1
|
Isokawa M, Nakanishi K, Kanamori T, Sekiguchi T, Funatsu T, Shoji S, Tsunoda M. Pillar Array Mixer for Postcolumn Derivatization Integrated into Liquid Chromatography-Based Microfluidic Device. Anal Chem 2024; 96:11002-11008. [PMID: 38870183 DOI: 10.1021/acs.analchem.4c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The chemical derivatization of target analytes can enhance the sensitivity and selectivity of separation-based methods for metabolite analysis using microfluidic devices. However, the development of chromatography-based microfluidic devices with integrated derivatization units is challenging. In this study, a novel derivatization unit with a pillar array (PA)-based mixing channel was developed for postcolumn derivatization during on-chip liquid chromatography (LC). The PA mixer enhanced mixing between the derivatization reagents and analytes in the transverse direction, while preventing analyte dispersion in the flow direction. After the concept was confirmed using computational fluid dynamics analysis, microfluidic devices with a LC column and PA mixer were fabricated on a 20 × 20 mm silicon plate. Fluid experiments were performed using a PA mixer with a pillar size of 5 or 10 μm or a hollow-channel mixer, which revealed that the PA mixer enhanced transverse mixing without increasing the width of the analyte peak. Moreover, the developed device enabled the analysis of three amino acids within 40 s by separation via hydrophilic interaction chromatography followed by postcolumn fluorogenic derivatization with naphthalene-2,3-dicarboxaldehyde and fluorescence detection. Our results demonstrate the potential of integrated derivatization units for the development of micrototal analysis systems for use in bioanalysis.
Collapse
Affiliation(s)
- Muneki Isokawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kanki Nakanishi
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Takahiro Kanamori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsushi Sekiguchi
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuichi Shoji
- Department of Nanoscience and Nanoengineering, Waseda University, Tokyo 169-8555, Japan
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Amirian H, Dalvand K, Ghiasvand A. Seamless integration of Internet of Things, miniaturization, and environmental chemical surveillance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:582. [PMID: 38806872 DOI: 10.1007/s10661-024-12698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
IoT is a game-changer across all fields, including chemistry. Embracing sustainable practices and green chemistry, the miniaturization and automation of systems, and their integration into IoT is key to achieving these principles, as a rising trend with momentum. Particularly, IoT and analytical chemistry are linked in the rapid exchange of analytical data for environmental, industrial, healthcare, and educational applications. Meanwhile, cooperation with other fields of science is evident, and there is a prompt and subjective analysis of information related to analytical systems and methodologies. This paper will review the concepts, requirements, and architecture of IoT and its role in the miniaturization and automation of analytical tools using electronic modules and sensors. The aim is to explore the standards and perspectives of IoT and its interaction with different aspects of analytical chemistry. Additionally, it aimed to explain the basics and applications of IoT for chemists, and its relevance to different subfields of analytical chemistry, particularly in the field of environmental chemical surveillance. The article also covers updating IoT devices and creating DIY-based degradation devices to enhance the educational aspect of chemistry and reduce barriers to lab facilities and equipment. Lastly, it will explore how IoT is really important and how it's going to significantly impact analytical chemistry.
Collapse
Affiliation(s)
- Hamzeh Amirian
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Kolsoum Dalvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
3
|
Bosman AJ, Freitag S, Ross GMS, Sulyok M, Krska R, Ruggeri FS, Salentijn GI. Interconnectable 3D-printed sample processing modules for portable mycotoxin screening of intact wheat. Anal Chim Acta 2024; 1285:342000. [PMID: 38057054 DOI: 10.1016/j.aca.2023.342000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The increasing demand for food and feed products is stretching the capacity of the food value chain to its limits. A key step for ensuring food safety is checking for mycotoxin contamination of wheat. However, this analysis is typically performed by rather complex and expensive chromatographic methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS). These costly methods require extensive sample preparation that is not easily carried out at different points along the food supply chain. To overcome such challenges in sample processing, an inexpensive and portable sample preparation device was needed, that required low skill, for rapid sample-to-result mycotoxin screening. RESULTS We describe 3D-printed and interconnectable modules for simple, integrated and on-site sample preparation, including grinding of wheat kernels, and solvent-based extraction. We characterized these 3D-printed modules for mycotoxin screening and benchmarked them against a laboratory mill using commercial lateral flow device(s) (LFD) and in-house validated LC-MS/MS analysis. Different integrated sieve configurations were compared based on grinding efficiency, and we selected a sieve size of 2 mm allowing grinding of 10 g of wheat within 5 min. Moreover, 10 first time-users were able to operate the grinder module with minimal instructions. Screening for deoxynivalenol (DON) in naturally contaminated samples at the regulatory/legal limit (1.25 mg kg-1) was demonstrated using the developed 3D-printed prototype. The whole process only takes 15 min, from sample preparation to screening result. The results showed a clear correlation (R2 = 0.96) between the LFD and LC-MS/MS. SIGNIFICANCE Our findings demonstrate the potential of 3D-printed sample handling equipment as a valuable extension of existing analytical procedures, facilitating the on-site implementation of rapid methods for the determination of mycotoxins in grains. The presented prototype is inexpensive with material costs of 2.5€, relies on biodegradable 3D printing filament and can be produced with consumer-grade printers, making the prototype readily available. As a future perspective, the modular character of our developed tool kit will allow for adaptation to other hard food commodities beyond the determination of DON in wheat.
Collapse
Affiliation(s)
- Anouk J Bosman
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Stephan Freitag
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georgina M S Ross
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, UK
| | - Francesco Simone Ruggeri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Faustino LC, Cunha JPC, Cantanhêde W, Kubota LT, Gerôncio ETS. 3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices. Mikrochim Acta 2023; 190:338. [PMID: 37522993 DOI: 10.1007/s00604-023-05920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
Pencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices. 3DPH was designed to keep pressure and angulation of the graphite mine constant on the paper substrate using a micromechanical pencil regardless of the user/operator. This approach significantly improved the reproducibility and cost of making reliable pencil-drawn electrodes. The results showed high reproducibility and accuracy of the 3DPH-assisted electrodes prepared by 4 different operators in terms of sheet resistance and electrochemical behavior. Cyclic voltammetric (CV) curves in the presence of [Fe(CN)6]3-/4- redox probe showed only 3.9% variation for the anodic peak currents of different electrodes prepared by different operators when compared with electrodes prepared without the 3D-printed support. SEM analyses revealed a more uniform graphite deposition/design of the electrodes prepared with 3DPH, which corroborates the results obtained by CV. As a proof of concept, 3DPH-assisted pencil-drawn graphite electrodes were employed for dopamine detection in synthetic saliva, showing a proportional increase in anodic peak current at 0.12 V vs. carbon pRE with increasing dopamine (DA) concentration, with a detection limit of 0.39μmol L-1. Moreover recovery was in the range 93-104% of DA (4-7% RSD) in synthetic saliva for three different concentrations, demonstrating the reliability of the approach. Finally, we believe this approach can make pencil-drawn technology more robust, accessible, reliable, and inexpensive for real on-site applications, especially in hard-to-reach locations or research centers with little investment.
Collapse
Affiliation(s)
- Lucas C Faustino
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - João P C Cunha
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil
| | - Welter Cantanhêde
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - Lauro T Kubota
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, 13084-971, Brazil
| | - Everson T S Gerôncio
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil.
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil.
| |
Collapse
|
5
|
Unno N, Mäkelä T. Thermal Nanoimprint Lithography-A Review of the Process, Mold Fabrication, and Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2031. [PMID: 37513042 PMCID: PMC10385880 DOI: 10.3390/nano13142031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Micro- and nanopatterns perform unique functions and have attracted attention in various industrial fields, such as electronic devices, microfluidics, biotechnology, optics, sensors, and smart and anti-adhesion surfaces. To put fine-patterned products to practical use, low-cost patterning technology is necessary. Nanoimprint lithography (NIL) is a promising technique for high-throughput nanopattern fabrication. In particular, thermal nanoimprint lithography (T-NIL) has the advantage of employing flexible materials and eliminating chemicals and solvents. Moreover, T-NIL is particularly suitable for compostable and recyclable materials, especially when applying biobased materials for use in optics and electronics. These attributes make T-NIL an eco-friendly process. However, the processing time of normal T-NIL is longer than that of ultraviolet (UV) NIL using a UV-curable resin because the T-NIL process requires heating and cooling time. Therefore, many studies focus on improving the throughput of T-NIL. Specifically, a T-NIL process based on a roll-to-roll web system shows promise for next-generation nanopatterning techniques because it enables large-area applications with the capability to process webs several meters in width. In this review, the T-NIL process, roll mold fabrication techniques, and various materials are introduced. Moreover, metal pattern transfer techniques using a combination of nanotransfer printing, T-NIL, and a reverse offset are introduced.
Collapse
Affiliation(s)
- Noriyuki Unno
- Department of Applied Electronics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tapio Mäkelä
- VTT Printed and Hybrid Functionalities, Tietotie 3, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| |
Collapse
|
6
|
Jurina T, Sokač Cvetnić T, Šalić A, Benković M, Valinger D, Gajdoš Kljusurić J, Zelić B, Jurinjak Tušek A. Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts 2023. [DOI: 10.3390/catal13040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In the last twenty years, the application of microreactors in chemical and biochemical industrial processes has increased significantly. The use of microreactor systems ensures efficient process intensification due to the excellent heat and mass transfer within the microchannels. Monitoring the concentrations in the microchannels is critical for a better understanding of the physical and chemical processes occurring in micromixers and microreactors. Therefore, there is a growing interest in performing in-line and on-line analyses of chemical and/or biochemical processes. This creates tremendous opportunities for the incorporation of spectroscopic detection techniques into production and processing lines in various industries. In this work, an overview of current applications of ultraviolet–visible, infrared, Raman spectroscopy, NMR, MALDI-TOF-MS, and ESI-MS for monitoring (bio)catalytic processes in continuously operated microreactor systems is presented. The manuscript includes a description of the advantages and disadvantages of the analytical methods listed, with particular emphasis on the chemometric methods used for spectroscopic data analysis.
Collapse
Affiliation(s)
- Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Anita Šalić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| | - Bruno Zelić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
- Department for Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, 48 000 Koprivnica, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ul. 6, 10 000 Zagreb, Croatia
| |
Collapse
|
7
|
Zaman MA, Padhy P, Wu M, Ren W, Jensen MA, Davis RW, Hesselink L. Controlled Transport of Individual Microparticles Using Dielectrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:101-110. [PMID: 36541659 PMCID: PMC10516752 DOI: 10.1021/acs.langmuir.2c02235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A dielectrophoretic device employing a planar array of microelectrodes is designed for controlled transport of individual microparticles. By exciting the electrodes in sequence, a moving dielectrophoretic force is created that can drag a particle across the electrodes in a straight line. The electrode shapes are designed to counter any lateral drift of the trapped particle during transport. This facilitates single particle transport by creating a narrow two-dimensional corridor for the moving dielectrophoretic force to operate on. The design and analysis processes are discussed in detail. Numerical simulations are performed to calculate the electromagnetic field distribution and the generated dielectrophoretic force near the electrodes. The Langevin equation is used for analyzing the trajectory of a microparticle under the influence of the external forces. The simulations show how the designed electrode geometry produces the necessary lateral confinement required for successful particle transport. Finally, experimental results are presented showing controlled bidirectional linear transport of single polystyrene beads of radius 10 and 5 μm for a distances 840 and 1100 μm, respectively. The capabilities of the proposed platform make it suitable for micro total analysis systems (μTAS) and lab-on-a-chip (LOC) applications.
Collapse
Affiliation(s)
- Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Mo Wu
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Wei Ren
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| | - Michael Anthony Jensen
- Department of Biochemistry, Stanford University, Stanford, California94305, United States
| | - Ronald W Davis
- Department of Biochemistry, Stanford University, Stanford, California94305, United States
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
8
|
Tanaka Y. Development of Microdevices Combining Machine and Life Systems. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A number of recent studies have exploited the sizes and functional properties of microdevices and cellular mechanical components to construct bio-microdevices. As the scale of microdevices can accommodate different cell sizes and processing capabilities, a number of efficient bioreactors and bioassay systems using cellular functions have been produced. To date, the main focus of these devices has been the analysis of cellular chemical functions. On the other hand, our concept is to use cells as components of devices for fluidic control. To date, various devices have been developed that exploit cellular mechanical functions. The working principle of these devices is novel because they only use chemical energy inputs. In this letter, the recent progress of this study and its characteristics are reviewed.
Collapse
|
9
|
Versatile and Easily Designable Polyester-Laser Toner Interfaces for Site-Oriented Adsorption of Antibodies. Int J Mol Sci 2022; 23:ijms23073771. [PMID: 35409130 PMCID: PMC8998940 DOI: 10.3390/ijms23073771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Laser toners appear as attractive materials for barriers and easily laminated interphases for Lab-on-a-Foil microfluidics, due to the excellent adhesion to paper and various membranes or foils. This work shows for the first time a comprehensive study on the adsorption of antibodies on toner-covered poly(ethylene terephthalate) (PET@toner) substrates, together with assessment of such platforms in rapid prototyping of disposable microdevices and microarrays for immunodiagnostics. In the framework of presented research, the surface properties and antibody binding capacity of PET substrates with varying levels of toner coverage (0–100%) were characterized in detail. It was proven that polystyrene-acrylate copolymer-based toner offers higher antibody adsorption efficiency compared with unmodified polystyrene and PET as well as faster adsorption kinetics. Comparative studies of the influence of pH on the effectiveness of antibodies immobilization as well as measurements of surface ζ-potential of PET, toner, and polystyrene confirmed the dominant role of hydrophobic interactions in adsorption mechanism. The applicability of PET@toner substrates as removable masks for protection of foil against permanent hydrophilization was also shown. It opens up the possibility of precise tuning of wettability and antibody binding capacity. Therefore, PET@toner foils are presented as useful platforms in the construction of immunoarrays or components of microfluidic systems.
Collapse
|
10
|
Advances in Nucleic Acid Amplification-Based Microfluidic Devices for Clinical Microbial Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate and timely detection of infectious pathogens is urgently needed for disease treatment and control of possible outbreaks worldwide. Conventional methods for pathogen detection are usually time-consuming and labor-intensive. Novel strategies for the identification of pathogenic nucleic acids are necessary for practical application. The advent of microfluidic technology and microfluidic devices has offered advanced and miniaturized tools to rapidly screen microorganisms, improving many drawbacks of conventional nucleic acid amplification-based methods. In this review, we summarize advances in the microfluidic approach to detect pathogens based on nucleic acid amplification. We survey microfluidic platforms performing two major types of nucleic acid amplification strategies, namely, polymerase chain reaction (PCR) and isothermal nucleic acid amplification. We also provide an overview of nucleic acid amplification-based platforms including studies and commercialized products for SARS-CoV-2 detection. Technologically, we focus on the design of the microfluidic devices, the selected methods for sample preparation, nucleic acid amplification techniques, and endpoint analysis. We also compare features such as analysis time, sensitivity, and specificity of different platforms. The first section of the review discusses methods used in microfluidic devices for upstream clinical sample preparation. The second section covers the design, operation, and applications of PCR-based microfluidic devices. The third section reviews two common types of isothermal nucleic acid amplification methods (loop-mediated isothermal amplification and recombinase polymerase amplification) performed in microfluidic systems. The fourth section introduces microfluidic applications for nucleic acid amplification-based detection of SARS-CoV-2. Finally, the review concludes with the importance of full integration and quantitative analysis for clinical microbial identification.
Collapse
|
11
|
Jeerapan I, Moonla C, Thavarungkul P, Kanatharana P. Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:249-279. [PMID: 35094777 DOI: 10.1016/bs.pmbts.2021.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This chapter highlights applications of microfluidic devices toward on-body biosensors. The emerging application of microfluidics to on-body bioanalysis is a new strategy to establish systems for the continuous, real-time, and on-site determination of informative markers present in biofluids, such as sweat, interstitial fluid, blood, saliva, and tear. Electrochemical sensors are attractive to integrate with such microfluidics due to the possibility to be miniaturized. Moreover, on-body microfluidics coupled with bioelectronics enable smart integration with modern information and communication technology. This chapter discusses requirements and several challenges when developing on-body microfluidics such as difficulties in manipulating small sample volumes while maintaining mechanical flexibility, power-consumption efficiency, and simplicity of total automated systems. We describe key components, e.g., microchannels, microvalves, and electrochemical detectors, used in microfluidics. We also introduce representatives of advanced lab-on-a-body microfluidics combined with electrochemical sensors for biomedical applications. The chapter ends with a discussion of the potential trends of research in this field and opportunities. On-body microfluidics as modern total analysis devices will continue to bring several fascinating opportunities to the field of biomedical and translational research applications.
Collapse
Affiliation(s)
- Itthipon Jeerapan
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Chochanon Moonla
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Panote Thavarungkul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
12
|
Duarte LC, Pereira I, Maciel LIL, Vaz BG, Coltro WKT. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry. Anal Chim Acta 2022; 1190:339252. [PMID: 34857139 DOI: 10.1016/j.aca.2021.339252] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
3D printing is a technology that has revolutionized traditional rapid prototyping methods due to its ability to build microscale structures with customized geometries in a simple, fast, and low-cost way. In this sense, this article describes the development of a microfluidic mixing device to monitor chemical reactions by mass spectrometry (MS). Microfluidic mixers were designed containing 3D serpentine and Y-shaped microchannels, both with a pointed end for facilitating the spray formation. The devices were fabricated entirely by 3D printing with fusion deposition modeling (FDM) technology. As proof-of-concept, micromixers were evaluated through monitoring the Katritzky reaction by injecting simultaneously 2,4,6-triphenylpropyllium (TPP) and amino acid (glycine or alanine) solutions, each through a different reactor inlet. Reaction product was monitored online by MS at different flow rates. Mass spectra showed that the relative abundances of the products obtained with the device containing the 3D serpentine channel were three times greater than those obtained with the Y-channel device due to the turbulence generated by the barriers created inside microchannels. In addition, when compared to the conventional electrospray ionization mass spectrometry (ESI-MS) technique, the 3D serpentine mixer offered better performance measured in relation to the relative abundance values for the reaction products. These results as well as the instrumental simplicity indicate that 3D printed microfluidic mixer is a promising tool for monitoring organic reactions via MS.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Igor Pereira
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Lanaia I L Maciel
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
13
|
Bußmann A, Thalhofer T, Hoffmann S, Daum L, Surendran N, Hayden O, Hubbuch J, Richter M. Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps. MICROMACHINES 2021; 12:mi12121459. [PMID: 34945309 PMCID: PMC8708163 DOI: 10.3390/mi12121459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022]
Abstract
The automated transport of cells can enable far-reaching cell culture research. However, to date, such automated transport has been achieved with large pump systems that often come with long fluidic connections and a large power consumption. Improvement is possible with space- and energy-efficient piezoelectric micro diaphragm pumps, though a precondition for a successful use is to enable transport with little to no mechanical stress on the cell suspension. This study evaluates the impact of the microfluidic transport of cells with the piezoelectric micro diaphragm pump developed by our group. It includes the investigation of different actuation signals. Therewith, we aim to achieve optimal fluidic performance while maximizing the cell viability. The investigation of fluidic properties proves a similar performance with a hybrid actuation signal that is a rectangular waveform with sinusoidal flanks, compared to the fluidically optimal rectangular actuation. The comparison of the cell transport with three actuation signals, sinusoidal, rectangular, and hybrid actuation shows that the hybrid actuation causes less damage than the rectangular actuation. With a 5% reduction of the cell viability it causes similar strain to the transport with sinusoidal actuation. Piezoelectric micro diaphragm pumps with the fluidically efficient hybrid signal actuation are therefore an interesting option for integrable microfluidic workflows.
Collapse
Affiliation(s)
- Agnes Bußmann
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
- MAB-Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany;
- Correspondence: ; Tel.: +49-89-54759-416
| | - Thomas Thalhofer
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Sophie Hoffmann
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| | - Leopold Daum
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Nivedha Surendran
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| | - Oliver Hayden
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Einsteinstrasse 25, 81675 Munich, Germany; (L.D.); (O.H.)
| | - Jürgen Hubbuch
- MAB-Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany;
| | - Martin Richter
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (T.T.); (S.H.); (N.S.); (M.R.)
| |
Collapse
|
14
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Park J, Park JK. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. BIOMICROFLUIDICS 2021; 15:041302. [PMID: 34257794 PMCID: PMC8270647 DOI: 10.1063/5.0056580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics. In this Perspective, we focus on the pushbutton-activated microfluidic technologies toward a user-friendly sample preparation tool. The working principle and recent advances in pushbutton-activated microfluidic technologies are briefly reviewed, and future perspectives for wide application are discussed in terms of integration with the signal analysis system, user-dependent variation, and universal and facile use.
Collapse
Affiliation(s)
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:
| |
Collapse
|
16
|
Otzen DE, Buell AK, Jensen H. Microfluidics and the quantification of biomolecular interactions. Curr Opin Struct Biol 2021; 70:8-15. [PMID: 33831785 DOI: 10.1016/j.sbi.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Microfluidic systems under laminar flow conditions provide in-solution information about species size and binding affinities at very modest sample costs. Flow-induced dispersion analysis directly measures the spread of the analyte profile using Taylor dispersion analysis, whereas microfluidic diffusional sizing quantifies the transfer of analyte from one phase to another. Species of sizes between 0.5 and 1000 nm can be analyzed, and different populations resolved. Both techniques also allow analysis in complex media and medium throughput analysis. These properties make them valuable complements to existing approaches to measure biomolecular interactions.
Collapse
Affiliation(s)
- Daniel E Otzen
- iNANO and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK - 8000, Aarhus C, Denmark.
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltoft Plads, DK - 2800, Kgs. Lyngby, Denmark.
| | - Henrik Jensen
- Fida Biosystems Aps, Fruebjergvej 3, DK - 2100, Copenhagen, Denmark.
| |
Collapse
|
17
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Mahmodi Arjmand E, Saadatmand M, Eghbal M, Bakhtiari MR, Mehraji S. A New Detection Chamber Design on Centrifugal Microfluidic Platform to Measure Hemoglobin of Whole Blood. SLAS Technol 2021; 26:392-398. [PMID: 33645315 DOI: 10.1177/2472630320985456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Undoubtedly, microfluidics has been a focal point of interdisciplinary science during the last two decades, resulting in many developments in this area. Centrifugal microfluidic platforms have good potential for use in point-of-care devices because they take advantage of some intrinsic forces, most notably centrifugal force, which obviates the need to any external driving forces. Herein, we introduce a newly designed detection chamber for use on microfluidic discs that can be employed as an absorbance readout step in cases where the final solution has a very low viscosity and surface tension. In such situations, our chamber easily eliminates the air bubbles from the final solution without any interruption. One microfluidic disc for measuring the hemoglobin concentration was designed and constructed to verify the correct functioning of this detection chamber. This disc measured the hemoglobin concentration of the blood samples via the HiCN method. Then, the hemoglobin concentration of 11 blood samples was quantified and compared with the clinic's data using the hemoglobin measurement disc, which included four hemoglobin measurement sets, and each set contained two inlets for the blood sample and the reagent, one two-part mixing chamber, and one bubble-free detection chamber. The measured values of the disc had good linearity and conformity compared with the clinic's data, and there were no air bubbles in the detection step. In this study, the standard deviation and the turnaround time were ± 0.51 g/dL and 68 s, respectively.
Collapse
Affiliation(s)
- Ehsan Mahmodi Arjmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Eghbal
- Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Mohammad Reza Bakhtiari
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sima Mehraji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
19
|
Parthiban P, Vijayan S, Doyle PS, Hashimoto M. Evaluation of 3D-printed molds for fabrication of non-planar microchannels. BIOMICROFLUIDICS 2021; 15:024111. [PMID: 33912266 PMCID: PMC8057840 DOI: 10.1063/5.0047497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/26/2021] [Indexed: 05/14/2023]
Abstract
Replica obtained from micromolds patterned by simple photolithography has features with uniform heights, and attainable microchannels are thus quasi-two-dimensional. Recent progress in three-dimensional (3D) printing has enabled facile desktop fabrication of molds to replicate microchannels with varying heights. We investigated the replica obtained from four common techniques of 3D printing-fused deposition modeling, selective laser sintering, photo-polymer inkjet printing (PJ), and stereolithography (SL)-for the suitability to form microchannels in terms of the surface roughness inherent to the mechanism of 3D printing. There have been limited quantitative studies that focused on the surface roughness of a 3D-printed mold with different methods of 3D printing. We discussed that the surface roughness of the molds affected (1) transparency of the replica and (2) delamination pressure of poly(dimethylsiloxane) replica bonded to flat glass substrates. Thereafter, we quantified the accuracy of replication from 3D-printed molds by comparing the dimensions of the replicated parts to the designed dimensions and tested the ability to fabricate closely spaced microchannels. This study suggested that molds printed by PJ and SL printers were suitable for replica molding to fabricate microchannels with varying heights. The insight from this study shall be useful to fabricate 3D microchannels with controlled 3D patterns of flows guided by the geometry of the microchannels.
Collapse
Affiliation(s)
| | | | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
20
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
21
|
Porter GCE, Sikora SNF, Shim JU, Murray BJ, Tarn MD. On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. LAB ON A CHIP 2020; 20:3876-3887. [PMID: 32966480 DOI: 10.1039/d0lc00690d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The freezing of supercooled water to ice and the materials which catalyse this process are of fundamental interest to a wide range of fields. At present, our ability to control, predict or monitor ice formation processes is poor. The isolation and characterisation of frozen droplets from supercooled liquid droplets would provide a means of improving our understanding and control of these processes. Here, we have developed a microfluidic platform for the continuous flow separation of frozen from unfrozen picolitre droplets based on differences in their density, thus allowing the sorting of ice crystals and supercooled water droplets into different outlet channels with 94 ± 2% efficiency. This will, in future, facilitate downstream or off-chip processing of the frozen and unfrozen populations, which could include the analysis and characterisation of ice-active materials or the selection of droplets with a particular ice-nucleating activity.
Collapse
Affiliation(s)
- Grace C E Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Jung-Uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Benjamin J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark D Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. and School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Liu W, Liu D, Hu R, Huang Z, Sun M, Han K. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation. Analyst 2020; 145:6447-6455. [PMID: 33043931 DOI: 10.1039/d0an01229g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a microplatform with multifunctional integration allowing the dynamic and high-throughput exploration of three-dimensional (3D) cultures is promising for biomedical research. Here, we introduce an integrated microfluidic 3D tumor system with pneumatic manipulation and chemical gradient generation to investigate anticancer therapy in a parallel, controllable, dynamic, and high-throughput manner. The stability of the microfluidic system to realize precise and long-term chemical gradient production was developed. Serial manipulations including active cell trapping, array-like tumor self-assembly and formation, reliable gradient generation, parallel multi-concentration drug stimulation, and real-time tumor analysis were achieved in a single microfluidic device. The microfluidic platform was demonstrated to be stable for high-throughput cell trapping and 3D tumor formation with uniform quantities. On-chip analysis of phenotypic tumor responses to diverse chemotherapies with different concentrations can be conducted in this device. The microfluidic advancement holds great potential for applications in the development of high-performance and multi-functional biomimetic tumor systems and in the fields of cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Wenming Liu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| | | | | | | | | | | |
Collapse
|
23
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
24
|
Moreira NS, Chagas CL, Oliveira KA, Duarte-Junior GF, de Souza FR, Santhiago M, Garcia CD, Kubota LT, Coltro WK. Fabrication of microwell plates and microfluidic devices in polyester films using a cutting printer. Anal Chim Acta 2020; 1119:1-10. [DOI: 10.1016/j.aca.2020.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022]
|
25
|
Matsuda Y, Kigami H, Unno N, Satake SI, Taniguchi J. Three-dimensional Flow Measurements around Micro-pillars Made by UV-NIL in Water via Micro-digital Holographic Particle Tracking Velocimetry (Micro-DHPTV). J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hiroshi Kigami
- Department of Applied Electronics, Tokyo University of Science
| | - Noriyuki Unno
- Department of Mechanical Engineering, Sanyo-Onoda City University
| | | | - Jun Taniguchi
- Department of Applied Electronics, Tokyo University of Science
| |
Collapse
|
26
|
Rodriguez-Mateos P, Azevedo NF, Almeida C, Pamme N. FISH and chips: a review of microfluidic platforms for FISH analysis. Med Microbiol Immunol 2020; 209:373-391. [PMID: 31965296 PMCID: PMC7248050 DOI: 10.1007/s00430-019-00654-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
Fluorescence in situ hybridization (FISH) allows visualization of specific nucleic acid sequences within an intact cell or a tissue section. It is based on molecular recognition between a fluorescently labeled probe that penetrates the cell membrane of a fixed but intact sample and hybridizes to a nucleic acid sequence of interest within the cell, rendering a measurable signal. FISH has been applied to, for example, gene mapping, diagnosis of chromosomal aberrations and identification of pathogens in complex samples as well as detailed studies of cellular structure and function. However, FISH protocols are complex, they comprise of many fixation, incubation and washing steps involving a range of solvents and temperatures and are, thus, generally time consuming and labor intensive. The complexity of the process, the relatively high-priced fluorescent probes and the fairly high-end microscopy needed for readout render the whole process costly and have limited wider uptake of this powerful technique. In recent years, there have been attempts to transfer FISH assay protocols onto microfluidic lab-on-a-chip platforms, which reduces the required amount of sample and reagents, shortens incubation times and, thus, time to complete the protocol, and finally has the potential for automating the process. Here, we review the wide variety of approaches for lab-on-chip-based FISH that have been demonstrated at proof-of-concept stage, ranging from FISH analysis of immobilized cell layers, and cells trapped in arrays, to FISH on tissue slices. Some researchers have aimed to develop simple devices that interface with existing equipment and workflows, whilst others have aimed to integrate the entire FISH protocol into a fully autonomous FISH on-chip system. Whilst the technical possibilities for FISH on-chip are clearly demonstrated, only a small number of approaches have so far been converted into off-the-shelf products for wider use beyond the research laboratory.
Collapse
Affiliation(s)
- Pablo Rodriguez-Mateos
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Nuno Filipe Azevedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering of University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
- Biomode SA, Av. Mestre José Veiga, 4715-330, Braga, Portugal
| | - Carina Almeida
- Biomode SA, Av. Mestre José Veiga, 4715-330, Braga, Portugal
- INIAV, I.P.-National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, 4485-655, Vila Do Conde, Portugal
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Nicole Pamme
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
27
|
Saygili E, Orakci B, Koprulu M, Demirhan A, Ilhan-Ayisigi E, Kilic Y, Yesil-Celiktas O. Quantitative determination of H 2O 2 for detection of alanine aminotransferase using thin film electrodes. Anal Biochem 2019; 591:113538. [PMID: 31830435 DOI: 10.1016/j.ab.2019.113538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022]
Abstract
The abnormal concentrations or absence of biomolecules (e.g., proteins) in blood can further be used in diagnosis of a particular pathology at an early stage. Current studies are intensely focusing on the analysis of interaction and detection of biomolecules via point-of-care systems (POCs), allowing miniaturized and parallelized reactions, simultaneously. Recent developments have shown that the collaboration of electrochemical sensing techniques and POCs to overcome challenging problems in health-care settings provides new approaches in diagnosis and treatment of diseases. The aim of this study was to adapt the alanine aminotransferase (ALT) enzyme to the platinum (Pt) thin film electrode system and quantitatively determine the enzyme levels via enzymatically generated H2O2 with differential pulse voltammetry (DPV). A simple potentiostat architecture with expanded sweep range utilizing dual LMP91000 devices was developed and adapted to the needs of the biosensor. In order to calibrate the system, known concentrations of H2O2 were also tested. Moreover, signals associated with the other electroactive species coming from the ALT reaction were eliminated. Resulted potential range has been achieved between +500 mV and +900 mV and the linear range was found to be 0.05 M-0.5 M for H2O2, whereas 5 UL-1 to 120 UL-1 for ALT enzyme.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Beyza Orakci
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Melisa Koprulu
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Alper Demirhan
- Solar Biyoteknoloji Ltd. (SolarBiotec), 35530, Bayrakli, Izmir, Turkey
| | - Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey; Genetic and Bioengineering Department, Faculty of Engineering and Architecture, Ahi Evran University, Kirsehir, Turkey
| | - Yalin Kilic
- Department of Biomedical Engineering, Faculty of Engineering, Izmir University of Economics, 35330, Balcova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
28
|
Funano S, Tanaka N, Tanaka Y. User‐friendly cell patterning methods using a polydimethylsiloxane mold with microchannels. Dev Growth Differ 2019; 62:167-176. [DOI: 10.1111/dgd.12637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Yo Tanaka
- Center for Biosystems Dynamics Research RIKEN Osaka Japan
| |
Collapse
|
29
|
Fantino E, Chiadò A, Quaglio M, Vaghi V, Cocuzza M, Marasso SL, Potrich C, Lunelli L, Pederzolli C, Pirri CF, Bongiovanni R, Vitale A. Photofabrication of polymeric biomicrofluidics: New insights into material selection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110166. [PMID: 31753377 DOI: 10.1016/j.msec.2019.110166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023]
Abstract
We propose a versatile method to evaluate the suitability of polymers for the fabrication of microfluidic devices for biomedical applications, based on the concept that the selection and the design of convenient materials should involve different properties depending on the final microfluidic application. Here polymerase chain reaction (PCR) is selected as biological model and target microfluidic reaction. A class of photocured siloxanes is introduced as device building polymers and copolymerization is adopted as strategy to finely tune and optimize the final material properties. All-polymeric flexible devices are easily fabricated exploiting the rapidity of the photopolymerization reaction: they resist to thermal cycles without leakage or de-bonding (i.e., without separation of different chip parts made of the same material bonded together), show very limited water swelling and permeability, are bioinert and prevent the inhibition of the biochemical reaction. PCR is thus successfully conducted in the photocured microfluidic devices made with a specifically designed siloxane copolymer.
Collapse
Affiliation(s)
- Erika Fantino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Alessandro Chiadò
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy
| | - Marzia Quaglio
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy; Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Valentina Vaghi
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy
| | - Matteo Cocuzza
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Simone L Marasso
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy; CNR - Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Via alla Cascata 56/C, 38123 Povo, Trento, Italy
| | - Cecilia Pederzolli
- Fondazione Bruno Kessler, Laboratory of Biomolecular Sequence and Structure Analysis for Health, Via Sommarive 18, 38123 Povo, Trento, Italy
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies @ PoliTo, Corso Trento 21, 10129 Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; INSTM - Politecnico di Torino Research Unit, Via Giusti 9, 50121 Firenze, Italy
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; INSTM - Politecnico di Torino Research Unit, Via Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
30
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Guevara Amatón KV, Couceiro P, Coto Fuentes H, Calvo-Lopez A, Sández N, Moreno Casillas HA, Valdés Perezgasga F, Alonso-Chamarro J. Microanalyser Prototype for On-Line Monitoring of Copper(II) Ion in Mining Industrial Processes. SENSORS 2019; 19:s19153382. [PMID: 31374924 PMCID: PMC6695698 DOI: 10.3390/s19153382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023]
Abstract
A microanalyzer prototype for copper(II) ion monitoring in mining industrial processes is presented. The microanalyzer is designed as an assembly of different modules, each module being responsible for a unit operation. In order to optimize the industrial processes, the microanalyzer can automate all sample management, signal processing, and mathematical calculations and wirelessly transfer data to a control room. The determination of copper(II) ion is done using a colorimetric reaction and the microanalyser performs autocalibration by in situ dilution of a stock solution, matching the higher analyte concentration of the working range defined for the sample to be determined, using a multicommutation approach. The performance of the microanalyzer for monitoring copper(II) ion in water effluents of mining facilities was optimized in the working range from 1 to 10 mg/L to match Mexican environmental law regulations, which allow a maximum concentration of 4 mg/L of copper(II) ion in these circumstances.
Collapse
Affiliation(s)
| | - Pedro Couceiro
- Group of Sensors and Biosensors, Department of Chemistry, Autonomous University of Barcelona, Edifici Cn, 08193 Barcelona, Spain
| | - Hesner Coto Fuentes
- Instituto Tecnológico de la Laguna, México, Cuauhtémoc y Revolución s/n, Torreón Coahuila 27000, Mexico
| | - Antonio Calvo-Lopez
- Group of Sensors and Biosensors, Department of Chemistry, Autonomous University of Barcelona, Edifici Cn, 08193 Barcelona, Spain
| | - Natàlia Sández
- Group of Sensors and Biosensors, Department of Chemistry, Autonomous University of Barcelona, Edifici Cn, 08193 Barcelona, Spain
| | | | | | - Julián Alonso-Chamarro
- Group of Sensors and Biosensors, Department of Chemistry, Autonomous University of Barcelona, Edifici Cn, 08193 Barcelona, Spain.
| |
Collapse
|
32
|
Abstract
Here we describe in detail the design, fabrication and operation of our automated high-throughput single cell microchip electrophoresis device with laser induced fluorescence detection. Our device features on-board integrated peristaltic pumps that generate flow directly within the microfluidic channels. Additionally, we have incorporated an optical fiber bridge that enables simultaneous fluorescence detection at two points of interest within the device without the need for additional optical components or detectors. The second detection spot is used to detect the intact cell immediately prior to lysis giving a signal at t=0s for each single-cell electropherogram. We can also use this signal to measure the absolute migration time of the separated analytes to confidently determine the identity of each peak. Finally, we demonstrate the application of our device for the measurement of intracellular nitric oxide (NO) levels in T-lymphocytes. Changes in NO levels within cells is associated with a number of chronic diseases including neurodegenerative, cardiovascular and cancers. We show that our system is capable of measuring NO levels under the following conditions: native, lipopolysaccharide stimulation, and inhibition of inducible nitric oxide synthase. It is our hope that the information and procedures described in this chapter may enable others to use or adapt our system for other analyses at the single cell level.
Collapse
|
33
|
Mercer C, Bennett R, Conghaile PÓ, Rusling JF, Leech D. Glucose biosensor based on open-source wireless microfluidic potentiostat. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 290:616-624. [PMID: 32395016 PMCID: PMC7213535 DOI: 10.1016/j.snb.2019.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Wireless potentiostats capable of cyclic voltammetry and amperometry that connect to the Internet are emerging as key attributes of future point-of-care devices. This work presents an "integrated microfluidic electrochemical detector" (iMED) three-electrode multi-potentiostat designed around operational amplifiers connected to a powerful WiFi-based microcontroller as a promising alternative to more expensive and complex strategies reported in the literature. The iMED is integrated with a microfluidic system developed to be controlled by the same microcontroller. The iMED is programmed wirelessly over a standard WiFi network and all electrochemical data is uploaded to an open-source cloud-based server. A wired desktop computer is not necessary for operation or program uploading. This method of integrated microfluidic automation is simple, uses common and inexpensive materials, and is compatible with commercial sample injectors. An integrated biosensor platform contains four screen-printed carbon arrays inside 4 separate microfluidic detection chambers with Pt counter and pseudo Ag/AgCl reference electrodes in situ. The iMED is benchmarked with K3[Fe(CN)6] against a commercial potentiostat and then as a glucose biosensor using glucose-oxidising films of [Os(2,2'-bipyridine)2(polyvinylimidazole)10Cl] prepared on screen-printed electrodes with multi walled carbon nanotubes, poly(ethylene glycol) diglycidyl ether and flavin adenine dinucleotide-dependent glucose dehydrogenase. Potential application of this cost-effective wireless potentiostat approach to modern bioelectronics and point-of-care diagnosis is demonstrated by production of glucose oxidation currents, under pseudo-physiological conditions, using mediating films with lower redox potentials.
Collapse
Affiliation(s)
- Conan Mercer
- School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Richard Bennett
- School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Peter Ó. Conghaile
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - James F. Rusling
- School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, United States
- Department of Surgery and Neag Cancer Centre, UConn Health, Farmington, CT 06030, United States
| | - Dónal Leech
- School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
34
|
Piendl SK, Raddatz CR, Hartner NT, Thoben C, Warias R, Zimmermann S, Belder D. 2D in Seconds: Coupling of Chip-HPLC with Ion Mobility Spectrometry. Anal Chem 2019; 91:7613-7620. [DOI: 10.1021/acs.analchem.9b00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Nora T. Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Thoben
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Stefan Zimmermann
- Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Appelstrasse 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Yamawaki B, Mori R, Tsukagoshi K, Tsuchiya K, Yamashita K, Murata M. Microfluidic Inverted Flow of Ternary Water/Hydrophilic/Hydrophobic Organic Solvent Solution in a Y-Type Microchannel and a Proposal of the Response Microfluidic Analysis through the Experiment. ANAL SCI 2019; 35:249-256. [PMID: 30318490 DOI: 10.2116/analsci.18p393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two solutions that are individually fed at the same flow rate into two separate microchannels of a microchip, combine to form a single channel (a Y-type microchannel). This flow is either parallel for immiscible solutions or initially parallel, but then becomes homogeneous through diffusion, for miscible solutions. However, a new type of microfluidic behavior in a Y-type microchannel that was neither parallel nor homogeneous flow has been observed using, for example, water/acetonitrile (3:4.5, v/v) and acetonitrile/ethyl acetate (3.5:4, v/v) mixed solutions. Each mixed solution was marked with distinctive dyes and delivered at the same flow rate into a Y-type microchannel under laminar flow conditions. In the single channel, the two phases were initially observed to flow in parallel, but then apparently swapped to flow on the opposite wall while retaining parallel flow with a slight change in the components of the two phases. We have named this type of laminar flow "microfluidic inverted flow" for ternary water/hydrophilic/hydrophobic organic solvent mixed solutions. The inverted flow of a ternary water/acetonitrile/ethyl acetate system was examined in detail under various flow conditions. We also proposed a concept of response microfluidic analysis based on such microfluidic inverted flow.
Collapse
Affiliation(s)
- Bun Yamawaki
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University
| | - Ryuki Mori
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University
| | - Kazuhiko Tsukagoshi
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University.,Bio-Microfluidic Science Research Center
| | - Katsumi Tsuchiya
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University.,Bio-Microfluidic Science Research Center
| | - Kenichi Yamashita
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University
| |
Collapse
|
36
|
Mercer C, Jones A, Rusling JF, Leech D. Multiplexed Electrochemical Cancer Diagnostics With Automated Microfluidics. ELECTROANAL 2019; 31:208-211. [PMID: 32390709 PMCID: PMC7207070 DOI: 10.1002/elan.201800632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/26/2018] [Indexed: 01/08/2023]
Abstract
Microfluidic platforms can lead to miniaturisation, increased throughput and reduced reagent consumption, particularly when the processes are automated. Here, a programmable microcontroller is used for automation of a microfluidic platform configured to electrochemically determine the levels of 8 proteins simultaneously in complex liquid samples. The platform system is composed of a programmable Arduino microcontroller that controls inexpensive valve actuators, pump, magnetic stirrer and electronic display. The programmable microcontroller results in repeatable timing for each step in a complex assay protocol, such as sandwich immunoassays. Application of the platform is demonstrated using a multiplexed electrochemical immunoassay based on capture at the electrode surface of magnetic particles labelled with horseradish peroxidase and detection antibody. The multiplexed assay protocol is completed in less than 30 mins and results in detection of eight proteins associated with prostate cancer. The approach presented can be used to automate and simplify high-throughput screening campaigns, such as detection of multiple biomarkers in patient samples.
Collapse
Affiliation(s)
- Conan Mercer
- School of Chemistry, and Ryan Institute National University of Ireland Galway University Road, Galway
| | - Abby Jones
- Department of Chemistry University of Connecticut Storrs, CT 06269, USA
| | - James F. Rusling
- School of Chemistry, and Ryan Institute National University of Ireland Galway University Road, Galway
- Department of Chemistry University of Connecticut Storrs, CT 06269, USA
- Institute of Materials Science University of Connecticut Storrs, CT 06269, USA
- Department of Surgery, and Neag Cancer Center UConn Health Farmington, CT 06032, USA
| | - Dónal Leech
- School of Chemistry, and Ryan Institute National University of Ireland Galway University Road, Galway
| |
Collapse
|
37
|
Li N, Yue X, Zhang L, Wang K, Zhang J, Zhang Z, Dang F. Versatile antifouling coatings based on self-assembled oligopeptides for engineering and biological materials. J Mater Chem B 2019; 7:2242-2246. [DOI: 10.1039/c9tb00084d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The existence of nonspecific protein adsorption often results in significant challenges for microfluidic devices and laboratory cultureware used in biological experiments.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Xuanfeng Yue
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Li Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Ke Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Zhiqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Fuquan Dang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
- China
| |
Collapse
|
38
|
Bressan LP, de Jesus DP, Gunasekara DB, Lunte SM, da Silva JAF. Microchip Electrophoresis Containing Electrodes for Integrated Electrochemical Detection. Methods Mol Biol 2019; 1906:79-85. [PMID: 30488386 DOI: 10.1007/978-1-4939-8964-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microchip electrophoresis is a versatile separation technique. Electrochemical detection is suitable to apply to microdevices due to its easy integration to the fabrication process and good sensitivity and selectivity. Here we describe the procedures to prepare Pt band electrodes deposited on glass to couple to polydimethylsiloxane (PDMS) microchips aiming the separation and detection of nitrite using an isolated potentiostat.
Collapse
Affiliation(s)
| | | | | | - Susan Marie Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
39
|
Gunawardhana SM, Lunte SM. Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:3737-3744. [PMID: 31579297 PMCID: PMC6774626 DOI: 10.1039/c8ay01041b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid monitoring of concentration changes of neurotransmitters and energy metabolites is important for understanding the biochemistry of neurological disease as well as for developing therapeutic options. This paper describes the development of a separation-based sensor using microchip electrophoresis (ME) with electrochemical (EC) detection coupled to microdialysis (MD) sampling for continuous on-line monitoring of adenosine and its downstream metabolites. The device was fabricated completely in PDMS. End-channel electrochemical detection was accomplished using a carbon fiber working electrode embedded in the PDMS. The separation conditions for adenosine, inosine, hypoxanthine, and guanosine were investigated using a ME-EC chip with a 5-cm long separation channel. The best resolution was achieved using a background electrolyte consisting of 35 mM sodium borate at pH 10, 15% dimethyl sulfoxide (DMSO), and 2 mM sodium dodecyl sulphate (SDS), and a field strength of 222 V/cm. Under these conditions, all four purines were separated in less than 85 s. Using a working electrode detection potential of 1.4 vs Ag/AgCl, the limits of detection were 25, 33, 10, and 25 μM for adenosine, inosine, hypoxanthine, and guanosine, respectively. The ME-EC chip was then coupled to microdialysis sampling using a novel all-PDMS microdialysis-microchip interface that was reversibly sealed. This made alignment of the working electrode with the end of the separation channel much easier and more reproducible than could be obtained with previous MD-ME-EC systems. The integrated device was then used to monitor the enzymatic conversion of adenosine to inosine in vitro.
Collapse
Affiliation(s)
- Shamal M Gunawardhana
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
40
|
Yu X, Chen B, He M, Wang H, Tian S, Hu B. Facile Design of Phase Separation for Microfluidic Droplet-Based Liquid Phase Microextraction as a Front End to Electrothermal Vaporization-ICPMS for the Analysis of Trace Metals in Cells. Anal Chem 2018; 90:10078-10086. [PMID: 30039697 DOI: 10.1021/acs.analchem.8b03078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The issue of quantifying trace metals in cells has drawn widespread attention but is threatened with insufficient sensitivity of the instruments, complex cellular matrix and limited cell consumption. In this study, microfluidic droplet-based liquid phase microextraction (LPME), as a miniaturized platform, was developed and combined with electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICPMS) for the analysis of trace Cd, Hg, Pb, and Bi in cells. A novel and facile design of phase separation region was proposed, which made the phase separation very easily for subsequent ETV-ICPMS detection. Mechanism of the phase separation was carefully discussed using the incompressible formulation of the Navier-Stokes equations. The developed microfluidic droplet-based LPME system exhibited much higher extraction efficiency to target metals than microfluidic stratified flow-based LPME. Under the optimized conditions, the limits of detection of the proposed microfluidic droplet-based LPME-ETV-ICPMS system were 2.5, 3.9, 5.5, and 3.4 ng L-1 for Cd, Hg, Pb, and Bi, respectively. The accuracy of the developed method was well validated by analyzing the target metals in Certified Reference Materials of GBW07601a human hair. Finally, the proposed method was successfully applied to the analysis of target metals in HeLa and HepG2 cells with the recoveries for the spiked samples ranging from 83.5 to 112.3%. Overall, the proposed design is a simple and reliable solution for the phase separation on droplet-chip and the microfluidic droplet-based LPME-ETV-ICPMS combination strategy shows great promise for trace elements analysis in cells.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Han Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Songbai Tian
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
41
|
Kim AA, Nekimken AL, Fechner S, O'Brien LE, Pruitt BL. Microfluidics for mechanobiology of model organisms. Methods Cell Biol 2018; 146:217-259. [PMID: 30037463 PMCID: PMC6418080 DOI: 10.1016/bs.mcb.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
Collapse
Affiliation(s)
- Anna A Kim
- University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States
| | | | | | | | - Beth L Pruitt
- University of California, Santa Barbara, CA, United States; Stanford University, Stanford, CA, United States.
| |
Collapse
|
42
|
Dunn RC. Wavelength Modulated Back-Scatter Interferometry for Universal, On-Column Refractive Index Detection in Picoliter Volumes. Anal Chem 2018; 90:6789-6795. [PMID: 29762009 DOI: 10.1021/acs.analchem.8b00771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wavelength-modulated back scatter interferometry (M-BSI) is shown to improve the detection metrics for refractive index (RI) sensing in microseparations. In M-BSI, the output of a tunable diode laser is focused into the detection zone of a separation channel as the excitation wavelength is rapidly modulated. This spatially modulates the observed interference pattern, which is measured in the backscattered direction. Phase-sensitive detection using a split photodiode detector aligned on one fringe of the interference pattern is used to monitor RI changes as analytes are separated. Using sucrose standards, we report a detection limit of 700 μg/L in a 75 μm i.d. capillary at the 3σ level, corresponding to a detection volume of 90 pL. To validate the approach for electrophoretic separations, Na+ and Li+ were separated and detected with M-BSI and indirect-UV absorbance on the same capillary. A 4 mg/L NaCl and LiCl mixture leads to comparable separation efficiencies in the two detection schemes, with better signal-to-noise in the M-BSI detection, but less baseline stability. The latter arises in part from Joule heating, which influences RI measurements through the thermo-optic properties of the run buffer. To reduce this effect, a 25 μm i.d. capillary combined with active temperature control was used to detect the separation of sucrose, glucose, and lactose with M-BSI. The lack of suitable UV chromophores makes these analytes challenging to detect directly in ultrasmall volumes. Using a 55 mM NaOH run buffer, M-BSI is shown to detect the separation of a mixture of 174 mg/L sucrose, 97 mg/L glucose, and 172 mg/L lactose in a 15 pL detection volume. The universal on-column detection in ultrasmall volumes adds new capabilities for microanalysis platforms, while potentially reducing the footprint and costs of these systems.
Collapse
Affiliation(s)
- Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry , University of Kansas , 2030 Becker Drive , Lawrence , Kansas 66047 , United States
| |
Collapse
|
43
|
Yu X, Chen B, He M, Wang H, Hu B. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots. Talanta 2018; 179:279-284. [DOI: 10.1016/j.talanta.2017.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
44
|
Ly J, Ha NS, Cheung S, van Dam RM. Toward miniaturized analysis of chemical identity and purity of radiopharmaceuticals via microchip electrophoresis. Anal Bioanal Chem 2018; 410:2423-2436. [PMID: 29470664 PMCID: PMC6482050 DOI: 10.1007/s00216-018-0924-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Miniaturized synthesis of positron emission tomography (PET) tracers is poised to offer numerous advantages including reduced tracer production costs and increased availability of diverse tracers. While many steps of the tracer production process have been miniaturized, there has been relatively little development of microscale systems for the quality control (QC) testing process that is required by regulatory agencies to ensure purity, identity, and biological safety of the radiotracer before use in human subjects. Every batch must be tested, and in contrast with ordinary pharmaceuticals, the whole set of tests of radiopharmaceuticals must be completed within a short-period of time to minimize losses due to radioactive decay. By replacing conventional techniques with microscale analytical ones, it may be possible to significantly reduce instrument cost, conserve lab space, shorten analysis times, and streamline this aspect of PET tracer production. We focus in this work on miniaturizing the subset of QC tests for chemical identity and purity. These tests generally require high-resolution chromatographic separation prior to detection to enable the approach to be applied to many different tracers (and their impurities), and have not yet, to the best of our knowledge, been tackled in microfluidic systems. Toward this end, we previously explored the feasibility of using the technique of capillary electrophoresis (CE) as a replacement for the "gold standard" approach of using high-performance liquid chromatography (HPLC) since CE offers similar separating power, flexibility, and sensitivity, but can readily be implemented in a microchip format. Using a conventional CE system, we previously demonstrated the successful separation of non-radioactive version of a clinical PET tracer, 3'-deoxy-3'-fluorothymidine (FLT), from its known by-products, and the separation of the PET tracer 1-(2'-deoxy-2'-fluoro-β-D-arabinofuranosyl)-cytosine (D-FAC) from its α-isomer, with sensitivity nearly as good as HPLC. Building on this feasibility study, in this paper, we describe the first effort to miniaturize the chemical identity and purity tests by using microchip electrophoresis (MCE). The fully automated proof-of-concept system comprises a chip for sample injection, a separation capillary, and an optical detection chip. Using the same model compound (FLT and its known by-products), we demonstrate that samples can be injected, separated, and detected, and show the potential to match the performance of HPLC. Addition of a radiation detector in the future would enable analysis of radiochemical identity and purity in the same device. We envision that eventually this MCE method could be combined with other miniaturized QC tests into a compact integrated system for automated routine QC testing of radiopharmaceuticals in the future. Graphical abstract Miniaturized quality control (QC) testing of batches of radiopharmaceuticals via microfluidic analysis. The proof-of-concept hybrid microchip electrophoresis (MCE) device demonstrated the feasibility of achieving comparable performance to conventional analytical instruments (HPLC or CE) for chemical purity testing.
Collapse
Affiliation(s)
- Jimmy Ly
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, 94158, USA
| | - Noel S Ha
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
| | - Shilin Cheung
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Trace-ability, Inc., 6160 Bristol Parkway Ste. 200, Culver City, CA, 90230, USA
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA.
| |
Collapse
|
45
|
Review: Microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 2018; 1012:10-29. [PMID: 29475470 DOI: 10.1016/j.aca.2017.12.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
Blood-based liquid biopsies provide a minimally invasive alternative to identify cellular and molecular signatures that can be used as biomarkers to detect early-stage cancer, predict disease progression, longitudinally monitor response to chemotherapeutic drugs, and provide personalized treatment options. Specific targets in blood that can be used for detailed molecular analysis to develop highly specific and sensitive biomarkers include circulating tumor cells (CTCs), exosomes shed from tumor cells, cell-free circulating tumor DNA (cfDNA), and circulating RNA. Given the low abundance of CTCs and other tumor-derived products in blood, clinical evaluation of liquid biopsies is extremely challenging. Microfluidics technologies for cellular and molecular separations have great potential to either outperform conventional methods or enable completely new approaches for efficient separation of targets from complex samples like blood. In this article, we provide a comprehensive overview of blood-based targets that can be used for analysis of cancer, review microfluidic technologies that are currently used for isolation of CTCs, tumor derived exosomes, cfDNA, and circulating RNA, and provide a detailed discussion regarding potential opportunities for microfluidics-based approaches in cancer diagnostics.
Collapse
|
46
|
Shiba K, Ogawa M. Precise Synthesis of Well-Defined Inorganic-Organic Hybrid Particles. CHEM REC 2018; 18:950-968. [PMID: 29320612 DOI: 10.1002/tcr.201700077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/22/2017] [Indexed: 11/07/2022]
Abstract
Synthesis of hybrid particles toward precisely designed hierarchical nanoarchitectures is summarized. In order to satisfy the demands for a variety of materials' performances, the selection of materials, composition and synthesis is carefully done. Flow reactors are one of the useful synthetic means to prepare hybrid materials, especially those with hierarchically and precisely designed multi-components hybrid particles, owing to the efficient mixing and heat exchange in the reactor as well as its connectable (both parallel and sequential) feature. In this review article, after the summary of the preparation of hybrids based on oxides and organics through conventional batch reactors, the application of flow reactors to the preparation of various hybrid particles is introduced to highlight the present status and future possibility of the flow reactor synthesis.
Collapse
Affiliation(s)
- Kota Shiba
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Tumbol Payupnai, Amphoe Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
47
|
Rodríguez-Ruiz I, Babenko V, Martínez-Rodríguez S, Gavira JA. Protein separation under a microfluidic regime. Analyst 2017; 143:606-619. [PMID: 29214270 DOI: 10.1039/c7an01568b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lab-on-a-Chip (LoC), or micro-Total Analysis Systems (μTAS), is recognized as a powerful analytical technology with high capabilities, though end-user products for protein purification are still far from being available on the market. Remarkable progress has been achieved in the separation of nucleic acids and proteins using electrophoretic microfluidic devices, while pintsize devices have been developed for protein isolation according to miniaturized chromatography principles (size, charge, affinity, etc.). In this work, we review the latest advances in the fabrication of components, detection methods and commercial implementation for the separation of biological macromolecules based on microfluidic systems, with some critical remarks on the perspectives of their future development towards standardized microfluidic systems and protocols. An outlook on the current needs and future applications is also presented.
Collapse
Affiliation(s)
| | - V Babenko
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | - S Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology. University of Granada, Granada, Spain
| | - J A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-University of Granada, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.
| |
Collapse
|
48
|
Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT. Cellular Analysis Using Microfluidics. Anal Chem 2017; 90:65-85. [DOI: 10.1021/acs.analchem.7b04519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jay Sibbitts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kathleen A. Sellens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Scott A. Klasner
- 12966
South
State Highway 94, Marthasville, Missouri 63357, United States
| | | |
Collapse
|
49
|
A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci Rep 2017; 7:16378. [PMID: 29180650 PMCID: PMC5704020 DOI: 10.1038/s41598-017-16762-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Abstract
Engineered Terahertz (THz) metamaterials presented an unique characteristics for biosensing application due to their accurately tunable resonance frequency, which is in accord with vibrational frequency of some important biomolecules such as cancer biomarker. However, water absorption in THz regime is an obstacle to extend application in trace biomolecules of cancer antibody or antigen. Here, to overcome water absorption and enhance the THz biosensing sensitivity, two kinds of THz metamaterials biosensor integrated with microfluidics were fabricated and used to detect the Alpha fetoprotein (AFP) and Glutamine transferase isozymes II (GGT-II) of liver cancer biomarker in early stage. There were about 19 GHz resonance shift (5 mu/ml) and 14.2 GHz resonance shift (0.02524 μg/ml) for GGT-II and AFP with a two-gap-metamaterial, respectively, which agreed with simulation results. Those results demonstrated the power and usefulness of metamaterial-assisted THz spectroscopy in trace cancer biomarker molecular detection for biological and chemical sensing. Moreover, for a particular cancer biomarker, the sensitivity could be further improved by optimizing the metamaterial structure and decreasing the permittivity of the substrate. This method might be powerful and potential for special recognition of cancer molecules in the early stage.
Collapse
|
50
|
Affiliation(s)
- Xilong Yuan
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|