1
|
Yaney‐Keller A, McIntosh RR, Clarke RH, Reina RD. Closing the air gap: the use of drones for studying wildlife ecophysiology. Biol Rev Camb Philos Soc 2025; 100:1206-1228. [PMID: 39822117 PMCID: PMC12120397 DOI: 10.1111/brv.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Techniques for non-invasive sampling of ecophysiological data in wild animals have been developed in response to challenges associated with studying captive animals or using invasive methods. Of these, drones, also known as Unoccupied Aerial Vehicles (UAVs), and their associated sensors, have emerged as a promising tool in the ecophysiology toolkit. In this review, we synthesise research in a scoping review on the use of drones for studying wildlife ecophysiology using the PRISMA-SCr checklist and identify where efforts have been focused and where knowledge gaps remain. We use these results to explore current best practices and challenges and provide recommendations for future use. In 136 studies published since 2010, drones aided studies on wild animal body condition and morphometrics, kinematics and biomechanics, bioenergetics, and wildlife health (e.g. microbiomes, endocrinology, and disease) in both aquatic and terrestrial environments. Focal taxa are biased towards marine mammals, particularly cetaceans. While conducted globally, research is primarily led by institutions based in North America, Oceania, and Europe. The use of drones to obtain body condition and morphometric data through standard colour sensors and single camera photogrammetry predominates. Techniques such as video tracking and thermal imaging have also allowed insights into other aspects of wildlife ecophysiology, particularly when combined with external sampling techniques such as biologgers. While most studies have used commercially available multirotor platforms and standard colour sensors, the modification of drones to collect samples, and integration with external sampling techniques, have allowed multidisciplinary studies to integrate a suite of remote sensing methods more fully. We outline how technological advances for drones will play a key role in the delivery of both novel and improved wildlife ecophysiological data. We recommend that researchers prepare for the influx of drone-assisted advancements in wildlife ecophysiology through multidisciplinary and cross-institutional collaborations. We describe best practices to diversify across species and environments and use current data sources and technologies for more comprehensive results.
Collapse
Affiliation(s)
- Adam Yaney‐Keller
- School of Biological Sciences, Monash University25 Rainforest WalkClaytonVictoria3800Australia
| | - Rebecca R. McIntosh
- Research DepartmentPhillip Island Nature Parks154/156 Thompson Avenue, CowesVictoria3922Australia
| | - Rohan H. Clarke
- School of Biological Sciences, Monash University25 Rainforest WalkClaytonVictoria3800Australia
| | - Richard D. Reina
- School of Biological Sciences, Monash University25 Rainforest WalkClaytonVictoria3800Australia
| |
Collapse
|
2
|
Kim M, Yun SH, Kim SH, Kim JD. A Compact Real-Time PCR System for Point-of-Care Detection Using a PCB-Based Disposable Chip and Open-Platform CMOS Camera. SENSORS (BASEL, SWITZERLAND) 2025; 25:3159. [PMID: 40431952 PMCID: PMC12115960 DOI: 10.3390/s25103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
We present a compact and cost-effective real-time PCR system designed for point-of-care testing (POCT), utilizing a PCB-based disposable chip and an open-platform CMOS camera. The system integrates precise thermal cycling with software-synchronized fluorescence detection and provides real-time analysis through a dedicated user interface. To minimize cost and complexity, a polycarbonate reaction chamber was integrated with a PCB-based heater and thermistor. A slanted LED illumination setup and an open-platform USB camera were employed for fluorescence imaging. Signal alignment was enhanced using device-specific region-of-interest (ROI) tracking based on copper pad corner detection. Thermal cycling performance achieved a heating rate of 8.0 °C/s and a cooling rate of -9.3 °C/s, with steady-state accuracy within ±0.1 °C. Fluorescence images exhibited high dynamic range without saturation, and the 3σ-based ROI correction method improved signal reliability. System performance was validated using Chlamydia trachomatis DNA standard (103 copies), yielding consistent amplification curves with a Ct standard deviation below 0.3 cycles. These results demonstrate that the proposed system enables rapid, accurate, and reproducible nucleic acid detection, making it a strong candidate for field-deployable molecular diagnostics.
Collapse
Affiliation(s)
- MinGin Kim
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA;
| | - Sung-Hun Yun
- School of Software, Hallym University, Chuncheon-si 24252, Republic of Korea;
| | - Sun-Hee Kim
- Department of Fashion Industry, Incheon National University, Incheon 22012, Republic of Korea
| | - Jong-Dae Kim
- School of Software, Hallym University, Chuncheon-si 24252, Republic of Korea;
| |
Collapse
|
3
|
Goudoudaki S, Kambouris ME, Kritikou S, Milioni A, Velegraki A, Manoussopoulos Y, Patrinos GP. Scalable Alkaline Extraction Protocol for Microbial DNA Screening by PCR. Bio Protoc 2025; 15:e5290. [PMID: 40291425 PMCID: PMC12021680 DOI: 10.21769/bioprotoc.5290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
In molecular diagnosis, DNA extraction kits are sample-specific and proprietary, preventing lateral distribution among similar facilities from different sectors to alleviate supply shortages during a crisis. Previous fast extraction protocols such as detergent-based ones allow fast DNA extraction for nucleic acid amplification tests (NAAT), mainly polymerase chain reaction (PCR). The use of NaOH (dense alkali) to rupture cells and nuclei and destabilize the conformation of DNases might alleviate shortages and costs while retaining enough robustness to treat complicated samples with minimal environmental and logistical footprint. Biological samples are hand-crushed using a pestle in 1.5 mL tubes with 360 μL of 0.2 M NaOH for 3-5 min and incubated at 75 °C for 10 min. For immediate use, 115.2 μL of 1 M Tris (pH 8) and 364.8 μL nuclease-free water are added, and the sample is vortexed for 10 s and spun at 10,000× g for 3 min; then, 700 μL is transferred to a clean microtube. Two serial dilutions follow, and all concentrations are used as templates for PCR. A refined, storable extract can be produced by adding 70 μL of HCl 1 M (instead of Tris-HCl) and one volume of cold isopropanol to the extract for standard precipitation. This method can increase throughput in emergencies by field deployment in resource-limited settings (RLS) or allow benchtop backup in cases of acquisition disruption or sample surge in established facilities. The crude extract can be used for immediate PCR in both benchtop and portable thermocyclers, thus allowing NAAT in resource-limited settings with low costs and waste footprint or during prolonged crises, where supply chain failures may occur. The refined version produces alcohol-precipitated nucleic acids, suitable for both immediate use and for storage or dispatch for spatiotemporally separate analysis while offering much better amplification quality with a small increase in time and minimal increase in expendables/chemicals needed. Key features • DNA extraction from different sample types using only boiling water and occasional mechanical assistance. • Crude extract serially diluted to bypass purification and quantification steps. • Refined extract is partly purified, more enriched, storable, and transportable and contributes to higher sensitivity. • Both versions decrease costs and the overall footprint of testing to increase sustainability in field operations and in standard lab environments under supply chain derailment.
Collapse
Affiliation(s)
| | - Manousos E. Kambouris
- Plant Protection Division of Patras (PPDP), ELGO-Demeter, Patras, Greece
- Department of Pharmacy (DoP), University of Patras, Patras, Greece
| | - Stavroula Kritikou
- Department of Medicine, and National Collection of Pathogenic Fungi (NCPF/UoA) National and Kapodistrian, University of Athens, Athens, Greece
| | - Afroditi Milioni
- Department of Medicine, and National Collection of Pathogenic Fungi (NCPF/UoA) National and Kapodistrian, University of Athens, Athens, Greece
| | - Aristea Velegraki
- Department of Medicine, and National Collection of Pathogenic Fungi (NCPF/UoA) National and Kapodistrian, University of Athens, Athens, Greece
| | | | - George P. Patrinos
- Department of Pharmacy (DoP), University of Patras, Patras, Greece
- Department of Genetics and Genomics & Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
- Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
4
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Kim M, Ravisankar V, Hassan YA, Ugaz VM. Biochemically Programmable Isothermal PCR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404688. [PMID: 39269276 PMCID: PMC11538674 DOI: 10.1002/advs.202404688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Isothermal PCR can be performed by imposing a static temperature gradient that continuously circulates reagents through denaturing, annealing, and extension conditions inside a PCR tube. But despite early promise, these systems have yet to demonstrate performance and repeatability sufficient for adoption in validated laboratory tests because the rate-limiting extension step is inherently short and cannot be increased independently of the other stages in a temperature cycle. Here, a discovery that enables isothermal PCR to be achieved with statistically robust repeatability that meets or exceeds diagnostic assay requirements (false positive/negative rate <8% at 95% confidence) by manipulating the interplay between the DNA replication biochemistry (via the amplicon GC content) and the microscale circulatory flow inside a PCR tube is reported. Surprisingly, optimal performance depends on selecting primer sequences that replicate high GC content amplicons, contradicting established PCR primer design rules. This innovative thermocycling approach accelerates PCR to speeds rivaling ultra-fast instruments, enabling rapid, repeatable isothermal DNA analysis across a range of targets relevant to diagnostics and pathogen detection.
Collapse
Affiliation(s)
- MinGin Kim
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Vijay Ravisankar
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Yassin A. Hassan
- Department of Nuclear EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Victor M. Ugaz
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
6
|
Kshirsagar A, Politza AJ, Guan W. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications. ACS Sens 2024; 9:4017-4027. [PMID: 39010300 PMCID: PMC11421847 DOI: 10.1021/acssensors.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
There is a significant demand for multiplexed fluorescence sensing and detection across a range of applications. Yet, the development of portable and compact multiplexable systems remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum separation, which typically requires sophisticated and expensive optical components. Here, we demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost optical components and a pretrained machine learning (ML) model to enable multiplexed fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The effectiveness of this approach highlights the system's potential for point-of-care applications that require cost-effective and scalable solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Anthony J. Politza
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
7
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
8
|
de Almeida JPB, de A Carvalho V, da Silva LP, do Nascimento ML, de Oliveira SB, Maia MV, Suarez WT, Garcia CD, Dos Santos VB. Lab-on-a-Drone: remote voltammetric analysis of lead in water with real-time data transmission. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4827-4833. [PMID: 37587794 DOI: 10.1039/d3ay01088k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The present work describes a laboratory-on-a-drone (Lab-on-a-Drone) developed to perform in situ detection of contaminants in environmental water samples. Toward this goal, the system was mounted on an unmanned aerial vehicle (UAV) (drone) and remotely controlled via Wi-Fi to acquire a water sample, perform the electrochemical detection step, and then send the voltammetry data to a smartphone. This Lab-on-a-Drone system was also able to recharge its battery using a solar cell, greatly increasing the autonomy of the system, even in the absence of a power line. As a proof of concept, the Lab-on-a-Drone was employed for the detection of Pb2+ in environmental waters, using a simple electrochemical cell containing a miniaturized screen-printed boron-doped diamond electrode (SP-BDDE) as a working electrode, an Ag/AgCl as a reference electrode, and a graphite ink as a counter electrode. For quantification purposes, analytical curves were constructed covering a concentration range from 1.0 μg L-1 (4.83 nmol L-1) to 80.0 μg L-1 (386.10 nmol L-1), featuring a detection limit of 0.062 μg L-1 (0.30 nmol L-1). The Lab-on-a-Drone was applied to monitor a water reservoir in the Metropolitan Region of Recife, Brazil. To evaluate its performance regarding accuracy and precision, a reference method based on inductively coupled plasma optical emission spectrometry (ICP-OES) was applied, and the results obtained by both methods showed no statistical differences (t-test at 95% confidence level, n = 3). These results represent the first demonstration of the capabilities of an adapted UAV for the quantification of electroactive environmental contaminant using voltammetry, with real-time data transmission. Thus, the Lab-on-a-Drone makes it possible to reach difficult-to-access environmental reserves and to monitor potentially polluting activity in distant water bodies. Thus, this tool can be used by governments and non-profit organizations to monitor environmental waters using fast, low-cost, process autonomy with accurate and precise data useful to decision making.
Collapse
Affiliation(s)
- João Paulo B de Almeida
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Vinicius de A Carvalho
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Leandro P da Silva
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| | - Maysa L do Nascimento
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
- Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | | | | | | | | | - Vagner B Dos Santos
- LIA3, (Laboratório de Instrumentação e Automação em Analítica Aplicada) da Universidade Federal de Pernambuco, Recife-PE, Brazil.
| |
Collapse
|
9
|
Leal VG, Silva-Neto HA, da Silva SG, Coltro WKT, Petruci JFDS. AirQuality Lab-on-a-Drone: A Low-Cost 3D-Printed Analytical IoT Platform for Vertical Monitoring of Gaseous H 2S. Anal Chem 2023; 95:14350-14356. [PMID: 37672689 DOI: 10.1021/acs.analchem.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The measurement of gaseous compounds in the atmosphere is a multichallenging task due to their low concentration range, long and latitudinal concentration variations, and the presence of sample interferents. Herein, we present a quadcopter drone deployed with a fully integrated 3D-printed analytical laboratory for H2S monitoring. Also, the analytical system makes part of the Internet of Things approach. The analytical method applied was based on the reaction between fluorescein mercuric acetate and H2S that led to fluorescence quenching. A 5 V micropump at a constant airflow of 50 mL min-1 was employed to deliver constant air into a flask containing 800 μL of the reagent. The analytical signal was obtained using a light-emitting diode and a miniaturized digital light detector. The method enabled the detection of H2S in the range from 15 to 200 ppbv, with a reproducibility of 5% for a sampling time of 10 min and an limit of detection of 9 ppbv. All devices were controlled using an Arduino powered by a small power bank, and the results were transmitted to a smartphone via Bluetooth. The proposed device resulted in a weight of 300 g and an overall cost of ∼50 USD. The platform was used to monitor the concentration of H2S in different intervals next to a wastewater treatment plant at ground and vertical levels. The ability to perform all analytical steps in the same device, the low-energy requirements, the low weight, and the attachment of data transmission modules offer new possibilities for drone-based analytical systems for air pollution monitoring.
Collapse
Affiliation(s)
- Vanderli Garcia Leal
- Institute of Chemistry, Federal University of Uberlandia, 2121 João Naves de Ávila Avenue, Uberlândia 38400-902, Brazil
| | - Habdias A Silva-Neto
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-400, Brazil
| | - Sidnei Gonçalves da Silva
- Institute of Chemistry, Federal University of Uberlandia, 2121 João Naves de Ávila Avenue, Uberlândia 38400-902, Brazil
| | - Wendell Karlos Tomazelli Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
- Instituto Nacional de Ciȇncia e Tecnologia de Bioanalítica, Campinas 13084-971, São Paulo, Brazil
| | | |
Collapse
|
10
|
Laman A, Das D, Priye A. Miniaturized Non-Contact Heating and Transmitted Light Imaging Using an Inexpensive and Modular 3D-Printed Platform for Molecular Diagnostics. SENSORS (BASEL, SWITZERLAND) 2023; 23:7718. [PMID: 37765775 PMCID: PMC10535971 DOI: 10.3390/s23187718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work presents the development and characterization of a Miniaturized Optically-clear Thermal Enclosure (MOTE) system-an open-source, inexpensive, and low-powered modular system-capable of convectively heating samples while simultaneously imaging them with transmitted light. We develop and validate a computational fluid dynamics (CFD) model to design and optimize the heating chamber. The model simulates velocity and temperature profiles within the heating chamber for various chamber materials and sizes. The computational model yielded an optimal chamber dimension capable of achieving a stable temperature ranging from ambient to 95 °C with a spatial discrepancy of less than 1.5 °C, utilizing less than 8.5 W of power. The dual-functionality of the MOTE system, enabling synchronous heating and transmitted light imaging, was demonstrated through the successful execution of paper-based LAMP reactions to detect λ DNA samples in real-time down to 10 copies/µL of the target concentration. The MOTE system offers a promising and flexible platform for various applications, from molecular diagnostics to biochemical analyses, cell biology, genomics, and education.
Collapse
Affiliation(s)
- Alex Laman
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Debayan Das
- Chemical Engineering Department, NIT Durgapur, Mahatma Gandhi Rd., A-Zone, Durgapur 713209, West Bengal, India;
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
- Digital Futures, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Goudoudaki S, Kambouris ME, Manoussopoulou M, Patrinos GP, Velegraki A, Manoussopoulos Y. Fast and Sustainable Thermo-osmotic DNA Extraction Protocol for Trans-spectrum Contingency and Field Use. Bio Protoc 2023; 13:e4796. [PMID: 37719074 PMCID: PMC10501911 DOI: 10.21769/bioprotoc.4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
In the field of molecular genetics, DNA extraction protocols and kits are sample-specific and proprietary, preventing lateral distribution among similar facilities from different sectors to alleviate supply shortages during a crisis. Expanding upon previous fast extraction protocols such as alkaline- and detergent-based ones, the use of boiling-hot water to rupture cells, virions, and nuclei, as proposed during the COVID-19 pandemic, might alleviate shortages and costs. Different soft, relatively abundant (highly enriched), and uncomplicated (genomically homogenous and with few inhibitors) biosamples are collected in 1.5 mL tubes, mixed with boiling-hot water, and stirred vigorously, so as to have membranes lysed and proteins deactivated; mechanical disruption may be used as well if necessary. Incubation in boiling water bath for 20-30 min follows. Depending on sample type and quantity, which affects the total extraction volume, 2-5 μL are pipetted off for direct PCR and the same volume for two decimal serial dilutions. The latter are intended to optimize the crude extract to a workable DNA/inhibitor concentration balance for direct PCR. Uncomplicated, highly enriched samples such as mycelial growth in fruits and human swab samples can be processed, contrary to complicated samples such as blood and physically unyielding samples such as plant tissue. The extract can be used for immediate PCR in both benchtop and portable thermocyclers, thus allowing nucleic acid amplification tests (NAAT) being performed in resource-limited settings with low cost and waste footprint or during prolonged crises, where supply chain failures may occur. Key features DNA extraction from different sample types using only boiling water and occasional mechanical assistance. Crude extract serially diluted twice, 10- and 100-fold, to bypass purification and quantification steps. Direct PCR for 2-10 μL of crude lysate and dilutions (conditional to sample type and quantity) to enhance probability of workable DNA-inhibitors' concentrations. Lowers the cost and curtails the overall footprint of testing to increase sustainability in field operations and in standard lab environments under supply chain derailment.
Collapse
Affiliation(s)
| | | | - Marianna Manoussopoulou
- Plant Protection Division of Patras, ELGO-Demeter,
Patras, Greece
- Department of Agronomics, Food, Natural Resources,
Animals and Environment, University of Padua, Padua, Italy
| | - George P. Patrinos
- Department of Pharmacy, University of Patras, Patras,
Greece
- Department of Genetics and Genomics & Zayed
Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi,
United Arab Emirates
| | - Aristea Velegraki
- Department of Medicine, National and Kapodistrian
University of Athens, Athens, Greece
| | | |
Collapse
|
12
|
Lin TT, Wang JW, Shi QN, Wang HF, Pan JZ, Fang Q. An automated, fully-integrated nucleic acid analyzer based on microfluidic liquid handling robot technique. Anal Chim Acta 2023; 1239:340698. [PMID: 36628766 DOI: 10.1016/j.aca.2022.340698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
On-site nucleic acid testing (NAT) plays an important role for disease monitoring and pathogen diagnosis. In this work, we developed an automated and fully-integrated nucleic acid analyzer by combining the automated liquid handling robot technique with the microfluidic droplet-based real-time PCR assay technique. The present analyzer could achieve multiple operations including sample introduction, nucleic acid extraction based on magnetic solid-phase extraction, reverse transcription and, sample droplet generation, PCR amplification, real-time and dual fluorescence detection of droplet array. A strategy of constructing an integrated compact and low-cost system was adopted to minimize the analyzer size to 50 × 45 × 45 cm (length × width × height), and reduce the instrument cost to ca. $900 with a single analysis cost less than $5. A simple chip was also designed to pre-load reagents and carry oil-covered PCR reaction droplets. We applied the analyzer to identify eight types of influenza pathogens in human throat swabs, and the results were consistent with the colloidal gold method.
Collapse
Affiliation(s)
- Tong-Tong Lin
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qian-Nuan Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Guo W, Tao Y, Mao K, Liu W, Xue R, Ge Z, Ren Y. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. LAB ON A CHIP 2022; 23:157-167. [PMID: 36484422 DOI: 10.1039/d2lc01053d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrokinetic sample manipulation is a key step for many kinds of microfluidic chips to achieve various functions, such as particle focusing and separation, fluid pumping and material synthesis. But these microfluidic experiments usually rely on large-scale signal generators for power supply, microscopes for imaging and other instruments for analysis, which hampers the portable process of microfluidic technology. Inspired by this situation, we herein designed a portable general microfluidic device (PGMD) with complex electric field regulation functions, which can accurately regulate static or continuous fluid samples. Through the graphical user interface (GUI) and modular design, the PGMD can generate multiple different electrical signals, and the micro-flow of fluid can be pumped through the built-in micropump, which can meet the requirements of most microfluidic experiments. Photos or videos of the microfluidic chip captured by the built-in microscope are received and displayed by a smartphone. We carried out a variety of microfluidic experiments such as induced-charge electroosmosis (ICEO), particle beam exit switching, thermal buoyancy flow and dielectrophoresis (DEP) on the PGMD. In addition, the PGMD can perform rapid microalgae concentration estimation in an outdoor environment, which can be used to guide microalgae cultivation, further demonstrating the development potential of this device in the field of microbial applications. Numerous results show that the PGMD has a high degree of integration and strong reliability, which expands the application of microfluidic electrokinetic experiments and provides technical support for the integration and portability of microfluidic experimental devices.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Kaihao Mao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
14
|
Guo JZ, Xu H, Chen L, Li B. A pyridinium functionalization chitosan for efficient elimination of methyl orange and Cr(VI). BIORESOURCE TECHNOLOGY 2022; 365:128112. [PMID: 36244604 DOI: 10.1016/j.biortech.2022.128112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
A pyridinium functionalization chitosan (PCS) at high yield was facilely and solvothermally obtained from reactions of chitosan with N-2,4-dinitrophenyl-pyridinium chloride. The morphology and physical-chemical properties of PCS were tested with various techniques. Its sorption behaviors towards methyl orange (MO) and Cr(VI) were systematically investigated. Pseudo-second-order kinetic and Langmuir equations well fitted the sorption kinetics and isotherms, respectively. Thermodynamics analyses revealed the spontaneous and endothermic sorption of these two contaminants. PCS exhibited high sorption capacity of 1649.30 mg·g-1 MO and 200.46 mg·g-1 Cr(VI) at 308 K. The superior sorption performance of PCS over MO is ascribed to ion exchange, intermolecular hydrogen bond, and electrostatic and π-π interactions, while sorption of PCS over Cr(VI) is mainly driven by electrostatic forces, reduction and ion exchange. Moreover, the PCSexceeded 95 % of its original capacities during five cycles. This high sorption capacities and high reusability make PCS an excellent sorbent candidate towards anionic contaminants.
Collapse
Affiliation(s)
- Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Huan Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
15
|
Murphy RJ. Communicable diseases in humanitarian operations and disasters. BMJ Mil Health 2022; 168:457-461. [PMID: 32123000 DOI: 10.1136/bmjmilitary-2020-001415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/04/2022]
Abstract
Military organisations have battled communicable disease for millennia. They have pioneered disease prevention from the Crusades to the World Wars and continue to do so today. Predeployment vaccinations and chemoprophylaxis are effective in preventing communicable disease, as is reliable vector destruction and bite prevention, especially in the era of multidrug resistant organisms. These measures are unlikely to be fully possible in disasters, but reactive vaccination and efforts to reduce exposure to communicable disease should be a priority. Communicable diseases can be challenging to diagnose-the UK Defence Medical Services have become familiar with tools such as multiplex PCR and mass spectrometry. These have the potential to accurately identify organisms and sensitivity patterns in austere environments. Management of communicable diseases depends on accurate diagnosis and has a largely well-established evidence base but can be limited by a lack of resources and skills in an austere setting, therefore telemedicine can assist diagnosis and treatment of infections by projecting specialist skill. Systems such as EpiNATO2 are useful in monitoring diseases and identifying trends in order to establish control measures. Many of these tools and techniques are effective in austere environments and offer learning opportunities for those providing care in similar settings. Further research is ongoing into diagnostic tools as well as remote management.
Collapse
|
16
|
Koo SBN, Kim YS, Park CY, Lee DJ. Compact Camera Fluorescence Detector for Parallel-Light Lens-Based Real-Time PCR System. SENSORS (BASEL, SWITZERLAND) 2022; 22:8575. [PMID: 36366271 PMCID: PMC9654867 DOI: 10.3390/s22218575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The polymerase chain reaction is an important technique in biological research. However, it is time consuming and has a number of disadvantages. Therefore, real-time PCR technology that can be used in real-time monitoring has emerged, and many studies are being conducted regarding its use. Real-time PCR requires many optical components and imaging devices such as expensive, high-performance cameras. Therefore, its cost and assembly process are limitations to its use. Currently, due to the development of smart camera devices, small, inexpensive cameras and various lenses are being developed. In this paper, we present a Compact Camera Fluorescence Detector for use in parallel-light lens-based real-time PCR devices. The proposed system has a simple optical structure, the system cost can be reduced, and the size can be miniaturized. This system only incorporates Fresnel lenses without additional optics in order for the same field of view to be achieved for 25 tubes. In the center of the Fresnel lens, one LED and a complementary metal-oxide semiconductor camera were placed in directions that were as similar as possible. In addition, to achieve the accurate analysis of the results, image processing was used to correct them. As a result of an experiment using a reference fluorescent substance and double-distilled water, it was confirmed that stable fluorescence detection was possible.
Collapse
Affiliation(s)
- Seul-Bit-Na Koo
- School of Software, Hallym University, Chuncheon-si 24252, Korea
- Bio-IT Research Center, Hallym University, Chuncheon-si 24252, Korea
| | - Yu-Seop Kim
- School of Software, Hallym University, Chuncheon-si 24252, Korea
- Bio-IT Research Center, Hallym University, Chuncheon-si 24252, Korea
| | - Chan-Young Park
- School of Software, Hallym University, Chuncheon-si 24252, Korea
- Bio-IT Research Center, Hallym University, Chuncheon-si 24252, Korea
| | - Deuk-Ju Lee
- School of Software, Hallym University, Chuncheon-si 24252, Korea
- Bio-IT Research Center, Hallym University, Chuncheon-si 24252, Korea
| |
Collapse
|
17
|
Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, Salama KN, Timur S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. BIOSENSORS 2022; 12:583. [PMID: 36004979 PMCID: PMC9406027 DOI: 10.3390/bios12080583] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.
Collapse
Affiliation(s)
- Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
| | - Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey;
| | - Jurgen Kosel
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
18
|
An Integrated, Real-Time Convective PCR System for Isolation, Amplification, and Detection of Nucleic Acids. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Convective PCR (CPCR) can perform rapid nucleic acid amplification by inducing thermal convection to continuously, cyclically driving reagent between different zones of the reactor for spatially separate melting, annealing, and extending in a capillary tube with constant heating temperatures at different locations. CPCR is promoted by incorporating an FTA membrane filter into the capillary tube, which constructs a single convective PCR reactor for both sample preparation and amplification. To simplify fluid control in sample preparation, lysed sample or wash buffer is driven through the membrane filter through centrifugation. A movable resistance heater is used to heat the capillary tube for amplification, and meanwhile, a smartphone camera is adopted to monitor in situ fluorescence signal from the reaction. Different from other existing CPCR systems with the described simple, easy-to-use, integrated, real-time microfluidic CPCR system, rapid nucleic acid analysis can be performed from sample to answer. A couple of critical issues, including wash scheme and reaction temperature, are analyzed for optimized system performance. It is demonstrated that influenza A virus with the reasonable concentration down to 1.0 TCID50/mL can be successfully detected by the integrated microfluidic system within 45 min.
Collapse
|
19
|
Qi L, Du Y. Diagnosis of disease relevant nucleic acid biomarkers with off-the-shelf devices. J Mater Chem B 2022; 10:3959-3973. [PMID: 35575030 DOI: 10.1039/d2tb00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Changes in the level of nucleic acids in blood may be correlated with some clinical disorders like cancer, stroke, trauma and autoimmune diseases, and thus, nucleic acids can serve as potential biomarkers for pathological processes. The requirement of technical equipment and operator expertise in effective information readout of modern molecular diagnostic technologies significantly restricted application outside clinical laboratories. The ability to detect nucleic acid biomarkers with off-the-shelf devices, which have the advantages of portability, simplicity, low cost and short response time, is critical to provide a prompt clinical result in circumstances where the laboratory instruments are not available. This review throws light on the current strategies and challenges for nucleic acid diagnosis with commercial portable devices, indicating the future prospect of portable diagnostic devices and making a great difference in improving the healthcare and disease surveillance in resource-limited areas.
Collapse
Affiliation(s)
- Lijuan Qi
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| | - Yan Du
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, P. R. China. .,Department of Chemistry, University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
20
|
Convective polymerase chain reaction in standard microtubes. Anal Biochem 2022; 641:114565. [DOI: 10.1016/j.ab.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
|
21
|
Human–Device Interaction in the Life Science Laboratory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 182:83-113. [DOI: 10.1007/10_2021_183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hossain MA, Brito-Rodriguez B, Sedger LM, Canning J. A Cross-Disciplinary View of Testing and Bioinformatic Analysis of SARS-CoV-2 and Other Human Respiratory Viruses in Pandemic Settings. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:163716-163734. [PMID: 35582017 PMCID: PMC8843158 DOI: 10.1109/access.2021.3133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/04/2021] [Indexed: 05/26/2023]
Abstract
The SARS-Coronavirus-2 (SARS-CoV-2) infectious disease, COVID-19, has spread rapidly, resulting in a global pandemic with significant mortality. The combination of early diagnosis via rapid screening, contact tracing, social distancing and quarantine has helped to control the pandemic. The absence of real time response and diagnosis is a crucial technology shortfall and is a key reason why current contact tracing methods are inadequate to control spread. In contrast, current information technology combined with a new generation of near-real time tests offers consumer-engaged smartphone-based "lab-in-a-phone" internet-of-things (IoT) connected devices that provide increased pandemic monitoring. This review brings together key aspects required to create an entire global diagnostic ecosystem. Cross-disciplinary understanding and integration of both mechanisms and technologies for effective detection, incidence mapping and disease containment in near real-time is summarized. Available measures to monitor and/or sterilize surfaces, next-generation laboratory and smartphone-based diagnostic approaches can be brought together and networked for instant global monitoring that informs Public Health policy. Cloud-based analysis enabling real-time mapping will enable future pandemic control, drive the suppression and elimination of disease spread, saving millions of lives globally. A new paradigm is introduced - scaled and multiple diagnostics for mapping and spreading of a pandemic rather than traditional accumulation of individual measurements. This can do away with the need for ultra-precise and ultra-accurate analysis by taking mass measurements that can relax tolerances and build resilience through networked analytics and informatics, the basis for novel swarm diagnostics. These include addressing ethical standards, local, national and international collaborative engagement, multidisciplinary and analytical measurements and standards, and data handling and storage protocols.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Electrical and Electronic EngineeringKhulna University of Engineering & TechnologyKhulna9203Bangladesh
| | | | - Lisa M. Sedger
- Faculty of ScienceUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| | - John Canning
- interdisciplinary Photonic Laboratories (iPL), Global Big Data Technologies Centre (GBDTC), Faculty of Engineering and Information TechnologyUniversity of Technology Sydney (UTS)SydneyNSW2007Australia
| |
Collapse
|
23
|
Smartphone-Based Device for Colorimetric Detection of MicroRNA Biomarkers Using Nanoparticle-Based Assay. SENSORS 2021; 21:s21238044. [PMID: 34884049 PMCID: PMC8659705 DOI: 10.3390/s21238044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/15/2023]
Abstract
The detection of microRNAs (miRNAs) is emerging as a clinically important tool for the non-invasive detection of a wide variety of diseases ranging from cancers and cardiovascular illnesses to infectious diseases. Over the years, miRNA detection schemes have become accessible to clinicians, but they still require sophisticated and bulky laboratory equipment and trained personnel to operate. The exceptional computing ability and ease of use of modern smartphones coupled with fieldable optical detection technologies can provide a useful and portable alternative to these laboratory systems. Herein, we present the development of a smartphone-based device called Krometriks, which is capable of simple and rapid colorimetric detection of microRNA (miRNAs) using a nanoparticle-based assay. The device consists of a smartphone, a 3D printed accessory, and a custom-built dedicated mobile app. We illustrate the utility of Krometriks for the detection of an important miRNA disease biomarker, miR-21, using a nanoplasmonics-based assay developed by our group. We show that Krometriks can detect miRNA down to nanomolar concentrations with detection results comparable to a laboratory-based benchtop spectrophotometer. With slight changes to the accessory design, Krometriks can be made compatible with different types of smartphone models and specifications. Thus, the Krometriks device offers a practical colorimetric platform that has the potential to provide accessible and affordable miRNA diagnostics for point-of-care and field applications in low-resource settings.
Collapse
|
24
|
Cloud-Based Software Architecture for Fully Automated Point-of-Care Molecular Diagnostic Device. SENSORS 2021; 21:s21216980. [PMID: 34770286 PMCID: PMC8587904 DOI: 10.3390/s21216980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
This paper proposes a cloud-based software architecture for fully automated point-of-care molecular diagnostic devices. The target system operates a cartridge consisting of an extraction body for DNA extraction and a PCR chip for amplification and fluorescence detection. To facilitate control and monitoring via the cloud, a socket server was employed for fundamental molecular diagnostic functions such as DNA extraction, amplification, and fluorescence detection. The user interface for experimental control and monitoring was constructed with the RESTful application programming interface, allowing access from the terminal device, edge, and cloud. Furthermore, it can also be accessed through any web-based user interface on smart computing devices such as smart phones or tablets. An emulator with the proposed software architecture was fabricated to validate successful operation.
Collapse
|
25
|
Cost-Effective Multiplex Fluorescence Detection System for PCR Chip. SENSORS 2021; 21:s21216945. [PMID: 34770252 PMCID: PMC8588286 DOI: 10.3390/s21216945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
The lack of portability and high cost of multiplex real-time PCR systems limits the device to be used in POC. To overcome this issue, this paper proposes a compact and cost-effective fluorescence detection system that can be integrated to a multiplex real-time PCR equipment. An open platform camera with embedded lens was used instead of photodiodes or an industrial camera. A compact filter wheel using a sliding tape is integrated, and the excitation LEDs are fixed at a 45° angle near the PCR chip, eliminating the need of additional filter wheels. The results show precise positioning of the filter wheel with an error less than 20 μm. Fluorescence detection results using a reference dye and standard DNA amplification showed comparable performance to that of the photodiode system.
Collapse
|
26
|
[Applications of microfluidic paper-based chips in environmental analysis and detection]. Se Pu 2021; 39:802-815. [PMID: 34212581 PMCID: PMC9404056 DOI: 10.3724/sp.j.1123.2020.09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
近年来,微流控纸芯片由于低成本、便携化、检测快等优点,在需要快速检测的环境分析领域中展现出了巨大的应用前景。该综述从微流控纸芯片在环境分析中的应用角度,总结归纳了微流控纸芯片在环境分析中的最新研究进展,并展望了其在未来的发展趋势与挑战。论文内容引用150余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。该综述包括微流控纸芯片在环境检测中的优势与制造方法介绍;电化学法、荧光法、比色法、表面增强拉曼法、集成传感法等基于纸芯片的先进分析方法介绍;根据环境分析目标物种类,如重金属离子、营养盐、农药、微生物、抗生素以及其他污染物等,对纸芯片的最新应用现状进行了举例评述;基于微流控纸芯片的环境分析研究的未来发展趋势和前景展望。通过综述近期相关研究,表明微流控纸芯片从提出至今虽然只有十几年的发展历程,但其在环境分析研究中的发展却十分迅速。微流控纸芯片可以根据不同的环境条件和检测要求灵活选择制作与分析方法,实现最佳的检测效果。但是微流控纸芯片也面临一些挑战,如纸张机械强度不足、流体控制程度不佳等问题。这些问题指出了微流控纸芯片在环境检测领域的发展趋势,相信随着不断深入的研究,纸芯片将会在未来的环境分析中发挥更大作用。
Collapse
|
27
|
Altimier L, Boyle B. Unprecedented opportunities for a transformational change. JOURNAL OF NEONATAL NURSING 2021; 27:157-164. [PMID: 33967584 PMCID: PMC8085761 DOI: 10.1016/j.jnn.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
29
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
30
|
Khan H, Kushwah KK, Singh S, Urkude H, Maurya MR, Sadasivuni KK. Smart technologies driven approaches to tackle COVID-19 pandemic: a review. 3 Biotech 2021; 11:50. [PMID: 33457174 PMCID: PMC7799428 DOI: 10.1007/s13205-020-02581-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus infection (COVID-19) is not diminishing without vaccine, but it impinges on human safety and economy can be minimized by adopting smart technology to combat pandemic situation. The implementation of new innovations and novel tactics has proven to be effective in curbing the risk of COVID-19. The present study covers the role of smart technology in mitigating the spread of COVID-19 with specific focus on advancement in the field of drone, robotics, artificial intelligence (AI), mask, and sensor technology. The findings shed light on the robotics and drone technology-driven approaches that have been applied for assisting health system, surveillance, and disinfection process, etc. The AI technology strategies and framework is highlighted in terms of bulk data computing, predicting infection threats, providing medical assistance, and analyzing diagnosis results. Besides this, the technological shift in mask and sensor technology during the pandemic have been illustrated, which includes fabrication method like 3D printing and optical sensing, respectively. Furthermore, the strength, weakness, opportunities, and possible threats that have been shaped by the rigorous implementation of these technologies are also covered in detail.
Collapse
Affiliation(s)
- Hameed Khan
- Department of Computer Science, GRKIST, Jabalpur, Madhya Pradesh India
| | - K. K. Kushwah
- Department of Applied Physics, Jabalpur Engineering College, Jabalpur, Madhya Pradesh 482001 India
| | - Saurabh Singh
- Department of Computer Science and Engineering, Jabalpur Engineering College, Jabalpur, Madhya Pradesh 482001 India
| | - Harshika Urkude
- Department of Computer Science and Engineering, Jabalpur Engineering College, Jabalpur, Madhya Pradesh 482001 India
| | - Muni Raj Maurya
- Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | | |
Collapse
|
31
|
Inflight Polymerase Chain Reaction of samples with drones. Anal Biochem 2020; 616:114098. [PMID: 33388295 DOI: 10.1016/j.ab.2020.114098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022]
Abstract
A system devised to conduct Polymerase Chain Reaction (PCR) in-flight on drones that uses the spatial displacement of capillary tubes on thermal blocks kept at 94 °C, 58 °C and 72 °C corresponding to cycling temperatures for denaturation, annealing and extension is demonstrated here. The use of acetal as the thermal block material reduced heat loss and the input power (within 18.5 W) needed to maintain the required temperatures. Tests showed that concentrations of samples down to 1.16 × 106 DNA copies/μL could be significantly and consistently detected above the background emission of the fluorescence signal intensity.
Collapse
|
32
|
Drevinskas T, Maruška A, Girdauskas V, Dūda G, Gorbatsova J, Kaljurand M. Complete capillary electrophoresis process on a drone: towards a flying micro-lab. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4977-4986. [PMID: 33006341 DOI: 10.1039/d0ay01220c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hazardous remote places exist in the world. Why should health or life be risked sending a scientist to the investigation site, as the remote analytical instrumentation exists? Different scientific fields require instruments that could be used on-site (in situ), therefore the purpose of this work was to design a fully automated chemical analysis system small enough to be mountable on a drone. Here we show an autonomous analytical system with sampling capability on a drone. The system is suited for the remote and autonomous analysis of volatile and non-volatile chemicals in the air. The designed system weighs less than 800 g. Data are transmitted wirelessly. Collected substances are separated automatically without the intervention of the operator using the method of capillary zone electrophoresis. The analytes are detected using a miniaturized contactless conductivity detector quantifying them down to less than 1 μM. In this work, we demonstrated sampling and separation of volatile amines (triethylamine and diethylamine) and organic acids (acetic and formic acids), non-volatile inorganic cations (K+, Ca2+, Na+), and protein (bovine serum albumin) in the aerosol state. It was shown that the capillary electrophoretic analysis can be performed on a hovering drone. We anticipate our work to be a starting point for more sophisticated, autonomous complex sample analysis. We believe that our designed instrument will enable the investigation of hazardous places in different research fields.
Collapse
Affiliation(s)
- Tomas Drevinskas
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT44404 Kaunas, Lithuania.
| | | | | | | | | | | |
Collapse
|
33
|
Ahrberg CD, Choi JW, Lee JM, Lee KG, Lee SJ, Manz A, Chung BG. Plasmonic heating-based portable digital PCR system. LAB ON A CHIP 2020; 20:3560-3568. [PMID: 32844858 DOI: 10.1039/d0lc00788a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A miniaturized polymerase chain reaction (PCR) system is not only important for medical applications in remote areas of developing countries, but also important for testing at ports of entry during global epidemics, such as the current outbreak of the coronavirus. Although there is a large number of PCR sensor systems available for this purpose, there is still a lack of portable digital PCR (dPCR) heating systems. Here, we first demonstrated a portable plasmonic heating-based dPCR system. The device has total dimensions of 9.7 × 5.6 × 4.1 cm and a total power consumption of 4.5 W, allowing for up to 25 dPCR experiments to be conducted on a single charge of a 20 000 mAh external battery. The dPCR system has a maximum heating rate of 10.7 °C s-1 and maximum cooling rate of 8 °C s-1. Target DNA concentrations in the range from 101 ± 1.4 copies per μL to 260 000 ± 20 000 copies per μL could be detected using a poly(dimethylsiloxane) (PDMS) microwell membrane with 22 080 well arrays (20 μm diameter). Furthermore, the heating system was demonstrated using a mass producible poly(methyl methacrylate) PMMA microwell array with 8100 microwell arrays (80 μm diameter). The PMMA microwell array could detect a concentration from 12 ± 0.7 copies per μL to 25 889 ± 737 copies per μL.
Collapse
|
34
|
Poljak M. Simplification of hepatitis C testing: a time to act. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2020. [DOI: 10.15570/actaapa.2020.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Qin Z, Peng R, Baravik IK, Liu X. Fighting COVID-19: Integrated Micro- and Nanosystems for Viral Infection Diagnostics. MATTER 2020; 3:628-651. [PMID: 32838297 PMCID: PMC7346839 DOI: 10.1016/j.matt.2020.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) highlights the importance of rapid and sensitive diagnostics of viral infection that enables the efficient tracing of cases and the implementation of public health measures for disease containment. The immediate actions from both academia and industry have led to the development of many COVID-19 diagnostic systems that have secured fast-track regulatory approvals and have been serving our healthcare frontlines since the early stage of the pandemic. On diagnostic technologies, many of these clinically validated systems have significantly benefited from the recent advances in micro- and nanotechnologies in terms of platform design, analytical method, and system integration and miniaturization. The continued development of new diagnostic platforms integrating micro- and nanocomponents will address some of the shortcomings we have witnessed in the existing COVID-19 diagnostic systems. This Perspective reviews the previous and ongoing research efforts on developing integrated micro- and nanosystems for nucleic acid-based virus detection, and highlights promising technologies that could provide better solutions for the diagnosis of COVID-19 and other viral infectious diseases. With the summary and outlook of this rapidly evolving research field, we hope to inspire more research and development activities to better prepare our society for future public health crises.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ran Peng
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ilina Kolker Baravik
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
36
|
Kambouris ME, Siamoglou S, Kordou Z, Milioni A, Vassilakis S, Goudoudaki S, Kritikou S, Manoussopoulos Y, Velegraki A, Patrinos GP. Point-of-need molecular processing of biosamples using portable instrumentation to reduce turnaround time. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Urbaniak C, Wong S, Tighe S, Arumugam A, Liu B, Parker CW, Wood JM, Singh NK, Skorupa DJ, Peyton BM, Jenson R, Karouia F, Dragon J, Venkateswaran K. Validating an Automated Nucleic Acid Extraction Device for Omics in Space Using Whole Cell Microbial Reference Standards. Front Microbiol 2020; 11:1909. [PMID: 32973700 PMCID: PMC7472602 DOI: 10.3389/fmicb.2020.01909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The Omics in Space team has developed the μTitan (simulated micro(μ) gravity tested instrument for automated nucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity. The μTitan system was validated using a whole cell microbial reference (WCMR) standard comprised of a suspension of nine bacterial strains, titrated to concentrations that would challenge the performance of the instrument, as well as to determine the detection limits for isolating DNA. Quantitative assessment of system performance was measured by comparing instrument input challenge dose vs recovery by Qubit spectrofluorometry, qPCR, Bioanalyzer, and Next Generation Sequencing. Overall, results indicate that the μTitan system performs equal to or greater than a similar commercially available, earth-based, automated nucleic acid extraction device. The μTitan system was also tested in Yellowstone National Park (YNP) with the WCMR, to mimic a remote setting, with limited resources. The performance of the device at YNP was comparable to that in a laboratory setting. Such a portable, field-deployable, nucleic extraction system will be valuable for environmental microbiology, as well as in health care diagnostics.
Collapse
Affiliation(s)
- Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Season Wong
- AI Biosciences, College Station, TX, United States
| | - Scott Tighe
- University of Vermont, Burlington, VT, United States
| | | | - Bo Liu
- AI Biosciences, College Station, TX, United States
| | - Ceth W Parker
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M Wood
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | | | | | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, CA, United States
| | - Julie Dragon
- University of Vermont, Burlington, VT, United States
| | - Kasthuri Venkateswaran
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
38
|
Abstract
With the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories. One aspect of this transformation is the progressing implementation of electronics and computer science in chemistry research. In the past decade, numerous chemistry-oriented studies have benefited from the implementation of electronic modules, including microcontroller boards (MCBs), single-board computers (SBCs), professional grade control and data acquisition systems, as well as field-programmable gate arrays (FPGAs). In particular, MCBs and SBCs provide good value for money. The application areas for electronic modules in chemistry research include construction of simple detection systems based on spectrophotometry and spectrofluorometry principles, customizing laboratory devices for automation of common laboratory practices, control of reaction systems (batch- and flow-based), extraction systems, chromatographic and electrophoretic systems, microfluidic systems (classical and nonclassical), custom-built polymerase chain reaction devices, gas-phase analyte detection systems, chemical robots and drones, construction of FPGA-based imaging systems, and the Internet-of-Chemical-Things. The technology is easy to handle, and many chemists have managed to train themselves in its implementation. The only major obstacle in its implementation is probably one's imagination.
Collapse
Affiliation(s)
- Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
39
|
Madurai Elavarasan R, Pugazhendhi R. Restructured society and environment: A review on potential technological strategies to control the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138858. [PMID: 32336562 PMCID: PMC7180041 DOI: 10.1016/j.scitotenv.2020.138858] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 04/15/2023]
Abstract
The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in China at December 2019 had led to a global outbreak of coronavirus disease 2019 (COVID-19) and the disease started to spread all over the world and became an international public health issue. The entire humanity has to fight in this war against the unexpected and each and every individual role is important. Healthcare system is doing exceptional work and the government is taking various measures that help the society to control the spread. Public, on the other hand, coordinates with the policies and act accordingly in most state of affairs. But the role of technologies in assisting different social bodies to fight against the pandemic remains hidden. The intention of our study is to uncover the hidden roles of technologies that ultimately help for controlling the pandemic. On investigating, it is found that the strategies utilizing potential technologies would yield better benefits and these technological strategies can be framed either to control the pandemic or to support the confinement of the society during pandemic which in turn aids in controlling the spreading of infection. This study enlightens the various implemented technologies that assists the healthcare systems, government and public in diverse aspects for fighting against COVID-19. Furthermore, the technological swift that happened during the pandemic and their influence in the environment and society is discussed. Besides the implemented technologies, this work also deals with untapped potential technologies that have prospective applications in controlling the pandemic circumstances. Alongside the various discussion, our suggested solution for certain situational issues is also presented.
Collapse
Affiliation(s)
- Rajvikram Madurai Elavarasan
- Department of Electrical and Electronics Engineering, Sri Venkateswara College of Engineering, Chennai 602117, India.
| | - Rishi Pugazhendhi
- Department of Mechanical Engineering, Sri Venkateswara College of Engineering, Chennai 602117, India
| |
Collapse
|
40
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
41
|
Frazer JS, Shard A, Herdman J. Involvement of the open-source community in combating the worldwide COVID-19 pandemic: a review. J Med Eng Technol 2020; 44:169-176. [PMID: 32401550 DOI: 10.1080/03091902.2020.1757772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ongoing COVID-19 pandemic is unprecedented in the modern age both due to its scale and its disruption to daily life throughout the world. Widespread social isolation and restrictions in the age of modern communicative technology, coupled with some early successes for makers, have united the open-source community towards a common goal in a way not previously seen. Local hospitals and care facilities are turning to makers to print essential consumable parts, such as simple visors, while in the hardest hit areas, critical pieces of medical technology are being fabricated. While important and effective innovations are appearing almost daily, there are also some worrying trends towards hobbyists attempting manufacture of complex medical devices with little understanding of the clinical or scientific rationale behind their design. The nature of the open-source community, an area of intensive innovation, fluidity, and experimentation, jars with the exacting standards of medical device regulation. Here, we review the involvement of rapid prototyping and the open-source community in the key areas of personal protective equipment (PPE), diagnostics, critical care technology, and information acquisition and sharing, highlighting where makers and hackers have clashed with medical device regulations, and areas where the system has worked well to facilitate change.
Collapse
Affiliation(s)
- John Scott Frazer
- Somerville College, University of Oxford, Oxford, UK.,Buckinghamshire Healthcare, NHS Trust, Aylesbury, UK
| | - Amelia Shard
- Buckinghamshire Healthcare, NHS Trust, Aylesbury, UK
| | - James Herdman
- Buckinghamshire Healthcare, NHS Trust, Aylesbury, UK
| |
Collapse
|
42
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
43
|
Shi B, Li Y, Wu D, Wu W. A handheld continuous-flow real-time fluorescence qPCR system with a PVC microreactor. Analyst 2020; 145:2767-2773. [PMID: 32095799 DOI: 10.1039/c9an01894h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polymerase chain reaction (PCR) has unique advantages of sensitivity, specificity and rapidity in pathogen detection, which makes it at the forefront of academia and application in molecular biology diagnosis. In this study, we proposed a hand-held real-time fluorescence qPCR system, which can be used for the quantitative analysis of nucleic acid molecules. For the first time, we use a PVC microreactor which improved the transmittance of the microreactor and made it easy to collect the fluorescence signal. In order to make it portable, the system adopted a passive syringe for sample injection and integrated temperature control and detection with a lithium battery for power supply. What's more, the fluorescence signal was captured by using a smartphone through an external automatic robotic arm. This real-time qPCR system can detect genomic DNA of the H7N9 avian influenza over four orders of magnitude of concentration from 107 to 104 copies per μL. In addition, it was verified that the fluorescence images obtained by this system were clearer than those obtained by a traditional system (using a PTFE spatial PCR microreactor) with two typical dyes and a probe tested-EvaGreen, SYBR Green and FAM.
Collapse
Affiliation(s)
- Bing Shi
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yuanming Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China.
| | - Di Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China. and University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Wenming Wu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
44
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
45
|
Miao G, Zhang L, Zhang J, Ge S, Xia N, Qian S, Yu D, Qiu X. Free convective PCR: From principle study to commercial applications-A critical review. Anal Chim Acta 2020; 1108:177-197. [PMID: 32222239 DOI: 10.1016/j.aca.2020.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Polymerase chain reaction (PCR) is an extremely important tool for molecular diagnosis, as it can specifically amplify nucleic acid templates for sensitive detection. As another division of PCR, free convective PCR was invented in 2001, which can be performed in a capillary tube pseudo-isothermally within a significantly short time. Convective PCR thermal cycling is implemented by inducing thermal convection inside the capillary tube, which stratifies the reaction into spatially separate and stable melting, annealing, and extension zones created by the temperature gradient. Convective PCR is a promising tool that can be used for nucleic acid diagnosis as a point-of-care test (POCT) due to the significantly simplified heating strategy, reduced cost, and shortened detection time without sacrificing sensitivity and accuracy. Here, we review the history of free convective PCR from its invention to development and its commercial applications.
Collapse
Affiliation(s)
- Guijun Miao
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jing Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361005, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361005, China.
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| | - Duli Yu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing, 100029, China.
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
46
|
Sanguinetti M, Seme K, Poljak M. Mobile microbiology: an evolving concept in diagnosis of infectious diseases. Clin Microbiol Infect 2020; 26:409-410. [PMID: 31899335 DOI: 10.1016/j.cmi.2019.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Sanguinetti
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - K Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Slovenia.
| |
Collapse
|
47
|
Kost GJ. Geospatial Science and Point-of-Care Testing: Creating Solutions for Population Access, Emergencies, Outbreaks, and Disasters. Front Public Health 2019; 7:329. [PMID: 32039125 PMCID: PMC6988819 DOI: 10.3389/fpubh.2019.00329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Objectives: (a) To understand how to integrate geospatial concepts when implementing point-of-care testing (POCT); (b) to facilitate emergency, outbreak, and disaster preparedness and emergency management in healthcare small-world networks; (c) to enhance community resilience by using POCT in tandem with geographic information systems (GISs) and other geospatial tools; and (d) to advance crisis standards of care at points of need, adaptable and scalable for public health practice in limited-resource countries and other global settings. Content: Visual logistics help integrate and synthesize POCT and geospatial concepts. The resulting geospatial solutions presented here comprise: (1) small-world networks and regional topography; (2) space-time transformation, hubs, and asset mapping; (3) spatial and geospatial care paths™; (4) GIS-POCT; (5) isolation laboratories, diagnostics isolators, and mobile laboratories for highly infectious diseases; (6) alternate care facilities; (7) roaming POCT—airborne, ambulances, space, and wearables; (8) connected and wireless POCT outside hospitals; (9) unmanned aerial vehicles; (10) geospatial practice—demographic care unit resource scoring, geographic risk assessment, and national POCT policy and guidelines; (11) the hybrid laboratory; and (12) point-of-careology. Value: Small-world networks and their connectivity facilitate efficient and effective placement of POCT for optimal response, rescue, diagnosis, and treatment. Spatial care paths™ speed transport from primary encounters to referral centers bypassing topographic bottlenecks, process gaps, and time-consuming interruptions. Regional GISs position POCT close to where patients live to facilitate rapid triage, decrease therapeutic turnaround time, and conserve economic resources. Geospatial care paths™ encompass demographic and population access features. Timeliness creates value during acute illness, complex crises, and unexpected disasters. Isolation laboratories equipped with POCT help stop outbreaks and safely support critically ill patients with highly infectious diseases. POCT-enabled spatial grids can map sentinel cases and establish geographic limits of epidemics for ring vaccination. Impact: Geospatial solutions generate inherently optimal and logical placement of POCT conceptually, physically, and temporally as a means to improve crisis response and spatial resilience. If public health professionals, geospatial scientists, and POCT specialists join forces, new collaborative teamwork can create faster response and higher impact during disasters, complex crises, outbreaks, and epidemics, as well as more efficient primary, urgent, and emergency community care.
Collapse
Affiliation(s)
- Gerald J Kost
- Point-of-Care Testing Center for Teaching and Research (POCT·CTR™), University of California, Davis, Davis, CA, United States.,Knowledge Optimization®, Davis, CA, United States
| |
Collapse
|
48
|
Poljak M, Šterbenc A. Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clin Microbiol Infect 2019; 26:425-430. [PMID: 31574337 DOI: 10.1016/j.cmi.2019.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Drones or unmanned aerial vehicles are autonomous or remotely controlled multipurpose aerial vehicles driven by aerodynamic forces and capable of carrying a payload. Whereas initially used exclusively for military purposes, the use of drones has gradually spread into other areas. Given their great flexibility and favourable costs, the use of drones has also been piloted in various healthcare settings. OBJECTIVES We briefly summarize current knowledge regarding the use of drones in healthcare, focusing on infectious diseases and/or microbiology when applicable. SOURCES Information was sought through PubMed and extracted from peer-reviewed literature published between January 2010 and August 2019 and from reliable online news sources. The search terms 'drones', 'unmanned aerial vehicles', 'microbiology' and 'medicine' were used. CONTENT Peer-reviewed literature on the use of drones in healthcare has steadily increased in recent years. Drones have been successfully evaluated in various pilot programmes and are already implemented in some settings for transporting samples and delivering blood, vaccines, medicines, organs, life-saving medical supplies and equipment. In addition, a promising proof-of-concept 'lab-on-a-drone' was recently presented, as well as several pilot studies showing the benefits of drone use in surveillance and epidemiology of infectious diseases. IMPLICATIONS The potential for drone use in clinical microbiology, infectious diseases and epidemiology is vast. Drones may help to increase access to healthcare for individuals that might otherwise not benefit from appropriate care due to remoteness and lack of infrastructure or funds. However, factors such as national airspace legislation and legal medical issues, differences in topography and climates, cost-effectiveness, and community attitudes and acceptance in different cultures and societies currently impede the widespread use of drones. Significant cost savings compared with ground transportation, speed and convenience of delivery, and the booming drone sector will probably drive drone implementation in various areas of medicine in the next 5 years.
Collapse
Affiliation(s)
- M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - A Šterbenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
49
|
Nguyen HV, Nguyen VD, Nguyen HQ, Chau THT, Lee EY, Seo TS. Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing. Biosens Bioelectron 2019; 141:111466. [DOI: 10.1016/j.bios.2019.111466] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
|
50
|
Ghadikolaei NF, Kowsari E, Balou S, Moradi A, Taromi FA. Preparation of porous biomass-derived hydrothermal carbon modified with terminal amino hyperbranched polymer for prominent Cr(VI) removal from water. BIORESOURCE TECHNOLOGY 2019; 288:121545. [PMID: 31200346 DOI: 10.1016/j.biortech.2019.121545] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Herein, a series of functionalized hydrochars with high density of nitrogen-containing functional groups were engineered by co-processing of terminal amino hyperbranched polymer and walnut shell biomass in the hydrothermal carbonization media. Hydrothermal Carbonization with optimized key parameters was implemented to determine the impact of added polymer to the biomass on the properties of the obtained hydrochars. Consequently, the optimum hydrochar which was achieved with the values of 250 °C, 60 min, and 50% (w/w) for temperature, time, and polymer/biomass weight ratio, demonstrated a highly improved surface area of 544 m2.g-1 and the highest adsorption capacity for Cr(VI) removal which was obtained from Freundlich isotherm model and described by the pseudo-second-order kinetic model to be 363.22 mg.g-1 (at pH = 2.0). This work suggests that the co-hydrothermal carbonization promotes the uniform incorporation of polymers into the hydrochar matrix and provides adsorbents for the effective removal of Cr(VI) from water.
Collapse
Affiliation(s)
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Salar Balou
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Moradi
- Department of Chemistry, Islamic Azad University, Tehran South Branch, Tehran, Iran
| | - Faramarz Afshar Taromi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|