1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2025; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Alexander N, McDonald L, Wesdemiotis C, Pang Y. Native mass spectrometry analysis of conjugated HSA and BSA complexes with various flavonoids. Analyst 2024; 149:1929-1938. [PMID: 38376111 PMCID: PMC10926777 DOI: 10.1039/d3an02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Mass spectrometry was used to study the binding interaction between serum albumin proteins (BSA and HSA) and flavone dyes, which is known to induce large fluorescence signals for protein detection. By electrospray ionization mass spectrometry (ESI-MS), multiple charged species/states could be produced in ammonium acetate buffer, while preserving the native structures of the proteins. Subsequent introduction of a flavone dye into the buffered solution resulted in an immediate interaction, forming the respective protein-dye conjugates associated by non-covalent interactions. Formation of protein-dye conjugates induced a notable response in the ESI-MS spectra, including changes in both the charge states and molecular mass of the protein species. The resulting data pointed out that the protein-flavone dye maintained a 1 : 1 ratio in the conjugate, although multiple binding sites for drug molecules are present in albumin proteins.
Collapse
Affiliation(s)
| | - Lucas McDonald
- Department of Chemistry, The University of Akron, OH 44325, USA.
| | | | - Yi Pang
- Department of Chemistry, The University of Akron, OH 44325, USA.
| |
Collapse
|
3
|
Chantipmanee N, Xu Y. Toward nanofluidics‐based mass spectrometry for exploring the unknown complex and heterogenous subcellular worlds. VIEW 2022. [DOI: 10.1002/viw.20220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nattapong Chantipmanee
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
| | - Yan Xu
- Department of Chemical Engineering Graduate School of Engineering Osaka Metropolitan University Sakai Japan
- Japan Science and Technology Agency (JST) PRESTO Kawaguchi Japan
- Japan Science and Technology Agency (JST) CREST Kawaguchi Japan
| |
Collapse
|
4
|
Badiye A, Kapoor N, Shukla RK. Detection and separation of proteins using micro/nanofluidics devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:59-84. [PMID: 35033290 DOI: 10.1016/bs.pmbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microfluidics is the technology or system wherein the behavior of fluids' is studied onto a miniaturized device composed of chambers and tunnels. In biological and biomedical sciences, microfluidic technology/system or device serves as an ultra-high-output approach capable of detecting and separating the biomolecules present even in trace quantities. Given the essential role of protein, the identification and quantification of proteins help understand the various living systems' biological function regulation. Microfluidics has enormous potential to enable biological investigation at the cellular and molecular level and maybe a fair substitution of the sophisticated instruments/equipment used for proteomics, genomics, and metabolomics analysis. The current advancement in microfluidic systems' development is achieving momentum and opening new avenues in developing innovative and hybrid methodologies/technologies. This chapter attempts to expound the micro/nanofluidic systems/devices for their wide-ranging application to detect and separate protein. It covers microfluidic chip electrophoresis, microchip gel electrophoresis, and nanofluidic systems as protein separation systems, while methods such as spectrophotometric, mass spectrometry, electrochemical detection, magneto-resistive sensors and dynamic light scattering (DLS) are discussed as proteins' detection system.
Collapse
Affiliation(s)
- Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
| |
Collapse
|
5
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
6
|
Alidoust M, Baharfar M, Manouchehri M, Yamini Y, Tajik M, Seidi S. Emergence of microfluidic devices in sample extraction; an overview of diverse methodologies, principals, and recent advancements. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Zhao Y, Tang M, Liu F, Li H, Wang H, Xu D. Highly Integrated Microfluidic Chip Coupled to Mass Spectrometry for Online Analysis of Residual Quinolones in Milk. Anal Chem 2019; 91:13418-13426. [DOI: 10.1021/acs.analchem.9b01844] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Zhejiang Engineering Institute of Food Quality and Safety, School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Minmin Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiyan Wang
- Zhejiang Engineering Institute of Food Quality and Safety, School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Yao J, Sun N, Deng C. Recent advances in mesoporous materials for sample preparation in proteomics research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Meng X, Hu J, Chao Z, Liu Y, Ju H, Cheng Q. Thermoresponsive Arrays Patterned via Photoclick Chemistry: Smart MALDI Plate for Protein Digest Enrichment, Desalting, and Direct MS Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1324-1333. [PMID: 29239171 DOI: 10.1021/acsami.7b13640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sample desalting and concentration are crucial steps before matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis. Current sample pretreatment approaches require tedious fabrication and operation procedures, which are unamenable to high-throughput analysis and also result in sample loss. Here, we report the development of a smart MALDI substrate for on-plate desalting, enrichment, and direct MS analysis of protein digests based on thermoresponsive, hydrophilic/hydrophobic transition of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) microarrays. Superhydrophilic 1-thioglycerol microwells are first constructed on alkyne-silane-functionalized rough indium tin oxide substrates based on two sequential thiol-yne photoclick reactions, whereas the surrounding regions are modified with hydrophobic 1H,1H,2H,2H-perfluorodecanethiol. Surface-initiated atom-transfer radical polymerization is then triggered in microwells to form PNIPAM arrays, which facilitate sample loading and enrichment of protein digests by concentrating large-volume samples into small dots and achieving on-plate desalting through PNIPAM configuration change at elevated temperature. The smart MALDI plate shows high performance for mass spectrometric analysis of cytochrome c and neurotensin in the presence of 1 M urea and 100 mM NaHCO3, as well as improved detection sensitivity and high sequence coverage for α-casein and cytochrome c digests in femtomole range. The work presents a versatile sample pretreatment platform with great potential for proteomic research.
Collapse
Affiliation(s)
- Xiao Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
- Department of Chemistry, University of California , Riverside, California 92521, United States
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Quan Cheng
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
10
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
11
|
Wang H, Cocovi-Solberg DJ, Hu B, Miró M. 3D-Printed Microflow Injection Analysis Platform for Online Magnetic Nanoparticle Sorptive Extraction of Antimicrobials in Biological Specimens as a Front End to Liquid Chromatographic Assays. Anal Chem 2017; 89:12541-12549. [PMID: 29039944 DOI: 10.1021/acs.analchem.7b03767] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the concept of 3D-printed microflow injection (3D-μFI) embodying a dedicated multifunctional 3D-printed stator onto a rotary microvalve along with a mesofluidic sample preparation platform is proposed for the first time. A transparent 3D-printed stereolithographic mesofluidic chip device accommodating polyaniline (PANI) decorated magnetic nanoparticles (32.5 ± 3.8 mg) is harnessed to in-line sorptive microextraction as a front end to liquid chromatography with peak focusing. As a proof-of-concept application, the 3D-μFI assembly was resorted to matrix cleanup and automatic programmable-flow determination of organic emerging contaminants (4-hydroxybenzoate analogues and triclosan as antimicrobial model analytes) in human saliva and urine samples. By using a sample volume of 1.0 mL with a loading flow rate of 200 μL min-1, an eluent volume of 120 μL at 80 μL min-1, and online HPLC injection of 300 μL of the mixture of eluate and Milli-Q water (in a 1:2 ratio) to prevent band broadening effects of the most polar analytes, the limits of detection (3σ criterion) ranged from 1.1 to 4.5 ng mL-1 for methylparaben (MP), ethylparaben (EP), propylparaben (PrP), phenylparaben (PhP), butylparaben (BP), and triclosan (TCS). Enhancement factors of 16-25 were obtained for the target analytes. Spike recoveries ranged from 84 to 117% for both saliva and urine samples. The online 3D-μFI hyphenated method is synchronized with the chromatographic separation and features a chip lifetime of more than 20 injections with minimal losses of moderately nonpolar compounds on the walls of the mesofluidic device.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - David J Cocovi-Solberg
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands , Carretera de Valldemossa, km. 7.5, E-07122 Palma de Mallorca, Spain
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands , Carretera de Valldemossa, km. 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
12
|
Fang X, Duan Y, Liu Y, Adkins G, Zang W, Zhong W, Qiao L, Liu B. Photochemical Bionanoreactor for Efficient Visible-Light-Driven in Vitro Drug Metabolism. Anal Chem 2017; 89:7365-7372. [DOI: 10.1021/acs.analchem.7b00677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoni Fang
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yaokai Duan
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Yujie Liu
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Gary Adkins
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Weijun Zang
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wenwan Zhong
- Department
of Chemistry, University of California, Riverside 92501, United States
| | - Liang Qiao
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Shanghai
Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Baohong Liu
- Department
of Chemistry, Institute of Biomedical Sciences and State Key Lab of
Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Shanghai
Stomatological Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Dong J, Ning W, Liu W, Bruening ML. Limited proteolysis in porous membrane reactors containing immobilized trypsin. Analyst 2017; 142:2578-2586. [DOI: 10.1039/c7an00778g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Trypsin-containing membranes effect limited digestion to identify facile digestion sites in protein structures.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry
- Michigan State University
- East Lansing
- USA
| | - Wenjing Ning
- Department of Chemistry
- Michigan State University
- East Lansing
- USA
| | - Weijing Liu
- Department of Chemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Merlin L. Bruening
- Department of Chemistry
- University of Notre Dame
- Notre Dame
- USA
- Department of Chemical & Biomolecular Engineering
| |
Collapse
|
14
|
Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1928-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|