon enabled the identification of a novel TG lipid, composed of conjugated linoleic acid, that is isomeric with two other TG lipids naturally found in extra virgin olive oil. To validate our findings, we analyzed various standards of TG lipids, including triolein, trilinolein, and trilinolenin, and isomeric mixtures in the positive-ion mode, each of which produced the expected quadruplet diagnostic fragment ions. Further validation was obtained by analyzing standards of free fatty acids expected from the hydrolysis of the TG lipids in the negative-ion mode, together with isomeric mixtures. The chemistry governing the gas-phase fragmentation of the lipid epoxides was carefully elucidated for each TG lipid analyzed. This comprehensive shotgun lipidomic approach has the potential to impact biomedical research since it can be accomplished on readily available mass spectrometers without the need for instrument modification.
Collapse
|
14
|
Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun Chem 2022; 5:162. [PMID: 36698019 PMCID: PMC9814143 DOI: 10.1038/s42004-022-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C = C) position being a crucial factor in biological system, the C = C defined structures have not yet been characterized comprehensively. Here, we present an approach for C = C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the annotation rate. We validated the accuracy of our platform as per the authentic standards of 85 lipids and the biogenic standards of 52 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived samples, we characterized 648 unique lipids with the C = C position-resolved level encompassing 24 lipid subclasses defined by LIPIDMAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon [Formula: see text] 28 and double bonds [Formula: see text] 4) in the eye, testis, and brain of the mouse.
Collapse
|
15
|
Jiao B, Zhou W, Liu Y, Zhang W, Ouyang Z. In-situ sampling of lipids in tissues using a porous membrane microprobe for direct mass spectrometry analysis. Mater Today Bio 2022; 16:100424. [PMID: 36157050 PMCID: PMC9490171 DOI: 10.1016/j.mtbio.2022.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Direct sampling of lipids from tissues for direct mass spectrometry (MS) analysis allows a quick profiling of lipidome, which is important for biomedical applications. In this work, we developed a polyporous polymeric membrane (PPM) microprobe for highly efficient sampling of lipids directly from tissue samples. The PPM was prepared by polypropylene with pores as large of 10 μm, facilitating the permeation of lipids from tissue surfaces. The PPM was coated onto a stainless steel wire with a thickness of ∼100 μm. The entire analysis procedure includes sampling of the lipids in tissue, washing the probe, and extraction spray ionization for MS analysis. The effectiveness was validated by analyzing mouse brain tissue samples. It showed high recoveries for a series of lipid classes in comparison with total lipid extraction method. Further demonstration was carried out with analysis of tissue samples from mouse liver, stomach, kidney and legs. With high physical strength and good chemical stability, the microprobe was also demonstrated for sampling lipids inside mouse kidney tissue samples. By incorporating a photochemical derivatization, a workflow was also developed for fast detection of lipid C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>C isomers in tissue samples. Finally, a microprobe array was also developed for simultaneous sampling of lipids from multiple sites on tissue surfaces.
Collapse
|
16
|
Zhang W, Jian R, Zhao J, Liu Y, Xia Y. Deep-lipidotyping by mass spectrometry: recent technical advances and applications. J Lipid Res 2022; 63:100219. [PMID: 35489417 PMCID: PMC9213770 DOI: 10.1016/j.jlr.2022.100219] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yikun Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
17
|
Gazlay W, Evans JJ. The impact of the complexing agent on the sensitivity of collision-induced dissociation spectra to fatty acid position for a set of XYZ-type triglycerides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9226. [PMID: 34820920 DOI: 10.1002/rcm.9226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The development of an automated platform for the positional analysis of triglycerides (TAGs) based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) continues to be pursued. This work evaluates the positional sensitivities of the collision-induced dissociation (CID) spectra of a representative set of XYZ triglycerides using sodium, lithium, and ammonium salts as complexing agents. METHODS A set of triglycerides were synthesized and analyzed via ESI-MS/MS using an ion trap mass spectrometer. Using three different complexing agents, the product ion spectra of the corresponding precursor ions for twelve XYZ TAGs were collected, where X, Y, and Z represent C16:0 , C18:1(c-9) , C18:2(cc-9,12) , and C20:4(cccc-5,8,11,14) fatty acid chains. These data were then used to prepare ternary plots for four positional isomer systems to evaluate the positional sensitivity differences among the three different complexing agents. RESULTS The positional sensitivities for each of the four positional isomer systems were robust for the sodium and lithium adducts. The CID data for the sodium and lithium TAGs demonstrated an unfavorable loss of the fatty acid in the center position and showed a higher sensitivity to fatty acid position, when compared with the CID data for ammonium adducts, especially for the arachidonic acid containing triglycerides. CONCLUSIONS The data shows that that the relative abundances of the DAG product ions for the XYZ-type TAGs when using sodium and lithium complexing agent adducts are sensitive to fatty acid position and are consistent for the diverse array of TAGs studied in this work. This suggests that using sodium or lithium as the complexing agent may be advantageous for the development of an automated platform for the positional analysis of complex TAG mixtures based on ESI-MS/MS.
Collapse
Affiliation(s)
- William Gazlay
- Chemistry Department, University of Massachusetts Boston, Boston, MA, USA
| | - Jason J Evans
- Chemistry Department, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
18
|
Liu Z, Rochfort S. Regio-distribution and double bond locations of unsaturated fatty acids in phospholipids of bovine milk. Food Chem 2021; 373:131515. [PMID: 34772567 DOI: 10.1016/j.foodchem.2021.131515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
Hundreds of phospholipid (PL) species with defined fatty acid (FA) composition have been identified previously in bovine milk using liquid chromatography tandem mass spectrometry (LC-MS/MS). Paterno-Buchi photochemical reaction coupled with LC-MS/MS was applied in this study to further unravel the regio-distribution and double bond (DB) locations of FAs. Using SPE-purified PLs and 2-acetylpyridine as the photochemical derivatization reagent, we were able to reveal the non-specific regio-distribution of unsaturated FAs and the widespread occurrence of regioisomers in milk PLs. Although Δ9 and Δ9,12 were found to be the predominant DB location(s) for C18:1 and C18:2 respectively, other DB positional isomers such as C18:1Δ11, C18:1Δ12 and C18:1Δ13 and C18:2Δ9,11 were widely detected in PL structures, implying that the minor isomers of C18:1 and C18:2 equally participate in the synthesis of PLs. Our study provides novel information on the fine structure of milk PLs and further underlines the complexity of milk lipid composition.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia.
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
19
|
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem 2021; 413:5927-5948. [PMID: 34142202 PMCID: PMC8440309 DOI: 10.1007/s00216-021-03425-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Metabolomics and lipidomics are new drivers of the omics era as molecular signatures and selected analytes allow phenotypic characterization and serve as biomarkers, respectively. The growing capabilities of untargeted and targeted workflows, which primarily rely on mass spectrometric platforms, enable extensive charting or identification of bioactive metabolites and lipids. Structural annotation of these compounds is key in order to link specific molecular entities to defined biochemical functions or phenotypes. Tandem mass spectrometry (MS), first and foremost collision-induced dissociation (CID), is the method of choice to unveil structural details of metabolites and lipids. But CID fragment ions are often not sufficient to fully characterize analytes. Therefore, recent years have seen a surge in alternative tandem MS methodologies that aim to offer full structural characterization of metabolites and lipids. In this article, principles, capabilities, drawbacks, and first applications of these "advanced tandem mass spectrometry" strategies will be critically reviewed. This includes tandem MS methods that are based on electrons, photons, and ion/molecule, as well as ion/ion reactions, combining tandem MS with concepts from optical spectroscopy and making use of derivatization strategies. In the final sections of this review, the first applications of these methodologies in combination with liquid chromatography or mass spectrometry imaging are highlighted and future perspectives for research in metabolomics and lipidomics are discussed.
Collapse
Affiliation(s)
- Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
20
|
Kirschbaum C, Greis K, Polewski L, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy. J Am Chem Soc 2021; 143:14827-14834. [PMID: 34473927 PMCID: PMC8447261 DOI: 10.1021/jacs.1c06944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Mass spectrometry
is routinely employed for structure elucidation
of molecules. Structural information can be retrieved from intact
molecular ions by fragmentation; however, the interpretation of fragment
spectra is often hampered by poor understanding of the underlying
dissociation mechanisms. For example, neutral headgroup loss from
protonated glycerolipids has been postulated to proceed via an intramolecular
ring closure but the mechanism and resulting ring size have never
been experimentally confirmed. Here we use cryogenic gas-phase infrared
(IR) spectroscopy in combination with computational chemistry to unravel
the structures of fragment ions and thereby shed light on elusive
dissociation mechanisms. Using the example of glycerolipid fragmentation,
we study the formation of protonated five-membered dioxolane and six-membered
dioxane rings and show that dioxolane rings are predominant throughout
different glycerolipid classes and fragmentation channels. For comparison,
pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl
derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently
interrogated using IR spectroscopy. Furthermore, the cyclic structure
of an intermediate fragment occurring in the phosphatidylcholine fragmentation
pathway was spectroscopically confirmed. Overall, the results contribute
substantially to the understanding of glycerolipid fragmentation and
showcase the value of vibrational ion spectroscopy to mechanistically
elucidate crucial fragmentation pathways in lipidomics.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Lukasz Polewski
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | | | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| |
Collapse
|
21
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Claes BR, Bowman AP, Poad BLJ, Young RSE, Heeren RMA, Blanksby SJ, Ellis SR. Mass Spectrometry Imaging of Lipids with Isomer Resolution Using High-Pressure Ozone-Induced Dissociation. Anal Chem 2021; 93:9826-9834. [PMID: 34228922 PMCID: PMC8295983 DOI: 10.1021/acs.analchem.1c01377] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Mass spectrometry imaging (MSI) of lipids within tissues has significant potential for both biomolecular discovery and histopathological applications. Conventional MSI technologies are, however, challenged by the prevalence of phospholipid regioisomers that differ only in the location(s) of carbon-carbon double bonds and/or the relative position of fatty acyl attachment to the glycerol backbone (i.e., sn position). The inability to resolve isomeric lipids within imaging experiments masks underlying complexity, resulting in a critical loss of metabolic information. Herein, ozone-induced dissociation (OzID) is implemented on a mobility-enabled quadrupole time-of-flight (Q-TOF) mass spectrometer capable of matrix-assisted laser desorption/ionization (MALDI). Exploiting the ion mobility region in the Q-TOF, high number densities of ozone were accessed, leading to ∼1000-fold enhancement in the abundance of OzID product ions compared to earlier MALDI-OzID implementations. Translation of this uplift into imaging resulted in a 50-fold improvement in acquisition rate, facilitating large-area mapping with resolution of phospholipid isomers. Mapping isomer distributions across rat brain sections revealed distinct distributions of lipid isomer populations with region-specific associations of isomers differing in double bond and sn positions. Moreover, product ions arising from sequential ozone- and collision-induced dissociation enabled double bond assignments in unsaturated fatty acyl chains esterified at the noncanonical sn-1 position.
Collapse
Affiliation(s)
- Britt
S. R. Claes
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Andrew P. Bowman
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Berwyck L. J. Poad
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Reuben S. E. Young
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Ron M. A. Heeren
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Stephen J. Blanksby
- Central
Analytical Research Facility, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Chemistry and Physics, Queensland University
of Technology, Brisbane, Queensland 4001, Australia
| | - Shane R. Ellis
- The
Maastricht MultiModal Molecular Imaging (M4I) institute, Division
of Imaging Mass Spectrometry (IMS), Maastricht
University, 6229 ER Maastricht, The Netherlands
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
- llawarra
Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
Xia T, Yuan M, Xu Y, Zhou F, Yu K, Xia Y. Deep Structural Annotation of Glycerolipids by the Charge-Tagging Paterno-Büchi Reaction and Supercritical Fluid Chromatography-Ion Mobility Mass Spectrometry. Anal Chem 2021; 93:8345-8353. [PMID: 34056897 DOI: 10.1021/acs.analchem.1c01379] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycerolipids (GLs) are essential for cellular lipid homeostasis, while dysregulation in GL metabolism is often associated with the onset or progression of human-related metabolic diseases. The profile of GLs is thus frequently used as a molecular readout for disease phenotyping. Although mass spectrometry (MS) is the method of choice for GL profiling, the current MS methods are unable to differentiate two major types of structural isomers due to the fact that fatty acyls can be linked to different positions on the glycerol backbone (sn-positions) and the site(s) of unsaturation in acyl chains. Herein, by utilizing charge-tagging Paterno-Büchi (PB) derivatization of carbon-carbon double bond (C═C), supercritical fluid chromatography (SFC), and mobility aligned tandem mass spectrometry (MS/MS), a workflow has been developed for the sensitive and structurally informative analysis of GLs. SFC allows fast separation (within 25 min) of sn-isomers of diacylglycerols (DGs) and separation of triacylglycerols (TGs) of different chain lengths and degrees of unsaturation. Time-aligned parallel fragmentation enables multiple-stage MS/MS of the PB-derivatized lipids in a high-throughput fashion and allows pinpointing C═C location to a specific fatty acyl chain. This workflow reveals the presence of more than 500 molecular structures of neutral lipids from pooled human plasma. A comparison of human plasma samples between type 2 diabetes (N = 7) and control (N = 7) shows significant changes in isomer compositions (C18:1 Δ9 vs Δ11) from nine groups of TG and DG. These findings suggest that the developed workflow can be potentially applied to lipid marker discovery for disease monitoring or diagnosis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- Waters Corporation, Shanghai 201206, China
| | - Yongwei Xu
- Waters Corporation, Shanghai 201206, China
| | - Feng Zhou
- Bytedance Technology Co., Shanghai 201103, China
| | - Kate Yu
- Waters Corporation, Milford, Massachusetts 01532, United States
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wang DH, Park HG, Wang Z, Lacombe RJS, Shmanai VV, Bekish AV, Schmidt K, Shchepinov MS, Brenna JT. Toward Quantitative Sequencing of Deuteration of Unsaturated Hydrocarbon Chains in Fatty Acids. Anal Chem 2021; 93:8238-8247. [PMID: 34048647 DOI: 10.1021/acs.analchem.1c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
No general method currently is available for the quantitative determination of deuterium (D) at C positions along a hydrocarbon chain. Bis-allylic deuterated highly unsaturated fatty acids (D-HUFA) are a novel class of drugs stabilized against H-abstraction-mediated oxidation by deuteration at the most labile positions. Ru-based catalytic deuteration overcomes the limited scale of bis-allylic D-HUFA production by total organic synthesis; however, it produces a complex mixture of bis-allylic D isotopologues and isotopomers, requiring detailed sequencing for characterization. We report here adaptation and application of the Paternó-Büchi (PB) reaction of 2-acetylpyridine to a series of D-HUFA with analysis by shotgun lipidomics to determine position-specific quantitative D abundances. Sodiated PBD-HUFA result in diagnostic ions of high abundance upon collision-induced dissociation (CID) activation, enabling sensitive differentiation and quantification of D fraction at each bis- and mono-allylic position for each isotopologue. Catalytically deuterated isotopologues D5-7 linolenic acid (D5-7 LnA), D6-8 arachidonic acid (D6-8 ARA), D7-9 eicosapentaenoic acid (D7-9 EPA), and D9-11 docosahexaenoic acid (D9-11 DHA) incorporate 80-98, 95-100, 81-100, and 83-100% D at their bis-allylic positions, respectively. D-HUFA isotopologues having D number greater than or equal to bis-allylic sites (e.g., D10-DHA or D11-DHA) deuterated >95% at bis-allylic positions, except for D-LnA. The mono-allylic position near the methyl end deuterates to a much greater extent than the mono-allylic position near the carboxyl end, and both positions deuterate only when bis-allylic D is near-saturated. This method enables rapid, accurate characterization of position and isotopomer-specific D composition and enables sequencing along the chain.
Collapse
Affiliation(s)
- Dong Hao Wang
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Hui Gyu Park
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Zhen Wang
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | | | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | - Andrei V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, 13 Surganova Street, Minsk 220072, Belarus
| | | | | | - J Thomas Brenna
- Division of Nutritional Sciences and Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
25
|
Young RSE, Bowman AP, Williams ED, Tousignant KD, Bidgood CL, Narreddula VR, Gupta R, Marshall DL, Poad BLJ, Nelson CC, Ellis SR, Heeren RMA, Sadowski MC, Blanksby SJ. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep 2021; 34:108738. [PMID: 33567271 DOI: 10.1016/j.celrep.2021.108738] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Canonical fatty acid metabolism describes specific enzyme-substrate interactions that result in products with well-defined chain lengths, degree(s), and positions of unsaturation. Deep profiling of lipids across a range of prostate cancer cell lines reveals a variety of fatty acids with unusual site(s) of unsaturation that are not described by canonical pathways. The structure and abundance of these unusual lipids correlate with changes in desaturase expression and are strong indicators of cellular phenotype. Gene silencing and stable isotope tracing demonstrate that direct Δ6 and Δ8 desaturation of 14:0 (myristic), 16:0 (palmitic), and 18:0 (stearic) acids by FADS2 generate new families of unsaturated fatty acids (including n-8, n-10, and n-12) that have rarely-if ever-been reported in human-derived cells. Isomer-resolved lipidomics reveals the selective incorporation of these unusual fatty acids into complex structural lipids and identifies their presence in cancer tissues, indicating functional roles in membrane structure and signaling.
Collapse
Affiliation(s)
- Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew P Bowman
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Kaylyn D Tousignant
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Charles L Bidgood
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | | | - Rajesh Gupta
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Martin C Sadowski
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Princess Alexandra Hospital, Translational Research Institute, Brisbane, QLD 4000, Australia; Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland.
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia.
| |
Collapse
|
26
|
Kulyk DS, Amoah E, Badu-Tawiah AK. High-Throughput Mass Spectrometry Screening Platform for Discovering New Chemical Reactions under Uncatalyzed, Solvent-Free Experimental Conditions. Anal Chem 2020; 92:15025-15033. [PMID: 33151666 DOI: 10.1021/acs.analchem.0c02960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A gas-phase high-throughput reaction screening platform was developed for the first time to study chemical structures of closely related functional groups and for the discovery of novel organic reaction pathways. Experiments were performed using the contained atmospheric pressure chemical ionization (APCI) source that enabled nonthermal, nonequilibrium plasma chemistry to be monitored by mass spectrometry (MS) in real time. This contained-APCI MS platform allowed an array of reagents to be tested, resulting in the studies of multiple gas-phase reactions in parallel. By exposing headspace vapor of the selected reagents to corona discharge, solvent-free Borsche-Drecsel cyclization reaction, Katritzky chemistry, and Paal-Knorr pyrrole synthesis were examined in the gas phase, outside the high vacuum environment of the mass spectrometer. A new radical-mediated hydrazine coupling reaction was also discovered, which provided a selective pathway to synthesize secondary amines without using a catalyst. The mechanisms of these atmospheric pressure gas-phase reactions were explored through the direct capture of intermediates and via comparison with the corresponding bulk solution and droplet-phase reactions.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Enoch Amoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Franklin ET, Xia Y. Structural elucidation of triacylglycerol using online acetone Paternò-Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry. Analyst 2020; 145:6532-6540. [PMID: 32761025 PMCID: PMC7554225 DOI: 10.1039/d0an01353f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triacylglycerol (TG) is a class of lipids that is responsible for energy storage and cell metabolism in biological systems; it is found in relatively high abundances in biological fluids such as human plasma. Due to structural complexity, analyzing TGs using shotgun lipidomic approaches is challenging because of the presence of multiple fatty acyl compositional isomers. In this work, reversed-phase liquid chromatography (RPLC) was used for separation of TG species due to the capability of separating lipids based on fatty acyl chain lengths and degrees of unsaturation. RPLC alone does not provide structurally informative information for the location of carbon-carbon double-bonds (C[double bond, length as m-dash]Cs) without using synthesized standards that correspond to each species analyzed. The Paternò-Büchi (PB) reaction was employed online to confidently characterize the location of C[double bond, length as m-dash]Cs within lipid species via photo-initiated modification of the alkene group with acetone, which was later subjected to electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) to form signature fragmentation peaks. This online RPLC-PB-MS/MS system was able to distinguish fatty acyl level and C[double bond, length as m-dash]C level isomeric species. The systems allowed for the identification of 46 TG molecular species in human plasma with confident C[double bond, length as m-dash]C location assignment in fatty acyls at a limit of identification of 50 nM.
Collapse
Affiliation(s)
- Elissia T Franklin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
28
|
Untargeted lipidomics using liquid chromatography-ion mobility-mass spectrometry reveals novel triacylglycerides in human milk. Sci Rep 2020; 10:9255. [PMID: 32518313 PMCID: PMC7283244 DOI: 10.1038/s41598-020-66235-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Human milk provides the infant with the essential nutritive and non-nutritive factors required for health, growth and development. The human milk lipidome is complex, but comprises predominantly triacylglycerides. Historically, the fatty acid profile of the entire human milk lipidome has been investigated, and many relationships have been identified between infant health and fatty acids. Most of these fatty acids are, however, delivered to the infant as triacylglycerides. Using liquid chromatography-ion mobility-mass spectrometry, the objective of this study was to characterise the triacylglyceride profile of human milk and elucidate relationships between the triacylglyceride profile and infant outcomes in a cohort of 10 exclusively breastfeeding woman-infant dyads. 205 triacylglycerides were identified, including 98 previously not reported in human milk. The dose of specific triacylglycerides differed in relation to infant health, such as lauric acid containing TAGs, which were delivered in significantly higher dose to healthy infants compared to unwell infants.
Collapse
|
29
|
Okada S, Taylor M, Zhou XR, Naim F, Marshall D, Blanksby SJ, Singh SP, Wood CC. Producing Cyclopropane Fatty Acid in Plant Leafy Biomass via Expression of Bacterial and Plant Cyclopropane Fatty Acid Synthases. FRONTIERS IN PLANT SCIENCE 2020; 11:30. [PMID: 32117373 PMCID: PMC7020751 DOI: 10.3389/fpls.2020.00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
Saturated mid-chain branched fatty acids (SMCBFAs) are widely used in the petrochemical industry for their high oxidative stability and low melting temperature. Dihydrosterculic acid (DHSA) is a cyclopropane fatty acid (CPA) that can be converted to SMCBFA via hydrogenation, and therefore oils rich in DHSA are a potential feedstock for SMCBFA. Recent attempts to produce DHSA in seed oil by recombinant expression of cyclopropane fatty acid synthases (CPFASes) resulted in decreased oil content and poor germination or low DHSA accumulation. Here we explored the potential for plant vegetative tissue to produce DHSA by transiently expressing CPFAS enzymes in leaf. When CPFASes from plant and bacterial origin were transiently expressed in Nicotiana benthamiana leaf, it accumulated up to 1 and 3.7% DHSA in total fatty acid methyl ester (FAME), respectively, which increased up to 4.8 and 11.8%, respectively, when the N. benthamiana endogenous oleoyl desaturase was silenced using RNA interference (RNAi). Bacterial CPFAS expression produced a novel fatty acid with a cyclopropane ring and two carbon-carbon double bonds, which was not seen with plant CPFAS expression. We also observed a small but significant additive effect on DHSA accumulation when both plant and bacterial CPFASes were co-expressed, possibly due to activity upon different oleoyl substrates within the plant cell. Lipidomics analyses found that CPFAS expression increased triacylglycerol (TAG) accumulation relative to controls and that DHSA was distributed across a range of lipid species, including diacylglycerol and galactolipids. DHSA and the novel CPA were present in phosphatidylethanolamine when bacterial CPFAS was expressed in leaf. Finally, when plant diacylglycerol acyltransferase was coexpressed with the CPFASes DHSA accumulated up to 15% in TAG. This study shows that leaves can readily produce and accumulate DHSA in leaf oil. Our findings are discussed in line with current knowledge in leaf oil production for a possible route to DHSA production in vegetative tissue.
Collapse
Affiliation(s)
- Shoko Okada
- CSIRO Land and Water, Canberra, ACT, Australia
| | | | - Xue-Rong Zhou
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Fatima Naim
- Center for Crop Disease Management, Faculty of Science and Engineering, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - David Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Craig C. Wood
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
30
|
Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 2020; 412:2339-2351. [PMID: 32006064 DOI: 10.1007/s00216-020-02446-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.
Collapse
|
31
|
Grossert JS, Melanson JE, Ramaley L. Fragmentation Pathways of Cationized, Saturated, Short-Chain Triacylglycerols: Lithiated and Sodiated Tripropanoyl- and Trihexanoylglycerol. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:34-46. [PMID: 32881521 DOI: 10.1021/jasms.9b00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many methods, often depending on tandem mass spectrometry, have been developed for analysis of complex mixtures of triacylglycerols (TAGs), especially in clinical diagnostics and food authentication. Understanding the fragmentation mechanisms of cationized TAGs has proved problematic. To obtain a better understanding of viable mechanisms, detailed studies including double- and triple-stage tandem mass spectrometry were made using electrospray ionization on lithiated and sodiated tripropanoyl- and trihexanoylglycerols. Density functional theory computations, including a functional parameterized for van der Waals interactions, were used to correlate computed energies with mass spectra. Losses of both a neutral salt and a neutral acid corresponding to a glycerol side chain were observed as major product ions in MS2 experiments. Signal intensities at low collision energies correlated well with computed energies. However, an important difference between the lithiated and sodiated ions was the appearance of the sodium cation as a major fragmentation product. Computations on the product ions resulting from the loss of a neutral acid indicated multiple structures for the lithiated ions but mainly a single structure for the sodiated ions. The lithiated product ions could be fragmented further (pseudo-MS3) to give additional structural information, whereas the sodiated ions gave only m/z 23. The longer chain TAG, while giving a much less intense mass spectrum than the shorter chain TAG, gave comparable MS2 and MS3 product ion spectra. Taken together, the spectral and computational work described herein offer a new and detailed pathway for collision-induced fragmentation of lithiated and sodiated saturated TAGs.
Collapse
Affiliation(s)
- J Stuart Grossert
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| | - Jeremy E Melanson
- Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Louis Ramaley
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
32
|
Claes BSR, Takeo E, Fukusaki E, Shimma S, Heeren RMA. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom (Tokyo) 2019; 8:A0078. [PMID: 32158629 PMCID: PMC7035452 DOI: 10.5702/massspectrometry.a0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry imaging is an imaging technology that allows the localization and identification of molecules on (biological) sample surfaces. Obtaining the localization of a compound in tissue is of great value in biological research. Yet, the identification of compounds remains a challenge. Mass spectrometry alone, even with high-mass resolution, cannot always distinguish between the subtle structural differences of isomeric compounds. This review discusses recent advances in mass spectrometry imaging of lipids, steroid hormones, amino acids and proteins that allow imaging with isomeric resolution. These improvements in detailed identification can give new insights into the local biological activity of isomers.
Collapse
Affiliation(s)
- Britt S. R. Claes
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| |
Collapse
|
33
|
Vitola Pasetto L, Richard R, Pic JS, Manero MH, Violleau F, Simon V. Ozone Quantification by Selected Ion Flow Tube Mass Spectrometry: Influence of Humidity and Manufacturing Gas of Ozone Generator. Anal Chem 2019; 91:15518-15524. [PMID: 31735022 DOI: 10.1021/acs.analchem.9b03337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quantification of ozone by SIFT-MS was investigated in conditions suitable with an industrial emission context (high ozone demand, dry air/oxygen as the manufacturing gas of the ozone generator, and high humidity levels beyond saturation at room conditions). Ozone reacts with four negative precursor ions available in the SIFT-MS device (NO2-, O2-, HO-, and O-), each precursor ion having its specific domain of linearity. For a high ozone concentration range, only NO2- and O2- have resulted in a linear behavior (between 1 and 100 ppmv of O3 for NO2-, between 1 and 50 ppmv of O3 for O2-). No water interference was identified during ozone measurements by SIFT-MS using NO2- and O2- precursor ions, even with extreme humidity levels. The presence of nitrogen oxide contaminants (due to the use of dry air as the manufacturing gas of the ozone generator) affected the ozone quantification by SIFT-MS. It is critical for NO2- precursor ions, whose rate constant varied as a function of NO2 concentrations. With O2- precursor ion, ozone was successfully measured in the presence of nitrogen oxides; however, the secondary chemistry must be taken into account.
Collapse
Affiliation(s)
- Leticia Vitola Pasetto
- Laboratoire de Génie Chimique , Université de Toulouse, CNRS, INPT, UPS , 31432 Toulouse , France.,Laboratoire de Chimie Agro-industrielle , LCA, Université de Toulouse, INRA , 31030 Toulouse , France
| | - Romain Richard
- Laboratoire de Génie Chimique , Université de Toulouse, CNRS, INPT, UPS , 31432 Toulouse , France
| | - Jean-Stéphane Pic
- TBI, Université de Toulouse, CNRS, INRA, INSA , 31077 Toulouse , France
| | - Marie-Hélène Manero
- Laboratoire de Génie Chimique , Université de Toulouse, CNRS, INPT, UPS , 31432 Toulouse , France
| | - Frédéric Violleau
- Laboratoire de Chimie Agro-industrielle , LCA, Université de Toulouse, INRA , 31030 Toulouse , France
| | - Valérie Simon
- Laboratoire de Chimie Agro-industrielle , LCA, Université de Toulouse, INRA , 31030 Toulouse , France
| |
Collapse
|
34
|
Tarvainen M, Kallio H, Yang B. Regiospecific Analysis of Triacylglycerols by Ultrahigh-Performance-Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry. Anal Chem 2019; 91:13695-13702. [DOI: 10.1021/acs.analchem.9b02968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marko Tarvainen
- Food Chemistry and Food Development, Department of Biochemistry, Faculty of Science and Engineering, University of Turku Turun yliopisto FI-20014 Finland
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, Faculty of Science and Engineering, University of Turku Turun yliopisto FI-20014 Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, Faculty of Science and Engineering, University of Turku Turun yliopisto FI-20014 Finland
| |
Collapse
|
35
|
Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 2019; 52:85-92. [DOI: 10.1016/j.cbpa.2019.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
|
36
|
Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry Localizes Cardiolipin Unsaturations. Anal Chem 2019; 91:12509-12516. [PMID: 31490676 DOI: 10.1021/acs.analchem.9b03278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developing alternative MS/MS strategies to distinguish isomeric lipids has become a high impact goal in shotgun lipidomics. Novel approaches have been developed to resolve structural features that are not discernible by traditional shotgun methods and have consequently promoted the discovery of new disease biomarkers. However, these methods have largely been limited to characterizing lipids with low structural complexity. Here, ultraviolet photodissociation (UVPD) strategies for phospholipid characterization are expanded for analysis of cardiolipins (CL), a class of phospholipids that exhibits a higher degree of structural complexity. A hybrid collision induced dissociation/193 nm UVPD (CID/UVPD) approach was implemented to pinpoint the location of both double bond and cyclopropyl unsaturations on the four acyl chains of CLs. This strategy was complemented with CID for the de novo elucidation of unknown CLs in biological extracts.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
37
|
Marshall DL, Criscuolo A, Young RSE, Poad BLJ, Zeller M, Reid GE, Mitchell TW, Blanksby SJ. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1621-1630. [PMID: 31222675 DOI: 10.1007/s13361-019-02261-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
38
|
Porta Siegel T, Ekroos K, Ellis SR. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angew Chem Int Ed Engl 2019; 58:6492-6501. [PMID: 30601602 PMCID: PMC6563696 DOI: 10.1002/anie.201812698] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Lipidomics is a rapidly growing field with numerous examples showing the importance of lipid molecules throughout biology. It has also shed light onto the vast and complex functions performed by many lipids that possess an immense diversity in molecular structures. Mass spectrometry (MS) is the tool of choice for analyzing lipids and has been the key catalyst driving the field forward. However, MS does not yet permit true molecular lipidomics wherein the identification and quantification of lipids having defined molecular structures can be routinely achieved. Here we describe recent advances in MS-based lipidomics that allow access to higher levels of molecular information in lipidomics experiments. These advances will form a key piece of the puzzle as the field moves towards systems characterization of lipids at the molecular level.
Collapse
Affiliation(s)
- Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht UniversityUniversiteitssingel 506229 ERMaastrichtThe Netherlands
| | | | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht UniversityUniversiteitssingel 506229 ERMaastrichtThe Netherlands
| |
Collapse
|
39
|
Jeck V, Korf A, Vosse C, Hayen H. Localization of double-bond positions in lipids by tandem mass spectrometry succeeding high-performance liquid chromatography with post-column derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:86-94. [PMID: 30102803 DOI: 10.1002/rcm.8262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Viola Jeck
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Ansgar Korf
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Christian Vosse
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149, Münster, Germany
| |
Collapse
|
40
|
Korf A, Jeck V, Schmid R, Helmer PO, Hayen H. Lipid Species Annotation at Double Bond Position Level with Custom Databases by Extension of the MZmine 2 Open-Source Software Package. Anal Chem 2019; 91:5098-5105. [PMID: 30892876 DOI: 10.1021/acs.analchem.8b05493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, proprietary and open-source bioinformatics software tools have been developed for the identification of lipids in complex biological samples based on high-resolution mass spectrometry data. These existent software tools often rely on publicly available lipid databases, such as LIPID MAPS, which, in some cases, only contain a limited number of lipid species for a specific lipid class. Other software solutions implement their own lipid species databases, which are often confined regarding implemented lipid classes, such as phospholipids. To address these drawbacks, we provide an extension of the widely used open-source metabolomics software MZmine 2, which enables the annotation of detected chromatographic features as lipid species. The extension is designed for straightforward generation of a custom database for selected lipid classes. Furthermore, each lipid's sum formula of the created database can be rapidly modified to search for derivatization products, oxidation products, in-source fragments, or adducts. The versatility will be exemplified by a liquid chromatography-high resolution mass spectrometry data set with postcolumn Paternò-Büchi derivatization. The derivatization reaction was performed to pinpoint the double bond positions in diacylglyceryltrimethylhomoserine lipid species in a lipid extract of a green algae ( Chlamydomonas reinhardtii) sample. The developed Lipid Search module extension of MZmine 2 supports the identification of lipids as far as double bond position level.
Collapse
Affiliation(s)
- Ansgar Korf
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Viola Jeck
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
41
|
Targeting Modified Lipids during Routine Lipidomics Analysis using HILIC and C30 Reverse Phase Liquid Chromatography coupled to Mass Spectrometry. Sci Rep 2019; 9:5048. [PMID: 30911033 PMCID: PMC6433904 DOI: 10.1038/s41598-019-41556-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Lipids are important biomolecules in all biological systems and serve numerous essential cellular functions. The global analysis of complex lipids is very challenging due to the extreme diversity in lipid structures. Variation in linkages and positions of fatty acyl chain(s) on the lipid backbone, functional group modification, occurrence of the molecular species as isomers or isobars are among some of the greatest challenges to resolve in lipidomics. In this work, we describe a routine analytical approach combining two liquid chromatography platforms: hydrophilic interaction (HILIC) and C30 reversed-phase chromatography (C30RP) coupled to high resolution mass spectrometry (HRMS) as complementary high throughput platforms to analyze complex lipid mixtures. Vascular plants (kale leaves and corn roots), rat brain and soil microbes were used as proxies to evaluate the efficiency of the enhanced approach to resolve traditional, as well as, modified lipids during routine lipidomics analysis. We report for the first time, the observation of a modified class of acylphosphatidylglycerol (acylPG) in corn roots by HILIC, and further resolution of the isomers using C30RP chromatography. We also used this approach to demonstrate the presence of high levels of N-monomethyl phosphatidylethanolamine (MMPE) in soil microbes, as well as to determine the regioisomers of lysophospholipids in kale leaves. Additionally, neutral lipids were demonstrated using C30RP chromatography in positive ion mode to resolve triacylglycerol isomers in rat brain. The work presented here demonstrates how the enhanced approach can more routinely permit novel biomarker discovery, or lipid metabolism in a wide range of biological samples.
Collapse
|
42
|
Porta Siegel T, Ekroos K, Ellis SR. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | | | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| |
Collapse
|
43
|
|
44
|
Bednařík A, Bölsker S, Soltwisch J, Dreisewerd K. An On-Tissue Paternò-Büchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption-Ionization Mass-Spectrometry Imaging. Angew Chem Int Ed Engl 2018; 57:12092-12096. [PMID: 30025193 DOI: 10.1002/anie.201806635] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Indexed: 02/01/2023]
Abstract
Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) visualizes the distribution of phospho- and glycolipids in tissue sections. However, C=C double-bond (db) positional isomers generally cannot be distinguished. Now an on-tissue Paternò-Büchi (PB) derivatization procedure that exploits benzaldehyde as a MALDI-MSI-compatible reagent is introduced. Laser-induced postionization (MALDI-2) was used to boost the yields of protonated PB products. Collision-induced dissociation of these species generated characteristic ion pairs, indicative of C=C position, for numerous singly and polyunsaturated phospholipids and glycosphingolipids in mouse brain tissue. Several db-positional isomers of phosphatidylcholine and phosphatidylserine species were expressed with highly differential levels in the white and gray matter areas of cerebellum. Our PB-MALDI-MS/MS procedure could help to better understand the physiological role of these db-positional isomers.
Collapse
Affiliation(s)
- Antonín Bednařík
- Institute for Hygiene, University of Münster, 48149, Münster, Germany
| | - Stefan Bölsker
- Institute for Hygiene, University of Münster, 48149, Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene and Interdisciplinary Center for Clinical Research (IZKF), University of Münster, 48149, Münster, Germany
| |
Collapse
|
45
|
Bednařík A, Bölsker S, Soltwisch J, Dreisewerd K. An On-Tissue Paternò-Büchi Reaction for Localization of Carbon-Carbon Double Bonds in Phospholipids and Glycolipids by Matrix-Assisted Laser-Desorption-Ionization Mass-Spectrometry Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Antonín Bednařík
- Institute for Hygiene; University of Münster; 48149 Münster Germany
| | - Stefan Bölsker
- Institute for Hygiene; University of Münster; 48149 Münster Germany
| | - Jens Soltwisch
- Institute for Hygiene and Interdisciplinary Center for Clinical Research (IZKF); University of Münster; 48149 Münster Germany
| | - Klaus Dreisewerd
- Institute for Hygiene and Interdisciplinary Center for Clinical Research (IZKF); University of Münster; 48149 Münster Germany
| |
Collapse
|
46
|
Wäldchen F, Becher S, Esch P, Kompauer M, Heiles S. Selective phosphatidylcholine double bond fragmentation and localisation using Paternò-Büchi reactions and ultraviolet photodissociation. Analyst 2018; 142:4744-4755. [PMID: 29142996 DOI: 10.1039/c7an01158j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of double bond functionalisation for selective double bond localisation by ultraviolet photodissociation of phosphatidylcholines is investigated. Paternò-Büchi reactions in nanoESI emitter tips enable attachment of acetophenone to double bonds of unsaturated phosphatidylcholines after 100 s of 254 nm light irradiation with about 50-80% reaction yield. Functionalized phosphatidylcholines dissociate upon 266 nm irradiation yielding double bond selective fragment ions in contrast to results for ultraviolet photodissociation of unmodified lipids. Ultraviolet photodissociation of Paternò-Büchi modified lipids results in a selectivity increase of up to 2.2 towards double bond localisation compared collision-induced dissociation experiments. Double bond localisation is also possible with ultraviolet photodissociation when alkali metal ion attachment to Paternò-Büchi modified phosphatidylcholines occurs in contrast to classic collision-induced dissociation experiments. The developed methodology is used to differentiate lipid double bond isomers and applied to phosphatidylcholines from egg yolk to identify 15 phosphatidylcholines. Results from this study demonstrate that locally depositing energy in close vicinity to cleavable bonds via ultraviolet photodissociation can result in increased dissociation selectivity. This method can help to disentangle contributions from different structural elements in complex tandem mass spectra of lipids and aid to the structural characterization of phospholipids in a "top-down" approach.
Collapse
Affiliation(s)
- Fabian Wäldchen
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
47
|
Hancock SE, Ailuri R, Marshall DL, Brown SHJ, Saville JT, Narreddula VR, Boase NR, Poad BLJ, Trevitt AJ, Willcox MDP, Kelso MJ, Mitchell TW, Blanksby SJ. Mass spectrometry-directed structure elucidation and total synthesis of ultra-long chain ( O-acyl)-ω-hydroxy fatty acids. J Lipid Res 2018; 59:1510-1518. [PMID: 29907595 DOI: 10.1194/jlr.m086702] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Indexed: 01/24/2023] Open
Abstract
The (O-acyl)-ω-hydroxy FAs (OAHFAs) comprise an unusual lipid subclass present in the skin, vernix caseosa, and meibomian gland secretions. Although they are structurally related to the general class of FA esters of hydroxy FAs (FAHFAs), the ultra-long chain (30-34 carbons) and the putative ω-substitution of the backbone hydroxy FA suggest that OAHFAs have unique biochemistry. Complete structural elucidation of OAHFAs has been challenging because of their low abundance within complex lipid matrices. Furthermore, because these compounds occur as a mixture of closely related isomers, insufficient spectroscopic data have been obtained to guide structure confirmation by total synthesis. Here, we describe the full molecular structure of ultra-long chain OAHFAs extracted from human meibum by exploiting the gas-phase purification of lipids through multi-stage MS and novel multidimensional ion activation methods. The analysis elucidated sites of unsaturation, the stereochemical configuration of carbon-carbon double bonds, and ester linkage regiochemistry. Such isomer-resolved MS guided the first total synthesis of an ultra-long chain OAHFA, which, in turn, confirmed the structure of the most abundant OAHFA found in human meibum, OAHFA 50:2. The availability of a synthetic OAHFA opens new territory for future investigations into the unique biophysical and biochemical properties of these lipids.
Collapse
Affiliation(s)
- Sarah E Hancock
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ramesh Ailuri
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jennifer T Saville
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Venkateswara R Narreddula
- Central Analytical Research Facility, Institute for Future Environments Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nathan R Boase
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adam J Trevitt
- School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael J Kelso
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments Queensland University of Technology, Brisbane, Queensland, Australia .,School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Xu SL, Wei F, Xie Y, Lv X, Dong XY, Chen H. Research advances based on mass spectrometry for profiling of triacylglycerols in oils and fats and their applications. Electrophoresis 2018; 39:1558-1568. [PMID: 29572876 DOI: 10.1002/elps.201700481] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/09/2018] [Accepted: 03/05/2018] [Indexed: 02/06/2023]
Abstract
Vegetable oils and animal fats are dietary source of lipids that play critical and multiple roles in biological function. Triacylglycerols (TAGs) are the principal component of oils and fats with significant difference in profile among different oils and fats. TAG profiling is essential for nutritional evaluation, quality control and assurance of safety in oils and fats. However, analysis of TAGs is a challenging task because of the complicated composition of TAGs and their similar physicochemical properties in oils and fats. The rapid development of mass spectrometry (MS) technology in recent years makes it possible to analyze the composition, content and structure of TAGs in the study of the physical, chemical and nutritional properties of oils, fats and related products. This review described the research advancement based on MS for profiling of TAGs in oil, fat and their applications in food. The application of MS, including direct infusion strategies, and its combination with chromatography, gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS), in the analysis of TAGs were reviewed. The advantages and disadvantages of these analytical methods with relevant applications for TAGs analysis in food were also described.
Collapse
Affiliation(s)
- Shu-Ling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| | - Xu-Yan Dong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops of Ministry of Agriculture, P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, P. R. China
| |
Collapse
|
49
|
Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining Double Bond Position in Lipids Using Online Ozonolysis Coupled to Liquid Chromatography and Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:1915-1924. [PMID: 29341601 DOI: 10.1021/acs.analchem.7b04007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increasing focus on lipid metabolism has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids can exist as any one of a large number of double bond positional isomers, which are indistinguishable by single-stage mass spectrometry alone. Ozonolysis reactions coupled to mass spectrometry have previously been demonstrated as a means for localizing double bonds in unsaturated lipids. Here we describe an online, solution-phase reactor using ozone produced via a low-pressure mercury lamp, which generates aldehyde products diagnostic of cleavage at a particular double bond position. This flow-cell device is utilized in conjunction with structurally selective ion mobility-mass spectrometry. The lamp-mediated reaction was found to be effective for multiple lipid species in both positive and negative ionization modes, and the conversion efficiency from precursor to product ions was tunable across a wide range (20-95%) by varying the flow rate through the ozonolysis device. Ion mobility separation of the ozonolysis products generated additional structural information and revealed the presence of saturated species in a complex mixture. The method presented here is simple, robust, and readily coupled to existing instrument platforms with minimal modifications necessary. For these reasons, application to standard lipidomic workflows is possible and aids in more comprehensive structural characterization of a myriad of lipid species.
Collapse
Affiliation(s)
- Rachel A Harris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | - Yu Xia
- Department of Chemistry, Tsinghua University , Beijing, China 100084
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
50
|
Hale OJ, Cramer R. Collision-induced dissociation of doubly-charged barium-cationized lipids generated from liquid samples by atmospheric pressure matrix-assisted laser desorption/ionization provides structurally diagnostic product ions. Anal Bioanal Chem 2017; 410:1435-1444. [DOI: 10.1007/s00216-017-0788-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 01/13/2023]
|